Note on homework for SAS date formats

I'm getting error messages using the format MMDDYY10D. even though this
is listed on websites for SAS date formats. Instead, MMDDYY10 and similar
(without the D seems to work for both hyphens and slashes). However, you
don't need date formats to read in the data for the homework—it is just
an option.

Also note that a date format such as MMDDYYw. means that the w is
replaced by a number indicating the width of the string (e.g., 8 or 10).

SAS Programming August 29, 2018 1/60

SAS data sets (Chapter 4 of Cody book)

SAS creates data sets internally once they are read in from a Data Step.
The data sets can be stored in different locations and accessed later on.
The default is to store them in WORK, so if you create a data set using
data adress; the logfile will say that it created a SAS dataset called
WORK.ADDRESS.

You can nagivate to the newly created SAS dataset. In SAS Studio, go to
the Libraries Tab on the left (Usually appears toward the bottom until you
click on it). Then WORK.ADDRESS should appear.

SAS Programming August 29, 2018 2 /60

SAS data sets

Folders [*Program 1 * | address.txt x| B data.txt *
Lasks CODE |LOG |ResuLTs
Snippets B & 2
= 2
= 4Errors, Warnings, Notes
(%)
= b @ Errors
4 &8 My Libraries|
I b /\ Warnings
= b ® Notes (6)
b &9 MAPSGFK

> &8 MAPSSAS
b &) SASDATA
b &8 SASHELP

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
b &9 SASUSER 57
b &8 STPSAMP 58

data address;
59 infile "/home/jamdeg/address.txt";
b &) WEBWORK / /3 e/

input name :$41. street :$41. city :$41.;
b &) WORK 61 run;

NOTE: The infile "/home/jamdeg/address.txt” is:
Filename=/home/jamdeg/address.txt,
Owner Name=jamdeg,Group Name=oda,
Access Permission=-rw-r--r-
Last Modified=25Aug201L
File Size (bytes)=171

29,

NOTE: 3 records were read from the infile "/home/jamdeg/address.txt".
The minimum record length was 50.
The maximum record length was 63.

NOTE

: The data set WORK.ADDRESS has 3 observations and 3 variables.

August 29, 2018

SAS data sets

Folders

[4 *Program 1 * [D) address.txt * [A) datatxt * [WORKADDRESS *
> CODE [L06 [RESULTS

SHELEE BRG & & 4Am 3

Libraries

Obe [rame snet oy
P
a8 & 9 Lity Rose West Mesa Vista Ave NE Albuquergue

Tasks

4 &0 My Libraries
> & MAPS
> &0 MAPSGFK
b &7 MAPSSAS
b &) SASDATA
b &P SASHELP
> &9 SASUSER
> &8 STPSAMP
b &) WEBWORK
4) WORK

v ‘énuwsﬁ

Wilrd van Ofman Quine | Cactus Ciide NW | Rio Rancho

Jose Ortega y Gassett | East Dosort Wilow Rd | Pheonix

Program

August 29, 2018 4 /60

Making datasets permanent

You can also make SAS datasets permanent. This is done using the
libname statement. E.g.

Folders [i3 *Program 1 * [addresstxt * [datatxt x E WORKADDRESS
(esks cobe |loc |Resuts
Snippets

i 4 ©- HE B

libname jameslib

o L3 ® % i m =

& & @ BO
4 & My Libraries
45 JAVESLIB
» {3 ADDRESS
b &9 MAPS

data jameslib.address;

inf amdeg

proc print;
run;

SomuauewN e

» & MAPSGFK

b &8 MAPSSAS

b &) SASDATA

b &9 SASHELP

b &8 SASUSER
&9 STPSAMP

» &) WEBWORK
4 & WoRrk

» [F3 ADDRESS.

SAS Programming August 29, 2018 5 /60

Permanent SAS datasets

The new dataset should be available to be accessed directly from other
SAS programs without reading in original data. This can save a lot of time
for large datasets.

