
Week 9: PROC TABULATE (Chapter 19)

We continue exploring primarily describing data to make it easier to
present and understand. PROC TABULATE is especially useful for
qualitative variables or for breaking down quantitative variables for
different class variables.

The subject is rich enough that an entire book is devoted to PROC
TABULATE called PROC TABULATE by Example, by Lauren E. Haworth.

SAS Programming October 16, 2014 1 / 107

genome dataset: partial list

Data from McCormack et al, PLoS ONE, 2013, DOI:
10.1371/journal.pone.0054848

SAS Programming October 16, 2014 2 / 107

Birds

	
	

SAS Programming October 16, 2014 3 / 107

Bird phylogeny (evolutionary tree)

	
	

SAS Programming October 16, 2014 4 / 107

genome dataset

The data lists the chromosome number for various mutations found. The
mutations consist of either insertion or deletion of genetic material. The
genetic material can be represented by sequences of letters, such as
GATTACA. An insertion of two letters, for example, GG, might change this
sequence to GATGGTACA. The variable size indicates the lengths of these
insertions or deletion events.

The data lists insertions and deletions detected for 33 bird species in
comparison to a reference species (chicken, I think) and indicates their
location in terms of chromosome number and genomic coordinate on the
reference genome. The last variable in the dataset indicates on which
species the mutation was found, for mutations found on at least two
species. Mutations shared by multiple species are likely to have occurred
further back in the past.

SAS Programming October 16, 2014 5 / 107

genome dataset

SAS Programming October 16, 2014 6 / 107

PROC PRINT: genome dataset

SAS Programming October 16, 2014 7 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 8 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 9 / 107

Note that variables listed in a TABLES (=TABLE) statement must also be
listed in either a CLASS statement or a VAR statement (you can treat
quantitative variables as classes).

SAS Programming October 16, 2014 10 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 11 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 12 / 107

Cross-tabulation in PROC FREQ versus PROC
TABULATE

SAS Programming October 16, 2014 13 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 14 / 107

PROC FREQ and PROC TABULATE: genome dataset

SAS Programming October 16, 2014 15 / 107

Cross-tabulation

This code did cross-tabulation for PROC FREQ but for PROC
TABULATE, it nested mutation type within chromosome.

SAS Programming October 16, 2014 16 / 107

Cross-tabulation

To create cross-tabulated data in PROC TABULATE, use a comma
instead of an asterisk.

SAS Programming October 16, 2014 17 / 107

Cross-tabulation

You can also create 3-way tables using a combination of commas and
asterisks. I’m not sure how to create a 3-way table using PROC FREQ.

	
	

SAS Programming October 16, 2014 18 / 107

Dressing up the table

As usual, we should try to improve the table’s appearance a bit by doing
things like adding labels, getting chromosomes in the right order, and so
on.

First, the order that the chromosomes is listed isn’t ideal. It is in
alphanumeric order, so that char15 comes before char2 (because 1
comes before 2). How can we fix this?

SAS Programming October 16, 2014 19 / 107

Dressing up the table: order of values

As with PROC REPORT and PROC FREQ, there are options for changing
the order in which values are listed, for example using ORDER=DATA and
ORDER=FREQ. In this case, if we wish to order things by chromosome,
then neither option works well.

If the chromosomes were labeled chr01, chr02, ..., chr10, ...,
then it would be in the right order. So we could try to insert a 0 in the
middle for chromosomes with numbers less than 10. Another solution is to
get rid of chr when we read in this value and convert the chromosome to
a numeric number.

SAS Programming October 16, 2014 20 / 107

Is chromosome number numeric or qualitative?

Without knowing a little bit of the biology, it is hard to say whether this
variable should be considered numeric or not. Usually, chromosomes are
numbered so that longer chromosomes (more DNA letters) have lower
numbers, but often with a few exceptions. (This arrangement applies to
both humans and chickens...) So chromosome number correlates
(imperfectly) with amount of DNA, and we might expect with the number
of mutations.

We also see this in this data, although we don’t know what the sampling
scheme for the data is (it is based on about 1500 genes covering less than
0.1% of the chicken genome). The longest chromosome (chromosome 1)
has the most mutations, the second longest (chromosome 2) has the
second highest number etc., so it might make sense to order the
chromosomes numerically.

