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Chapter 1

Introduction to rhythm and the
rhythmic pyramid

We begin with the idea of the rhythmic pyramid. The idea is that given
any duration, we could either double it or split it into two equal halves,
like cutting a slice of cake.

Much of the music we listen to in rock, blues, jazz, classical, and other
traditions is based on phrases that are four beats long. A whole note has
this duration of four beats. We also have

• A half note has a duration of half of a whole note, or two beats.

• A quarter note lasts for one-half of a half-note, or one beat.

• An eighth note lasts for half as long as a quarter note

• A sixteenth note last for half as long as an eighth note

In principal, there’s no end to the number of subdivisions you can imagine
— 64th notes, 128th notes, etc. We think of the whole note at the top of the
pyramid. But we can work from the bottom to the top as well, by saying
that a quarter note lasts twice as long as an eighth note, for example.

We can also say that a quarter note has the same duration as two eighth
notes, an eighth note has the same duration as two sixteenth notes, and so
forth.
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We can write these relationships this way
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For the equations above, it is important to remember that this is intended
to just mean that the durations are the same, not that they sound the same.

For percussion instruments such as drums, a note that is written as
a duration such as a quarter note or a half note does not necessarily last
that long. This can be true of a guitar as well when the sustain is not
very long—the note might fade too fast to be heard for the entire written
duration. As a result the rhyths in the following two measures of 4/4 time
might sound identical when played on percusion instrument or a guitar
with short sustain at a slow tempo.
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We can express the same relationships as fractions

1 =
1
2
+

1
2

1
2
=

1
4
+

1
4

1
4
=

1
8
+

1
8

1
8
=

1
16

+
1
16

1
16

=
1
32

+
1
32

Another important rhythmic concept is that of dotting notes. A dot-
ted note is equal to one-and-a-half, or 50%, longer duration than the note
without the dot. For example, a dotted quarter note, u� , is 50% longer than
a quarter note, C.

We can make this more precise using the rhythmic pyramid. Since a

quarter note is equivalent in duration to two eighth notes, a dotted quarter

note is equivalent in duration to a quarter note plus an eighth notes, or to

three eighth notes
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Rhythmic durations can be added just as fractions are added in math.
For example, the mathematical statement that
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is similar to the musical statement that
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Dotted versions of whole notes, half-notes, quarter notes, eighth notes,
and so forth can all be used, and they all follow a similar rhythm pyramid
as their undotted versions:
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If we express this as fractions, we get
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The sum continues infinitely. In mathematics, this is called an infinite
series. In a course in Calculus, you might study this series from a mathe-
matical point of view. From a musical point of view, you are chopping the
remaining amount of time in a measure of 4/4 time into two equal pieces
over and over and again, so you can imagine making the notes smaller
and smaller and still just perfectly filling the measure.

1.0.1 Rhythmic pyramid with triplets

Instead of dividing a unit of time into two equal pieces, we could divide it
into three equal pieces. This can occur when there are three beats per mu-
sical phrase, such as in a waltz. In this case, we’d say that each measure
has 3 beats. Often we divide individual beats into three equal durations,
making a triplet.

In triplet-based music, such as much of jazz and blues, however, di-
visions into three are often then subdivided into two equal, smaller du-
rations. For example, a beat divided into triplets might be divided again
by subdividing each triplet into two notes, creating sixteenth-note triplets.
This divides a beat into 6 equal durations. If instead, we took a triplet and
divided each note of the triplet into three notes, we’d get a subdivision
of 1 beat into 9 equal durations. This is possible but less common. A
more common case might be a jazz waltz, played with 3 beats per mea-
sure, where each beat is divided into triplets, creating 9 notes per measure.
Subdividing these triplets into three notes each would create 27 (= 9× 3)
notes per measure.

1.0.2 Rhythmic pyramid with rests

In addition to notes being played, silence can also last the same amount of
time as notes being played.

W: 20 Jan 16

Here we explain relationships between whole notes, half notes, quarter
notes, eighth notes, 16th notes, and 32nd notes. We also explain dotted
notes, but did not explain double dotted notes. Also similar durations for
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rests. Discussed adding durations as adding fractions including the series

1
2
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I believe that “Clapping Music” by Steve Reich was discussed in this
class.

F: 22 Jan 16

Similar to previous lecture but introduced triplets. Songs discussed in-
cluded “America” from West Side Story and Don’t Tread on Me by Metallica.



