Last time delta method
Today: review, S 6, maybe 6.1

Another example for delta method.

Let \(X \sim \text{exp} \) with mean \(\beta \).

What is \(E[\sqrt{X}] \) and \(\text{Var}(\sqrt{X}) \)?

First-order delta method approximation gives
\[
E[\sqrt{X}] \approx \sqrt{E(X)} = \sqrt{\beta}
\]

\[
E[\sqrt{X}] = \int_0^\infty g(x)f(x)\,dx
\]

\[
= \frac{1}{\beta} \int_0^\infty \sqrt{x} e^{-x/\beta} \, dx
\]

\[
= \frac{1}{\beta} \int_0^\infty x^{1/2} e^{-x/\beta} \, dx
\]

Looks like gamma \((\frac{3}{2}, \beta)\)

Recall for a gamma, density
\[
\frac{1}{\Gamma(\frac{3}{2}) \beta^{3/2}} x^{3/2-1} e^{-x/\beta} \, dx
\]

\[\Rightarrow \text{gamma}(1.5) = \frac{\Gamma(1.5) \beta^{3/2}}{\beta^{1.5}} = \sqrt{\beta} \cdot \Gamma(1.5) \approx 0.886 \sqrt{\beta}\]
\[\text{Var}(\sqrt{x}) \approx \left[g'(\mu) \right]^2 \text{Var}(x) \frac{\beta^2}{\mu^2} \]

\[g(y) = \sqrt{y} \quad g'(y) = \frac{1}{2\sqrt{y}} \]

\[g'(y) \Big|_{y=\mu} = \frac{1}{2\sqrt{\mu}} = \frac{1}{2\sqrt{\beta}} \]

So \[\text{Var}(\sqrt{x}) \approx \left[g'(\mu) \right]^2 \text{Var}(x) \]

\[= \left(\frac{1}{2\sqrt{\beta}} \right)^2 \beta^2 \]

\[= \frac{1}{4} \beta \]

Could check using

\[\text{Var}(\sqrt{x}) = E[(\sqrt{x})^2] - (E[\sqrt{x}])^2 \]

\[= E(x) - (E(\sqrt{x}))^2 \]

\[= \beta - \left(\Gamma\left(\frac{3}{2}\right) \beta \right)^2 \]

\[= \beta - \frac{\beta}{\Gamma\left(\frac{3}{2}\right)^2} \]

\[= \beta \left(1 - \frac{1}{\Gamma\left(\frac{3}{2}\right)^2} \right) \]
Generally, how to compute or estimate $E[g(X)]$.

Strategies

1. $E[g(X)] = \int g(x)f_X(x)\,dx$

2. Delta method: $E[g(X)] \approx g(\mu) \left(1 + \frac{g''(\mu)}{2} \text{Var}(X)\right)$

 where

 $g(x) = g(\mu) + g'(\mu)(x-\mu) + \frac{g''(\mu)}{2} (x-\mu)^2 + R_x^2$

3. Let $Y = g(X)$.

 Derive the density for Y

 Use $E[Y] = \int f_Y(y)\cdot y\,dy$

4. Use simulation.

 In R

   ```R
   X <- rexp(10000)
   mean(1/sqrt(X))
   ```
Generally, how to compute or estimate $E[g(X)]$.

Strategies:

1. $E[g(X)] = \int g(x) f_X(x) \, dx$

2. Delta method: $E[g(X)] \approx g(\mu) \left(\frac{\text{Var}(X)}{\mu^2} \right)$

 or second-order $\approx g(\mu) + \frac{g''(\mu)}{2} \text{Var}(X)$

 $g(x) = g(\mu) + g''(\mu)(x-\mu) + \frac{g''''(\mu)}{2} (x-\mu)^2$

 $E[g(X)] = g(\mu) + g''(\mu) \text{Var}(X)$

3. Let $Y = g(X)$.

 Derive the density for Y

 Use $E[Y] = \int f_Y(y) \cdot y \, dy$

4. Use simulation.

 In R

   ```
   > X <- rexp(10000)
   > mean(sqrt(X))
   ```
Simulating from a nonstandard density

Example. Suppose $X \sim \text{Beta}(2, 6)$.

Suppose Y has density

$$f_Y(y) = \frac{1}{y^2} \mathbf{1}(\frac{1}{2} \leq y \leq 1)$$

To simulate Y which has density $f_Y(y)$, generate $U \sim \text{U}(0, 1)$

Then let $Y = F_Y^{-1}(U)$

Also use cdf to check why this works.

$$F_Y(F_Y^{-1}(U)) = u$$

$$= P[F_Y(F_Y^{-1}(U)) \leq F_Y(U)]$$

$$= P[U \leq F_Y(U)]$$

For $u \in (0, 1)$

$$P[U \leq u] = u$$

$$= F_Y(u)$$

$\frac{1}{6}$
Let $X \sim U(1,2)$
$y = \frac{1}{X}$.

Then
$$f_Y(y) = \frac{1}{y^2} I(\frac{1}{2} \leq y \leq 1)$$
$$F_Y(y) = \int_{\frac{1}{2}}^{y} \frac{1}{t^2} dt$$
$$= -t^{-1} \bigg|_{\frac{1}{2}}^{y}$$
$$= -\frac{1}{y} - -\frac{1}{\frac{1}{2}}$$
$$= 2 - \frac{1}{y} I(\frac{1}{2} \leq y \leq 1)$$

For the inverse cdf
$$x = 2 - \frac{1}{y} \text{ solve for } y$$
$$\frac{1}{y} = 2 - x \Rightarrow y = \frac{1}{2 - x}$$
$$F_y^{-1}(y) = \frac{1}{2 - y} \quad y = F_y^{-1}(U) = \frac{1}{2 - U}$$

to generate Y use
$$U \sim \text{unif}(0,1)$$
$$y \sim \frac{1}{2 - U}$$
Suppose $X \sim \text{exp}$. What is density of $Y = \frac{1}{1 + X}$?

$x \sim \text{exp}(1000)$

$\text{hist}(x/(1+x))$

$F_x^{-1}(U)$
Ch. 6 Principles of data reduction.

If X_1, \ldots, X_n is a random sample, then $T(X)$, a statistic of X, is often a summary of the data.

Examples: 5-number summary ($\min, 25\%, 50\%, 75\%, \max$) box plot

- \bar{X}
- median
- mode
- $X_{(n)}/X_{(1)}$

Usually, we're interested in statistics that preserve the useful information in the data for making inferences about parameters.

Example. Suppose $X_1, X_2 \sim \text{Pois}(\lambda)$. We want to figure out/estimate λ. If I just tell \bar{X}, is that enough?

Suppose $\bar{X} = 2$. Data could have been $(0,4), (2,2), (1,3), (3,1), (4,0)$
A statistic partitions the set of all possible data sets.

\[A_0 = \{ x : T(x) = 0 \} \]

For Poisson example, \(T(x) = \frac{x_1 + x_2}{2} \)

\[A_1 = \{ (0, 4), (1, 3), (2, 2), (3, 1), (4, 0) \} \]

\[A_2 = \{ (0, 2), (1, 1), (2, 0) \} \]

\[A_3 = \{ (0, 0) \} \]

\[A_{1/2} = \{ (1, 0) \} \]

Suppose \(T(x) = x_1 \).

Sufficiency Principle. If \(T(x) \) is a sufficient statistic (SS) (sufficient for \(\theta \)), then any inference about \(\theta \) should depend on \(x \) only through \(T(x) \).

If \(x \) and \(y \) are two data sets where \(T(x) = T(y) \), then any inference about \(\theta \) should be the same for \(x \) and \(y \).