SAS Programming October 16, 2014 21 / 107

Re-ordering the chromosome number

For this data, I would probably treat the chromosome number as
quantitative to help order the values, but the issue of integers not being
alphabetical when they miss the leading 0 comes up a lot in real data and
messes up the order of things, so we’ll try both approaches.
I had a drum instructional DVD where the author ran into this problem.
He wanted the .mp3 files to be saved in a certain order on your computer,
and instead of writing the names of the tracks as 01-slow.mp3,

01-FAST.mp3, etc., he named them aa 1-slow.mp3, ab 1-FAST.mp3 etc.

SAS Programming October 16, 2014 22 / 107

alphabetizing integers

Another place this comes up is in simulations, particularly with scripting.
If you submit a large number of files to be run to a computer, it is
convenient to call them things like, SAS1.sas, SAS2.sas, . . . ,
SAS10.sas. When you list these files, they will not be in the right order
when listed alphabetically, and this can be a pain if you want the files to
be submitted (like to a cluster) in the right order....We will see things like
this a little bit when we get into macros.

SAS Programming October 16, 2014 23 / 107

One way to alphabetize integers....

	
	

SAS Programming October 16, 2014 24 / 107

Re-ordering the chromosome number

The easiest approach is to remove characters from the strings chr1, chr2,
... so that you just have numeric data. This can be done using the
COMPRESS function.

	
	

SAS Programming October 16, 2014 25 / 107

Re-ordering the chromosome number

This didn’t quite do we want. Why not?

	
	

SAS Programming October 16, 2014 26 / 107

Re-ordering the chromosome number

Now, we convert the chromosome number to be numeric and add some
labels and a format.

	
	

SAS Programming October 16, 2014 27 / 107

Re-ordering the chromosome number

	
	

SAS Programming October 16, 2014 28 / 107

Re-ordering the chromosome number

Instead of converting the chromosome number to an integer, let’s try
inserting a 0 in the right place. We can assume that the chromosome
number is less than 100 so that our strings for chromosome number either
have exactly four or exactly five digits. If they have five digits, they don’t
need to be modified. If they have 4 digits, we need to inset the 0.

Note that both approaches only require one line of code, although the
insert-0 approach is a slightly longer line. Neither solution is better than
the other, it just depends on what you want your data to look like.

SAS Programming October 16, 2014 29 / 107

Re-ordering the chromosome number

	
	

SAS Programming October 16, 2014 30 / 107

Re-ordering the chromosome number

	
	

SAS Programming October 16, 2014 31 / 107

Removing the extra 0

Note that now that we’ve alphabetized, we can use a FORMAT to remove
the leading 0s if we want.

	
	

SAS Programming October 16, 2014 32 / 107

Removing the extra 0

	
	

SAS Programming October 16, 2014 33 / 107

Other things to change the table

We can also apply formats to the cell counts. In this case, since we have
integers, we’d likely want a shorter format such as 3.

	
	

SAS Programming October 16, 2014 34 / 107

Other things to change the table

Three characters might be too narrow for the label, so we can improve it...

	
	

SAS Programming October 16, 2014 35 / 107

Statistics for quantitative variables

You can get means, min, max, etc. for quantitative variables listed in a
VAR statement.

	
	

SAS Programming October 16, 2014 36 / 107

Marginal totals and other statistics

You can get marginal totals and other statistics using the keyword ALL,
which is different from ALL , which is normally used to analyzed all
variables. Marginal subtotals are a little confusing for a 3-way table. Here
I present it just for a two-way table, but you can do three-way tables also.
The quantitative statistic this time is size, which refers to the length of
the mutation (number of DNA letters inserted or deleted). The NOSEPS
option makes the table more compact.

SAS Programming October 16, 2014 37 / 107

Marginal totals and other statistics

	
	

SAS Programming October 16, 2014 38 / 107

More formatting

We can improve the table appearance by more specific formatting. We’ll
start with this example of a 3-dimensional table.

	
	

SAS Programming October 16, 2014 39 / 107

More formatting

Here we formatted integers as integers, but retained 2 decimals for the
mean, and we removed the variable names for chromosome and mutation.