Chapter 2

Introduction to permutations

2.1 Circular permuations

Drummers often use the word permutation to describe certain types of vari-
ations. For example, if you play a paradiddle, meaning a sticking pattern
of

RLRRLRLL

where R means playing with the right hand, and L means playing with
the left, a variation on this exercise is the invertedparadiddle

RLLRLRRL

The inverted paradiddle is a permutation of the standard paradiddle.
What does this mean?

The two patterns have a lot in common. Both involve playing four
Rs and four Ls in a certain sequence, and in both cases, no hand plays
more than two notes in a row. In mathematical lingo, a permuation of a
sequence of objects (such as letters) would be any rearrangement of the
objects into a new sequence. By this meaning of permuation,

LLLLRRRR

would count as a permutation of the paradiddle.

However, drummers often use permutation to mean something more
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specific, which in mathematical jargon is called a circular permutation. For
this type of permuation, we imagine the sequence wrapped around a cir-
cle. We can start the sequence somewhere on the circle. Starting at a new
place on the circle creates a circular permuation of the original sequence.

R

1
L

2

R3

R
4

L

5
R

6

L 7

L
8

If we follow the circle at different starting positions, we get different
paradiddles:

Starting
position paradiddle

1 RLRR LRLL (standard)
3 RRLR LLRL (reversed)
4 RLRL LRLR (delayed)
6 RLLR LRRL (inverted)

Starting at other positions results in left-handed paradiddles.. These
paradiddle variations are all circular permutations of each other which we
see by looking at the circle. We can also see that there are no other circular
permutations of these paradiddles. For example, the pattern

RRLL RLRL
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is not a circular permutation of the paradiddle because there is no way to
encounter two Rs followed by two Ls anywhere on the circle.

Another approach to thinking of paradiddles as circular permuations
of each other is to imagine playing a paradiddle in a loop over and over
again. This is similar to the idea of looping around the circle repeatedly.
Then you can see paradiddle variations within the standard paradiddle. In
the following table, the standard paradiddle is played twice, and variations
are put in bold.

sticking paradiddle variation
RLRR LRLL RLRR LRLL reversed
RLRR LRLL RLRR LRLL delayed
RLRR LRLL RLRR LRLL inverted

This same concept can be used to illustrate how scales and modes are
related to each other. If we consider a major scale, such as C major, the
space between each note is either a whole step (equivalent to two frets on
a guitar or two adjacent keys on a piano, white or black), or a half-step
(equivalent to one step on a guitar or one key on a piano). The pattern is

WWHWWWH

where W means a whole step, and H means a half-step.

W

W

H

WW

W

H
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Similar to the idea of the paradiddle, we can imagine starting at any
of the positions on the circle and moving clockwise one full rotation. Dif-
ferent starting points give us different modes. This is similar to the idea of
playing all the white notes in an octave of a piano but starting on a differ-
ent piano key. The following table shows the different modes that result
from different starting positions:

Starting
position pattern mode styles

1 WWHWWWH Ionian (major) classical, punk
2 WHWWWHW Dorian Irish, rock
3 HWWWHWW Phrygian flamenco, metal
4 WWWHWWH Lydian
5 WWHWWHW Mixolydian Irish, rock, punk
6 WHWWHWW Aelian (minor) classical, metal
7 HWWHWWW Locrian metal

Different modes are more common in different genres. A rough gen-
eralization is that happier-sounding music will tend to have patterns with
Hs near the end of the sequence, and sadder or darker music (especially
metal) will tend to prefer modes with Hs near the beginning of the se-
quence. Suppose we score each mode by the sum of the positions of where
H occurs. I’ll call this the “Happiness Statistic”. For example, for major, H
occurs in positions 3 and 7, so we’ll score it as 10. Mixolydian gets a score
of 3 + 6 = 9. Then we get the following ordering of the modes, which
differs from the order of finding them on the circle:

You might notice that the genres of music seem a bit less jumbled up using
this organization of the modes as well. This procedure suggests certain
creative possibilities. For example, if H occurred in positions 4 and 6,
then you’d get a score of 10, which would be the same as Ionian or major.
Would this sound similar? Would it be as easy to write energetic-sounding
punk riffs in such a scale as in the major scale? Does this correspond to
some other scale we haven’t encountered yet?
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Table 2.1: Modes arranged by the Happiness Statistic
mode Happiness Statistic styles