If the SAS dataset is called mydata, the SAS dataset will be called
mydata.sas7bdat, where the 7 refers to the datastructures used in
version 7 (and which hasn't changed up to version 9).

o .
SAS” Studio
ETE N 1 cresstt) cta vt | B aress sas7bclt | 5 “Pr
- @ & T HO cobE |oc |ResuLts |
b [Folder Shortcuts Bk & 2
48 My Folders
| my_content
sasuserv94
&: = o b /\ Warnings
Fe address.sas7bdat|
* > @ Notes (2)

[5) address.txt

4Errors, Warnings, Notes

> @ Errors

SAS Programming August 29, 2018 6 / 60

Permanent SAS datasets

Something confusing about this is to see the data set under “My libraries”,
you have to run the libname statement again to create a reference to the
directory where the dataset is. However, the dataset exists in the directory
where it was saved as a binary file, whether or not SAS is opened.

X] SAS: Explorer (2)
File Edit View Tools Solutions Help

SAS Environment | [contents of ‘Foo'
Name size | Type.
549 Envioment) naress DT
- (& Libraries [5] Test_scores 16.0KE Table
#- (@ Foo
| - Maps
| - Sashelp
-) Sasuser
|- work

i) File shorcuts
- (&) Favorite Folders

#- & Home Direct
=& Home Directory ¥eYe) | SAS: Program Editor-Untitled

File Edit View Tools Run Solutions Help

)Autosave complete

00001 [ibname foo "~/Teaching/SAS";
00002

00003

0O004

{clololole)

SAS Programming August 29, 2018 7 /60

Using

a fileref

In addition to naming libraries, you can name individual files external to
SAS. This is especially useful for downloading data directly from the web.

Starts reading data on line 2

[address.txt * | [data.txt * B address.sas7bdat * E‘."Programl x

cobe| |LoG [ResuLTs |

B4 - HE DB B & © W |Line# | @ % i o E
lifilename foo url "http://matl.unm.edu/~james/normtemp.txt";
2

3data new;

4: infile foo dlm='09'x firstobs=2;

5 input degrees sex $ age;

6run;

7

8proc print data=new;

9run;

SAS Programming August 29, 2018 8 /60

Temperature data

RESULTS
2 A= 3
Program
Obs | degrees sex | age
1 9.7 | 1 71
2 9.9 1 74
3 97.0 1 80
4 97.1 1 73
5 971 1 75
6 97.1 1 82
7 97.2 | 1 64
8 97.3 1 69
9 97.4 1 70
10 974 1 68
1 97.4 1 72
12 97.4 1 78

13 975 1 70

August 29, 2018

Examining contents of datasets from other sessions

To make sure that your SAS dataset has what you think it has, it can be
useful to examine the contents of the SAS dataset using PROC
CONTENTS. This is especially helpful for datasets that were created in
other SAS programs, and can be used to list contents of multiple datasets
simultaneously.

SAS Programming August 29, 2018 10 / 60

PROC CONTENTS example

X/ SAS: Output-Untitled

File Edit View Tools Solutions Help

1 The SAS System 10:59 Tuesday, A
The CONTENTS Procedure
Engine/Host Dependent Information

Number of Data Set Repairs @

Filename /nfs/user/j/jandeg/Teaching/SAS/address.sa
Release Created 9.0202M3

Host Created Linux

Inode Number 68559268

Access Permission F= === -

Owner Name jamdeg

File Size (bytes) 24576

Alphabetic List of Variables and Attributes

Variable Type Len

2 address Char 41
3 city Char 41
1 name Char 41
Fre—— YY) | SAS: Program Editor-Untitled
{tis important
eissueaLIBN File Edt View Tools Run Solutions Help r
;2-”;33.;2 NOTE: 4 Line(s) recalled.
- 00001 libname jam "~/Teaching/SAS"; N
00002
00003 proc contents data=jam.Address;
00004 run;
P 4- ;
rearam Hosoes I
Libnane pOOODE v
=) =

August 29, 2018 11 / 60

PROC CONTENTS on all datasets in a directory

Here | listed the contents of all datasets in the directory with the jam

libref, which is my directory for this class. The output just concatenates
PROC CONTENTS runs from each SAS dataset.