	
	

SAS Programming October 16, 2014 40 / 107

More formatting

For cases where N appears repeatedly to show the sample size, you might
want to remove this. It is mostly useful if you want to contrast it with
other statistics.

	
	

SAS Programming October 16, 2014 41 / 107

More formatting

	
	

SAS Programming October 16, 2014 42 / 107

More formatting: Keylabel statement

	
	

SAS Programming October 16, 2014 43 / 107

Percentages

You can have PROC TABULATE give percentages, but it’s tricky.

	
	

SAS Programming October 16, 2014 44 / 107

Percentages: no percent format

	
	

SAS Programming October 16, 2014 45 / 107

Percentages

Here is the result of the incorrect use of percent format.

	
	

SAS Programming October 16, 2014 46 / 107

Percentages

Here is the result of the incorrect use of percent format.

	
	

SAS Programming October 16, 2014 47 / 107

Percentages

Fixing things with a user-defined format.

	
	

SAS Programming October 16, 2014 48 / 107

Percentages with colpctn

	
	

SAS Programming October 16, 2014 49 / 107

Missing values

Fixing things with a user-defined format.

	
	

SAS Programming October 16, 2014 50 / 107

Missing values

	
	

SAS Programming October 16, 2014 51 / 107

Missing values

It is ok to include a class variable that doesn’t get used in a TABLES
statement. However, missing values in one of the class variables cause the
entire observation to be deleted, even if the variable isn’t used in the
TABLES statement.

Note that the observations with A equal to x when B and C are both
missing isn’t tabulated. There were four observations where A was x , but
the total is 3.

SAS Programming October 16, 2014 52 / 107

Missing values: Missing option

	
	

SAS Programming October 16, 2014 53 / 107

Number of species

Suppose we wanted to count how many species each mutation affected.
How can we do this?

A trickier question is how to count how many times each species occurs in
the data set. How could we do this one?

SAS Programming October 16, 2014 54 / 107

Number of species

First we look at the number of species. We can use string functions to get
this fairly easily assuming that each species is separated by a comma.
Then for each observation, the number of species equals the number of
commas plus 1.

We’ll also use this new data to create a 4-way table.

SAS Programming October 16, 2014 55 / 107

Number of species

	
	

SAS Programming October 16, 2014 56 / 107

Number of species

	
	

SAS Programming October 16, 2014 57 / 107

Number of times each species occurs

String functions again!

	
	

SAS Programming October 16, 2014 58 / 107

Number of times each species occurs

PROC FREQ was used instead of PROC TABULATE so that the table is
vertical rather than horizontal.

	
	

SAS Programming October 16, 2014 59 / 107

ARRAYS (Chapter 13)

Arrays have multiple uses. One use is to convert data sets from wide to
narrow, for example when you have repeated measures data.

We’ll first cover arrays, and then go over ways to convert data sets from
wide to narrow and vice versa, using either arrays within data steps or
using PROC TRANSPOSE.

SAS Programming October 16, 2014 60 / 107

ARRAYS

From the book: “Cody’s rule of SAS programming goes something like
this: if you are writing a SAS program, and it is becoming very tedious,
stop. There is a good chance that there is a SAS tool, perhaps arrays or
macros, that will make your task less tedious.”

I think I would add that it is also important for your code to be
understandable to you, so that if writing fancier code saves a few lines of
code and a little bit of tedium, but means that you won’t understand your
own code one year later, it might be worth having more tedious but more
understandable code.

At the same time, if your job calls for a lot of SAS programming, then you
(should) want to improve your skills as a SAS programmer, and this might
involve figuring out more than one way to do things. Doing something a
more difficult way might not be useful for one project but could turn out
useful for a project in the future.

SAS Programming October 16, 2014 61 / 107

How much SAS should you know?

There isn’t a good answer to this—it will depend on your job and access
to SAS quite a bit.
I had an internship in the pharmaceutical industry about 10 years ago. In
one department (at one site), there were about 50 PhD statisticians (over
200 PhD statisticians in the company as a whole). For the department
with 50 PhD statisticians, there were about 30 SAS programmers who
were not statisticians, but who were there to provide programming support
to the statisticians.
In an environment like this, it is possible for the statistician to concentrate
on statistical issues — modeling, analysis, etc. — instead of all of the
detailed programming. Still, the more SAS you know, the better you can
communicate what you need. In other environments, however, you might
be expected the local SAS expert...