Lydian 4 + 7 = 11
Ionian 3 + 7 = 10 classical, punk

Mixolydian 3 + 6 = 9 Irish, rock, punk
Dorian 2 + 6 = 8 Irish, rock
Aeolian 2 + 5 = 7 classical, metal

Phrygian 1 + 5 = 6 flamenco, metal
Locrian 1 + 4 = 5 metal

2.2 Permutations not on a circle

In the concert movie Stop Making Sense by the band Talking Heads, first one
member of the band, David Byrne, performs a song by himself, singing
and playing guitar. Then the bass player, Tina Weymouth, comes out and
they play a song with just two performers. For the third song, there are
three performers, and for the fourth song there are four performers. As-
suming that the band members could have come out in any order, how
many ways could the band members have come out one at a time? We’ll
answer this question in a few paragraphs.

As another application, when a band records an album, they have to
decide on the sequence of tracks that will appear on the CD or track listing.
If an album has 10 tracks, how many sequences are possible?

There are so many possibilities that it isn’t feasible to write them all
down. Instead, let’s consider a smaller example first. Suppose there only
three tracks, call Air, Bat, and Cat. To decide on an order of the tracks, we
can list all sequences:

1. Air, Bat, Cat

2. Air, Cat, Bat

3. Bat, Air, Cat

4. Bat, Cat, Air

5. Cat, Air, Bat

6. Cat, Bat, Air
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There are six possibilities. But how could we think about this problem
more systematically to deal with larger examples?

One way of thinking about it is that there were three choices for the
first song. Then once the first song was chosen, there were two choices
for the second song, for each of the three choices of the first song. This leads
to 3 × 2 = 6 choices for the first two songs. Once the first two songs
are chosen, the third is forced to be last, but we could think of this as
3× 2× 1 = 6.

For the Talking Heads concert, there are four band members in the
main band (there are also other hired musicians). From the main four
members, there were four choices for the first member to appear, three for
the second member, two for third, and one choice remaining for the last
member. So the total number of sequences possible was

4× 3× 2× 1 = 24.

For the example of the album with 10 tracks, the number of possible
track listings is

10× 9× 8× 7× 6× 5× 4× 3× 2× 1 = 3, 628, 800

These types of counting problems arise often enough that they are
given a special notation, call factorials. We read n! as “n factorial. We can
think of n! in several ways, depending on what is most convenient:

n! = 1× 2× · · · × n

n! = n× (n− 1)× (n− 2)× · · · 2× 1

n! = n× (n− 1)!
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Here are some factorials for small numbers

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5, 040

8! = 40, 320

9! = 362, 880

10! = 3, 628, 800

11! = 39, 916, 800

12! = 479, 001, 600

20! = 2.4× 1018

30! = 2.7× 1032

40! = 8.2× 1047

50! = 3.0× 1064

60! = 8.3× 1081

The number 60! is similar to the number of atoms in the universe. If you
have a band in your iPOD or iPHONE or other device with 60 songs, and
you listen to all of them on shuffle play twice in a row, the chance that
you get them all in the same order twice in a row is astronomically small.
Winning the Powerball lottery with one ticket would be more likely than
using shuffle play on a single album with 12 songs and getting the songs
in the same order as the album.

One theme for this course is that possibilities are vast. The number of
possible ways of creating music is much larger than what can actually be
done. This means that there is much room for creativity.

As another application of permutations, some 20th-century composers
such as Arnold Schoenberg had the idea that instead of using traditional
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musical scales, one could rearrange the 12 notes in an octave in a particular
order, called a tone row, and play the notes in that order. It is up to the
composer to choose the order of the notes, but they are often chosen so as
not to emphasize any particular note and to not sound as if the music is
written in a particular key. This is a crucial goal for atonal music. However,
tone-rows could conceivably be chosen with other musical goals in mind.
The tone-row concept has occasionally been applied by rock musicians as
well, particularly by Ron Jarzombek (Blotted Science).

A natural question to ask is: How many tone rows are possible? Since
there are 12 notes possible for the first note, 11 for the second, 10 for the
third, and so on, the answer is 12!, nearly half of a billion. Arguably, the
first note chosen matters little compared to the intervals between notes.
That is, a tone-row created by transposing each note of another tone-row
by the same amount (say, one fret on the guitar) will sound very similar.
Ignoring the first note, there are 11!, or nearly 40 million tone-rows possi-
ble.

We will encounter the idea of tone-rows again later when we talk about
ways of transforming music.

