HOMEWORK DAY 38 – Direction fields. Euler's Method §9.2

1. Sketch the direction fields for the following differential equations. Then sketch a few integral curves (solution curves) tangent to the direction field.

(a)
$$\frac{dy}{dt} = t$$

(b)
$$\frac{dy}{dt} = y$$

(c)
$$\frac{dy}{dt} = y^2$$

Instructions. In the next two problems you need to implement Euler's method by hand. Report your answer in rows

$$t_0 = \dots \quad y_0 = \dots$$
$$t_1 = \dots \quad y_1 = \dots$$
$$\vdots$$
$$t_n = \dots \quad y_n = \dots$$

2. Consider the initial value problem

$$\frac{dy}{dt} = t^2 y , \qquad y(1) = 1 .$$

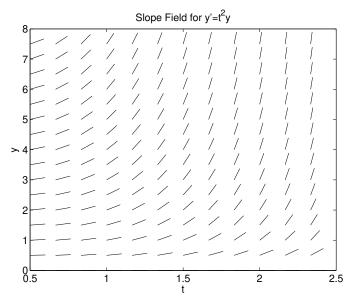
(a) Use Euler's method (by hand) to approximate the solution y(t) at t = 2 using $\Delta t = 1$.

(b) Repeat using $\Delta t = 1/2$

(c) Repeat using $\Delta t = 1/4$ (use a calculator to approximate the answer at t = 2).

(d) The direction field of $\frac{dy}{dt} = t^2 y$ is shown below. In this figure, add a sketch of \circ the exact solution $y(t) = e^{\frac{1}{3}(t^3-1)}$ to the given initial value problem, for $t \in [1, 2]$ (it may leave the given window)

 \circ the numerical approximation using Euler's method with $\Delta t = 1/4$ that you found above (indicate the solution obtained at each step, and a line showing how it is obtained)



3. Consider the initial value problem

$$\frac{dy}{dx} = y - 2x , \quad y(1) = 0$$

(a) Use Euler's method (by hand) to approximate the solution y(x) at x = 3 using using $\Delta x = 1$.

(b) Repeat the above using step size $\Delta x = 1/2$.

4. Solve the differential equation or initial value problem.

(a)
$$\frac{dy}{dx} = 3x^2y^2$$

(b)
$$\frac{dy}{dx} = x\sqrt{y}$$

(c)
$$xy' = 2y + 1$$
, $y(1) = 0$

(d)
$$\frac{dy}{dx} = 2x(y^2 + 1)$$

(e)
$$\frac{dp}{dt} = t^2 p - p + t^2 - 1$$

- 5. Which of the equations in §9.5:1-4 is linear?
- 6. Find a positive solution $\mu(x)$ to each of the following equations (use any method you like).

(a) $\mu' = -\mu$

(b) $\mu' = 2\mu$

(c)
$$\mu' = \frac{\mu}{x}$$

(d)
$$\mu' = \frac{4\mu}{x}$$

- 7. Solve the following differential equations using the method of integrating factors.
 - (a) $4x^3y + x^4y' = \sin^3 x$

(b)
$$t^2 \frac{dy}{dt} + 3ty = \sqrt{1+t^2}, t > 0$$

8. Solve the initial value problem y' = y - 2x, y(1) = 0.

9. Show that the following terms are exact derivatives (they are of the form $\frac{d}{dx}[g(x)y]$ for some g).

(a)
$$xy' + y$$

(b)
$$t^3 \frac{dy}{dt} + 3t^2 y$$

10. Use your answer in (a) above to solve $xy' + y = \sqrt{x}$