SAS Programming October 16, 2014 62 / 107

Back to ARRAYS

Usually programming languages use arrays to store data.

For SAS, the array is a collection of variables in a certain order, and you
can refer to the variable by indexing the list of variables instead of
referring to variables by their name. This can be especially useful if you
want to perform the same operation on multiple columns.

The main reason for this is to save time—it is less tedious to loop over
your variables in an array rather than refer to all of them individually.

SAS Programming October 16, 2014 63 / 107

ARRAYS: temperature data

As an example, we’ll use some temperature data online on average US
temperatures and some other information regarding precipitation. The
data has four columns for average temperature for January, April, July,
and October, using the Farenheit scale.

First, I’ll discuss some difficulties reading in the data. The data was
obtained from this website
http://www.infoplease.com/ipa/A0762183.html

SAS Programming October 16, 2014 64 / 107

Screenshot of data and first attempt to read in

SAS Programming October 16, 2014 65 / 107

ARRAYS: temperature data

Trouble with tabs....Notice that the line for Austin is incorrect in PROC
PRINT

SAS Programming October 16, 2014 66 / 107

ARRAYS: temperature data

Find and replace tabs with two spaces (two prevent ending up with exactly
one space separating two variables). We’ll read this in using dlmstr and
using two spaces as the delimiter.

SAS Programming October 16, 2014 67 / 107

ARRAYS: temperature data

Also remove spaces around slash in case that causes problems

R	

Replace	 “	 /	 “	 with	 “/”	

SAS Programming October 16, 2014 68 / 107

ARRAYS: temperature data

After some trial and error, I saved the file this way (not the default).

SAS Programming October 16, 2014 69 / 107

ARRAYS: temperature data

Success at last!

SAS Programming October 16, 2014 70 / 107

ARRAYS: temperature data

Suppose we wanted to convert the temperatures to Celsius. This could be
done by typing

jan = (jan-32)*5/9

apr = (apr-32)*5/9

aug = (aug-32)*5/9

oct = (oct-32)*5/9

in the data step. This is only slightly tedious. It would be more tedious if
we had 12 months and one column per month. Or suppose we have a
questionnaire with 100 questions on a Likert scale (1=strongly disagree,
5=strongly agree, 99=missing) and we want to recode missing values as
periods?

SAS Programming October 16, 2014 71 / 107

ARRAYS: temperature data

A way to automate applying the same code to many variables is to use
arrays.

SAS Programming October 16, 2014 72 / 107

ARRAYS: temperature data

Now everything is Celsius

SAS Programming October 16, 2014 73 / 107

ARRAYS: temperature data

instead of writing out all variables, you can use some abbreviations, such as

array temps{4} jan -- oct; /* for all variables starting

with jan going up to oct in the order they appear */

array x{*} _numeric_; /* for all numeric variables */

array variables{*} $_character_ /* all character variables */

array Q{100} $ Q1-Q20 /* single hyphen indicates that

variables Q1, Q2,, Q20 are used even if

other variables exist in between */

You can also use other characters instead of braces for arrays, such as
square brackets or parentheses, but it is good to be consistent.

SAS Programming October 16, 2014 74 / 107

ARRAYS

A common application of arrays is to convert missing value codes. Data
prepared for SPSS (often used in Psychology, for example), often uses 99
or 999 as a missing value code. To convert this for a long list of variables
in a questionnaire, you can use

data new;

set dataSPSS;

array myvars{*} _all_;

do i = 1 to dim(myvars); /* length of array */

if myvars{i} = 999 then myvars{i} = .;

end;

drop i; /* no need to keep index variable */

run;

An alternative is to use
if myvars{i} = 999 then call missing(myvars{i});

SAS Programming October 16, 2014 75 / 107

ARRAYS

If there are multiple missing value codes, you can use IN as a special
character function:

data new;

set dataSPSS;

array myvars{*} _all_;

do i = 1 to dim(myvars); /* length of array */

if myvars{i} in (NA,?,999) then call missing myvars{i};

end;

drop i; /* no need to keep index variable */

run;