2.3 Partial permutations

For a partial permutation, we select some subset of objects from a set, and
paying attention to the order in which the objects are selected. For exam-
ple, if you have time to listen to three tracks from an album that has 10
songs, you could listen to tracks 1, 2, and 3. Or you could listen to tracks 3,
1, and 2, in that order, and that would be a different listening experience.
Or you could listen to tracks 3, 10, and 5, and so on.

Partial permutations work the same way as regular permutations, ex-
cept that instead of multiplying the possibilities starting at n and working
all the way down to 1, we stop somewhere between n and 1.

For the example of listening to three tracks out of 10, there are 10
choices available for the first track, 9 remaining for the second track, and
8 for the third track. Thus, the number of ways of listening to 3 songs out
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of the 10 is
10× 9× 8 = 720

assuming that the order of the songs matters.

A special notation for partial permuations is P(n, k) where n is the
number of choices available, and k is the number of distinct choices made.
A formula is

P(n, k) =
n!

(n− k)!
(2.1)

For selecting three items from 10, where the order matters, the formula is

P(10, 3) =
10!
7!

=
10× 9× 8× 7× 6× 5× 4× 3× 2× 1

7× 6× 5× 4× 3× 2× 1
= 10× 9× 8

There is a lot of cancellation in the numerator in the denominator, and
instead of using the formula it is easier to think of P(n, k) as having k
terms (i.e., k pieces being multiplied). For example,

P(n− 3) = n× (n− 1)× (n− 2).

For P(n, k), the last term being multiplied is (n− (k− 1)) = (n− k + 1).
As a formula, this is

P(n, k) = n× (n− 1)× · · · × (n− k + 1)

= (n− 0)× (n− 1)× · · · × (n− (k− 1)).

There are k terms because there are k numbers in the list 0, 1, . . . , k − 1.
However, the form in equation (2.1) is more compact. Which way is easier
to use can depend on the application.

M: 25 Jan 16

Types of permutations included circular as applied to drumming, includ-
ing paradiddles (standard, inverted, delayed, reversed), and the idea that
permutations include more than circular permutations. Spent a lot of time
counting license plates, with and without distinct letters/numbers.
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W: 27 Jan 16

More on permutations, including the formula P(n, k) = n!/(n− k)!. Dis-
cussed tone-rows and played some Ron Jarzombek doing a tone-row.

F: 29 Jan 16

Scales and modes as permuations, discussing WWHWWWH as the ma-
jor scale. Also Jazz scales as circular permutations of ascending melodic
minor: WHWWWWH. Played some scales on a guitar in class.



Chapter 3

Introduction to combinations

3.1 Combinations versus permutations

If you listen to the song “I Would For You” by Jane’s Addiction (easily
found on Youtube.com), do you notice anything usual about this song by
a rock band?

The song starts with just bass and vocals. Guitars never enter the song,
even though this is a very guitar-oriented band, and then there are some
light synthesizer sounds. Starting a song with just bass and vocals, and
not having any drums or guitar, is an unusual combination of instruments
for a rock band.

Most rock bands have essentially the same instrumentation in every
song: guitar, drums, bass, and vocals, maybe keyboards of some kind.
For parts of a song, especially an introduction, only a subset of the in-
struments might play. If there are four instruments in a band, say bass,
drums, guitars, and vocals (counting vocals as an instrument), how many
ways can only two instruments be playing? How do you list them all?
What if there were 6 instruments and three of them were playing? Now
how many combinations are there? We’ll be answering this type of ques-
tion in this section.

We use the concept of combinations in this setting rather than permuta-
tions because the order doesn’t matter – bass and vocals are the same two
instruments and vocals and bass.
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Combinations are similar to partial permutations — we are interested
in selecting some subset from a larger set — except that order doesn’t mat-
ter.

For an everyday example outside of music, if you order a two-topping
pizza, ordering a pepperoni and mushroom pizza is the same as order-
ing a mushroom and pepperoni pizza. The order in which you list the
ingredients doesn’t matter when you request the pizza. There might be a
difference in how the pizza is made – probably one ingredient is put on
the pizza before the other, and the order might affect the taste, but this is
a decision you leave to the restaurant, and you wouldn’t normally request
the order in which they place the ingredients.

Combinations and permutations are both useful concepts in both math-
ematics and music. Which one is more useful depends on the question you
have.

M: 1 Feb 16

Introduction to Combinations. Counting pizza toppings. Relationship to
permuations,

C(n, k) = P(n, k)/k! =
n!

k!(n− k)!

Jane’s Addictions “I would for you” (on the live album) used an example
of an unusual combination: bass and vocals (primarily, with slight synth).

W: 3 Feb 16

More on combinations. Binomial theorem, Pascal’s triangle, Binomial ex-
pansion of 2n = (1 + 1)n.

2n = (1 + 1)n = C(n, 0) + C(n, 1) + · · ·+ C(n, n)

F: 5 Feb 16

Ideas from Benny Greb’s Language of Drumming on diddling in various
places: 16 ways to diddle four sixteenth notes and how to think of this
as either 24 or C(4, 0) + C(4, 1) + C(4, 2) + C(4, 3) + C(4, 4). Discussed
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making variations on “Mary Had a Little Lamb” by diddling some of the
notes and played MIDI examples in class. Also played part of “Some of
My Favorite Things” by Coltrane.
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Chapter 4

Graphs and Music

M: 8 Feb 16

Sick that day.

W: 10 Feb 16

Finished combinations, showed Chris Coleman Gospel Chops Youtube
video describing six hand-foot combinations: HHKK, HKHK, HKKH,
KKHH, KHKH, KHHK. Described how to count if you distinguish left
from right: LRKK, RLKK, etc. as 4!

2!1!1! ways. Discussed number of rear-
rangements of ALBUQUERQUE and MISSISSIPPI

Discussed how similar musical staff notation is to Cartesian coordinate
graphs.

F: 12 Feb 16

There is another sense of a graph that is important in mathematics, which
is a set of vertices (also called nodes) and edges. Geometric objects such
as triangles, squares, and polygons are often thought of in terms of their
vertices and edges rather than in terms of their coordinates in a Cartesian
graph.

Graphs in this sense have taken on a new importance in modern life
as they are used to represent things like connections between people in
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Robert Fripp

Brian Eno

David Byrne

Chris Franz

Tina Weymouth

Pablo Martin

Figure 4.1: A graph depicting relationships between musicians.

social media accounts, links between websites, and purchasing behavior of
customers online (such as when a website says that customers viewing this
item also viewed such-and-such a product....). Slightly more traditional
uses of such graphs are describe shipping routes such as for a railroad
network or airplanes, or to describe telephone connections for calling long
distance.

Figure 4.1 is an example depicting a set of musicians. Each node repre-
sents a musician, and an edge is drawn if the two musicians have been in
the same band or played on at least one album together. As an example,
Brian Eno has played with King Crimson and Talking Heads, Tina Wey-
mouth has played in Talking Heads and Tom Tom Club, and Pablo Martin
has played in Tom Tom Club. In the diagram, nodes are represented black
circles, and are labeled by musicians’ names.

The game Six Degrees of Kevin Bacon (REF) illustrates this idea as
well, where a graph could have actors as nodes, and an edge means that
the actors have appeared in the same movie. The idea is that many actors
can be connected within 6 edges from themselves to Kevin Bacon.

From the mathematical point of view, for this type of graph, the lo-
cations of the nodes don’t matter at all. The nodes and edges for David
Byrne, Chris Franz, Pablo Martin, and Tina Weymouth happen to form an
irregular quadrilateral (a four-sided polygon), but could have been drawn
as a square instead, or even with lines crossing. The lengths of the edges
also don’t usually matter, or whether edges are drawn straight or curved.
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Curved edges might be drawn to make it easier for edges to not cross in
the drawing. The following graph depicts exactly the same relationships
and so is equivalent to the first one, in spite of lines crossing. This second
graph is probably harder to read.

Robert FrippBrian Eno

David Byrne

Chris Franz

Tina Weymouth

Pablo Martin

Problems that arise for such graphs include determining the minimum
distance from one point to another, the minimum cost from one point to
another (which might or might not have the minimum distance), deter-
mining nodes can be arranged so that lines don’t cross, and predicting
which nodes will grow more connections to other nodes (when graphs
change over time).

Such graphs can be used in music in different ways. For example, ver-
tices could be used to represent modes of a scale, and two vertices (i.e.,
two modes) could be connected if the two modes differ by at most one
note. This is a useful way to visualize how similar to modes are in terms
of how they sound. In particular, for this example, we’ll consider modes
that start on the same note. We’ll compare C ionian (major), C dorian,
C phyrgian, C lydian, C mixolydian, C aeolian, and C locrian. Are all of
these modes connected by this definition of the graph?