SAS Programming October 16, 2014 76 / 107

ARRAYS

Another common use of arrays to clean up your data is to convert all
character data to lower case across all variables. For the crime data, we
had only one variable (city) that needed to be standardized in terms of
capitalization, but in general, you might have many variables that need to
be standardized.
Here is code for that

data lower;

set old_data;

array all_chars{*} _character_;

do i = 1 to dim(all_chars);

all_chars{i} = lowcase(all_chars{i});

end;

drop i;

run;

SAS Programming October 16, 2014 77 / 107

ARRAYS: creating new variables

You can also specify an array of variables that are not based on old data,
and are assigned values during the data step. If we wanted both Celsius
and Fahrenheit temperatures, for example, we can do the following.

SAS Programming October 16, 2014 78 / 107

ARRAYS: creating new variables

SAS Programming October 16, 2014 79 / 107

ARRAYS: creating new variables

SAS Programming October 16, 2014 80 / 107

ARRAYS: creating new variables

Note that this created new variables C1, C2, ... without specifying the
names. This could also be a way to shorten annoyingly long variable
names, especially if they don’t mean much to you (you are analyzing
someone else’s data...) The purpose is just to save you some typing (and
typos) in later code.

data cleanup;

set messy;

array annoying{100} LongVariableName1-LongVariableName100;

array v{100};

do i=1 to 100;

v{i} = annoying{i};

end;

drop LongVariableName1-LongVariableName100;

run;

SAS Programming October 16, 2014 81 / 107

Array bounds

You can also change bounds of arrays so that instead of having the
indexing start at 1, it starts at some other number. For example if your
data has variables rain10, rain11, rain12, rain13 for rainfall in
2010, 2011, ..., 2013, you can use

array rain{10:13} rain10-rain13;

This can help prevent typos in your code. Indexing can also vary for
different languages. For example, R indexes starting at 1, but C indexes
starting at 0. This can cause a lot of off-by-one errors when switching
between programming languages.

SAS Programming October 16, 2014 82 / 107

Temporary arrays

You can also create a temporary array that has no variable names using
the keyword TEMPORARY . This essentially acts as a constant that can
be used for comparison to any observation. The following code (from the
book) stores an answer key in a temporary array to grade student answers.

SAS Programming October 16, 2014 83 / 107

Temporary arrays

data score;

array ans{10} $ 1; /* the 1 is not needed but indicates that

each value is 1 byte */

array key{10} $ 1 _temporary_

(’A’,’B’,’C’,’D’,’E’,’E’,’D’,’C’,’B’,’A’);

input ID (Ans1-Ans10)($1.);

RawScore = 0;

do Ques = 1 to 10;

RawScore + (key{Ques} eq ans{Ques});

end;

Percent = 100*RawScore/10;

keep ID RawScore Percent;

datalines;

123 ABCDEDDDCA

126 ABCDEEDCBA

129 DBCBCEDDEB

;

run;
SAS Programming October 16, 2014 84 / 107

Two-dimensional arrays

You can do temporary two-dimensional arrays using the syntax

array A{3,4} _temporary_;

This can be useful for having a look-up table that is available for every
observation. Here you need data to populate the array. As an example,
you could have a table that gave distances between cities (or prices for
airline trips). For a customer traveling between cities, the look up table
would indicate the distance for the trip.

SAS Programming October 16, 2014 85 / 107

Converting a data set from one observation per subject to
one observation per visit

It is common in medical data to have one record per clinic or hospital visit
so that the same patient has multiple records, or to have one record per
patient, with multiple variables (for example, repeated measures, that need
to be converted into one record per patient per time point.
Typical repeated measures data might look like this, where we have a
patient with age and blood pressure reading at 4 time points.

patient age bp1 bp2 bp3 bp4

0001 67 130 138 140 136

0002 61 150 145 144 142

0003 72 121 135 122 140

0004 51 118 115 126 120

SAS Programming October 16, 2014 86 / 107

Restructuring data: wide to narrow

Suppose we want the data to look like this

0001 67 130

0001 67 138

0001 67 140

0001 67 136

0002 61 150

0002 61 145

0002 61 144

0002 61 142

0003 72 121

...

SAS Programming October 16, 2014 87 / 107

ARRAYS: restructuring data, wide to narrow

SAS Programming October 16, 2014 88 / 107

ARRAYS: restructuring data, wide to narrow

SAS Programming October 16, 2014 89 / 107

ARRAYS: restructuring data

For a small example like this, there isn’t much difference between using an
array or not. But the length of the code will not change if there are 12 or
100 blood pressure readings, while it would be tedious to do this without
arrays and loops for so many readings.

Now, we’ll look at going in the other direction, narrow to wide. So we’ll
assume we’re starting with the data in the narrow format we just saw.

SAS Programming October 16, 2014 90 / 107

ARRAYS: restructuring data, narrow to wide

SAS Programming October 16, 2014 91 / 107

ARRAYS: restructuring data, narrow to wide

SAS Programming October 16, 2014 92 / 107

ARRAYS: restructuring data, narrow to wide

The book has an another solution, which also uses arrays but doesn’t use
a DO loop.

SAS Programming October 16, 2014 93 / 107

ARRAYS: restructuring data, narrow to wide

The book has an another solution, which also uses arrays but doesn’t use
a DO loop.

SAS Programming October 16, 2014 94 / 107

ARRAYS: restructuring data, narrow to wide

I used the approach in the book, but adapted for this data and modified a
bit. The book’s solution assumes that the counter (called time in my
code) is a variable in the narrow data set. Here I created it on the fly while
also restructuring the data, and this works too.

The book’s solution has the advantage that the order of the variables
comes out in the order you might like. This can be fixed using LENGTH
statements in the data step that has the DO LOOP.

The book’s solution I think is slightly harder than mine, but works just
fine. It is a good idea to change the code and see what happens. For
example, what happens if the RETAIN is commented out?

SAS Programming October 16, 2014 95 / 107

Changing the code to understand it better

Here the RETAIN statement was commented out, making the variables
reset to missing the next time you go through the data step, so only the
last observation from each ID is output as non-missing.

Commen&ng	 out	 the	 RETAIN	 statement	 from	 the	 book’s	 code	

SAS Programming October 16, 2014 96 / 107

ARRAYS: restructuring data, narrow to wide

SAS Programming October 16, 2014 97 / 107

Changing the order of variables

Actually, it is not uncommon to want to change the order of variables in a
dataset. One way to do this is with a LENGTH statement.

SAS Programming October 16, 2014 98 / 107

Changing the order of variables

SAS Programming October 16, 2014 99 / 107

Changing the order of variables

SAS Programming October 16, 2014 100 / 107

Restructuring the data with PROC TRANSPOSE

Another way of changing data from multiple observations per patient to
one observation per patient and vice versa is through PROC TRANSPOSE.

SAS Programming October 16, 2014 101 / 107

PROC TRANSPOSE

SAS Programming October 16, 2014 102 / 107

PROC TRANSPOSE

The idea is that for each ID variable, the columns become rows and the
rows become columns. For ID 0001, the data was a row which was 1x4, so
now for ID 0001, the data is 4x1.

Note that the age variable was lost in the process, so we’ll have to do
something to get it back.

The variable names have now become a column of data. Usually, you
wouldn’t want to keep this (although sometimes you might want to), and
instead you would want COL1 to be called blood pressure.

SAS Programming October 16, 2014 103 / 107

PROC TRANSPOSE: wide to narrow

SAS Programming October 16, 2014 104 / 107

PROC TRANSPOSE

If you have missing data due to missing observations at some time points,
then this will show up as periods in the wide data, but you might want
these rows to be deleted. For example,

0001 67 130

0001 67 138

0001 67 140

0001 67 .

0002 61 150

0002 61 145

0002 61 144

0002 61 142

To have the row deleted, so that the number of rows is equal to the
number of times the patient received a measurement, use

out=bo_Transpose1(rename(col1=BP) drop=_name_

where BP is not null);
SAS Programming October 16, 2014 105 / 107

PROC TRANSPOSE: narrow to wide

SAS Programming October 16, 2014 106 / 107

PROC TRANSPOSE: a whole dataset

To transpose an entire dataset, you can omit the BY statement:

SAS Programming October 16, 2014 107 / 107