It turns out that two of the seven diatonic modes (Ionian, Dorian, Phry-
gian, Lydian, Mixolydian, Aeolian, and Locrian) starting on the same note
differ by one note if they are adjacent to each other in Table 2.1, which
ordered modes by their Happiness Statistic.

We can make a graph of the modes considering two modes to be con-
nected if they differ by exactly one note. Here we show the graph two
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Ionian
Lydian

Locrian

Phyrgian

Aeolian
Dorian

Mixolydian

Figure 4.2: Graph of modal relationships. Edges indicate that modes start-
ing on C differ by exactly one note.

Dorian
Ionian

Locrian

Aeolian

Mixolydian
Lydian

Phrygian

Figure 4.3: Graph of modal relationships. Edges indicate that modes start-
ing on C differ by exactly one note.

ways, ordering the nodes in a circle either based on the Happiness Statis-
tic, or based on the circle showing the distances WWHWWWH.

If we draw the modes on a circle in the order in which they are nor-
mally presented, based on playing seven white keys in a row first starting
on C, then starting on D, etc., then the relationships would be graphed as
in Figure 4.3

Both figures look a bit incomplete — the near circular Figure 4.2 needs
one edge to complete a loop, and Figure 4.3 needs one edge to complete a
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seven-pointed star. In both cases apparently missing edge would connect
the Lydian and Locrian modes. Is there a connection between these two
modes? if you were willing to sharp the first note of C Lydian (so play C
Locrian except play C-sharp instead C), you end up with C-sharp Locrian.
Similarly, if you flat first note of C Locrian, this is sounds like B Lydian.
It’s almost as if by flatting the first scale degree, the modified Locrian
suddenly becomes happy.

In addition to determining which modes are the most closely related,
we can represent which key signatures are most closely related using a
graph. Here we describe 12 keys in terms of the numbers of sharps and
flats they have:

Table 4.1: Circle of Fifths
Key sharps/ notes

flats
A-flat 4 A-flat B-flat C D-flat E-flat F G
E-flat 3 A-flat B-flat C D E-flat F G
B-flat 2 A B-flat C D E-flat F G

F 1 A B-flat C D E F G
C 0 A B C D E F G
G 1 A B C D E F# G
D 2 A B C# D E F# G
A 3 A B C# D E F# G#
E 4 A B C# D# E F# G#
B 5 A# B C# D# E F# G#
F# 6 A# B C# D# E# F# G#
C# 7 A# B# C# D# E# F# G#

Often the sequence in the first column of Table 4.1 is memorized by
musicians as the “Circle of Fifths” or “Circle of Fourths” (you increase
by fifths going down the column, and increase by fourths going up the
column). There are different rules that you can memorize to figure out
what sharps or flats are in a key. The phrase “Circle of Fifths” suggests
that a graph approach might also be useful.

Key signatures that are closely related will have similar numbers of
sharps or flats. Something to be careful of, however, is that some notes
can be written two different ways, e.g. as A# or B-flat. It turns out that
because of this, C# and A-flat only differ by one note. If we re-write the
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length number of ways rhythms
1 1

�
� S

2 2
�
�
�
� C SS, L

3 3
�
�
�
�
�
� C

�
�

�
� C SSS, SL, LS

4 5 SSSS SSL SLS LSS LL
5 8 SSSSS SSSL SSLS SLSS

LSSS LLS LSL SLL

key of C# using flats, we can write it as the key of D-flat, which has the
notes

A-flat B-flat C D-flat E-flat F G-flat

and this disagrees with A-flat in only one note. Consequently, the graph
of closeness for keys ends up being a closed circle, unlike the graph for
the modes.

Understanding which keys are most closely related is useful for com-
posers who might want either a smooth transition between sections, or a
more dramatic change in the song.

M: Feb 15

Counting rhythms with the Fibonacci sequence.

Suppose you have rhythmic elements of length 1 and 2, such as eighth
notes and quarter notes (quarter notes are twice long as eighth notes). If
you play sequences of quarter notes and eighth notes, how many ways can
you play them so that they add up to a certain length?

We can figure this out by listing all possibilities for small examples.
If the total length is one eighth note, you can only play one eighth note.
If the length is two eighth notes, then you can either play, one quarter
or two eighth notes, so there are two possibilities. Here is a list of some
possibilities:

The pattern here is that the number of ways matches something called
the Fibonacci sequence. For this sequence, then nth number of the se-
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quence is the sum of the previous two values:

Fn = Fn−1 + Fn−2

for n > 2. To get the sequence started we use F1 = F2 = 1. This generates
the sequence

F1 = 1

F2 = 1

F3 = F1 + F2 = 2

F4 = F3 + F2 = 3

F5 = F4 + F3 = 5

F6 = F5 + F6 = 8

F7 = F6 + F5 = 13

F8 = F7 + F6 = 21
...

If the total length is n 8th notes, then there are Fn+1 ways to arrange
the quarter notes and eighth notes to fill up the space the exact amount.
Because the indexing is off by one, we’ll use Sn to mean the number of
ways to arrange quarter notes and eighth notes to add up to n eighth
notes. This means that Sn = Fn+1 for each n. For example, S5 = F6 is the
number of ways to arrange quarter notes and eighth notes to add up to 5
eighth notes duration.

From the Fibonacci sequence, there are S7 = 21 ways to arrange quar-
ter notes and eighth notes to add up to 7 eighth notes. There are 34 ways
to arrange quarter notes and eighth notes to add up to 4/4 measure with
8 8th notes.

Why does the Fibonacci sequence show up here?

One way of thinking about it is that the very first note is either long
or short, either a quarter note or an eighth note. For example, if there are
8 8th notes to fill, then the first note is either a quarter note or an eighth
note. If the first note is eighth note, then there are seven spaces remaining
to be filled, which can occur in S7 ways. If there first note is a quarter note,



30 Graphs and Music

then there are six spaces remaining to be filled, which can occur in S6 = F7

ways. Therefore the number of ways to fill up 8 8th notes is

S8 = S7 + S6

More generally, if there are n notes to fill, this can be done in Sn ways. If
the first note is an 8th note, then there are Sn−1 ways to fill the remaining
space, and if the first note is an eighth note, then there are Sn−2 ways to
fill the remaining space. This means Sn = Sn−1 + Sn−2.

There are many remarkable properties of the Fibonacci sequence. The
approach given for generating the sequence allows you generate as many
terms as you wish, but it is tedious to calculate, say F20. A faster formula
for calculating larger Fibonacci numbers is

Fn =
(1 +

√
5)n − (1−

√
5)n

√
5

The formula looks messy becuase of the square roots, but when you eval-
uate it for particular values of n, then the square roots cancel out and the
answer is an integer.

The value 1+
√

5
2 ≈ 1.618 is called the Golden Ratio and has been known

since ancient Greece, more than 2000 years ago. It is often used in archi-
tecture to form ratios for things like the height of a door to its width. The
Golden Ratio is also related to the Fibonacci sequence in terms of the ratio
of successive values of the sequence:

Fn+1

Fn
≈ 1 +

√
5

2
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For example

F2/F1 = 1/1 = 1

F3/F2 = 2/1 = 2

F4/F3 = 3/2 = 1.5

F5/F4 = 5/3 = 1.67

F6/F5 = 8/5 = 1.6

F7/F6 = 13/8 = 1.625

F8/F7 = 21/13 = 1.615

The approximation gets better for larger values of n.

W: Feb 17

More on the Fibonacci sequence.

F: Feb 17

Quiz and lots of YouTube examples illustrating odd time signatures or odd
rhythmic groupings. Songs played in class:

• “Take Five”, Dave Brubeck: 3 + 3 + 2 + 2 = 10 or (1 + 2) + (1 + 2) +
2 + 2 = 10, similar to “Mission Impossible” theme

• “Larks Tongues in Aspic part 2” by King Crimson 3 + 3 + 2 + 2 and
variations

• “At Fate’s Hands” by Fates Warning, 3 + 3 + 2 + 3 = 11 alternating
with 3 + 2 + 3 + 3, using permutations of the Take Five rhythm.

• “Stairway to Heaven” by Led Zeppelin, section right after the guitar
solo, 3 + 3 + 3 + 3 + 2 + 2 or (2 + 1) + (2 + 1) + (2 + 1) + (2 + 1) +
2 + 2

• “A Pleasant Shade of Grey part XII” by Fates Warning, 5 + 7

• “Schism” by Tool, 5 + 7
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• “Flesh and the Power It Holds” by Death, guitar solo section, 5 + 7

• “Jambi” by Tool, 4 + 5 for the guitar with every three notes played
by the kick drum
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