Note that in this program, | have run a full SAS program without using
any datastep, which is unusual.

File Edit View Tools Solutions Help

X| SAS: Explorer (2)

SAS Environment

‘ | Cantents of ‘Jam*

& SAS Environment
= (2] Libraries
=0 El
- &) Maps
3} Sashelp
- &) Sasuser
- (5 Work
i &l File Shortcuts
=) (&l Favorite Folders
#- & Home Directory

‘ File Edit View Tools Run Solutions Help

MName Size Type
[Address 24.0KB Table
[E] Test_scores 16.0KB Tahble
800 N SAS: Program Editor-Untitl

MOTE: 4 Line(s) recalled.
SAS Programming

August 29, 2018

12 / 60

PROC CONTENTS

PROC CONTENTS alphabetizes the names of the variables. You can have
it list the variables in the order that they occur by using the option varnum

The SAS System 10:59
The CONTENTS Procedure
Engine/Host Dependent Information

Number of Data Set Repairs @

Filename /nfs/user/j/jamdeg/Teaching/SAS/
Release Created 9.0202M3

Host Created Linux

Inode Number 69559268

Access Permission PW-- - -

Owner Name jamdeg

File Size (bytes) 24576

Variables in Creation Order

Variable Type Len

1 name Char 41
2 address Char 41
3 city Char 41
8 00 \ SAS: Program Editor-Untitled

File Edit View Tools Run Solutions Help

NOTE: 4 Line(s) recalled.

00001 flibname jam "~/Teaching/SAS";

00002

@OEE3 proc contents data=jam._all_ varnum;
0EE4 run;

SAS Programming August 29, 2018

Tips on Linux SAS

If your connection with SAS OnDemand isn't very good, you might prefer
using linux SAS. Instead of using SAS graphically, you can use it batch
mode, just like in the good old days (like how | did for the Data Analysis
class in the late 90s).

In some ways, this can be very fast, and is a good alternative if remote
access is a problem. Instead of opening a SAS session, you have your SAS
code in a separate file, say mycode.sas. Then at the linux prompt, you
type

sas mycode.sas

SAS Programming August 29, 2018 14 / 60

Tips on Linux SAS

If all goes well, this should produce new files: mysas.log and mysas.lst. The
mysas . log file should be very similar to what you would see in the log window in
a graphical SAS sassion from running the code. The .1st file lists the output
assuming there are no errors.

Some things that | like about this approach are that the log and output files are
written from scratch, so you don't get confused by old output. You can also very
quickly identify if you have any errors in the log file using a little bit of linux:

cat mysas.lst | grep ERROR

The vertical line is called a “pipe” and means that the output from the first part
is the input for the second part. This will return the lines from the log file that
have errors if there are any. If there are no errors, it will just be silent and give
you a new prompt. This can be faster than scrolling through a long logfile to find
the errors.

SAS Programming August 29, 2018 15 / 60

SAS batch processing in Linux

Another nice way to use batch processing is to apply the same SAS code
to different files. Suppose you have data in 10 different states. Suppose
the files are called NM.txt, AZ.txt, TX.txt, etc. You way to apply exactly
the same SAS code to these 10 files. This can all be done within SAS in
one session, but it could also be done separately using batch processing.
To do this, try this code in Linux. Assume that your SAS code inputs a
file called temp.txt.

cp —f NM.txt temp.txt
sas temp.txt

cp temp.lst NM.1lst

cp -f AZ.txt temp.txt
sas temp.txt

cp temp.lst AZ.1st

cp -f TX.txt temp.txt
sas temp.txt

cp temp.lst TX.lst
SAS Programming August 29, 2018 16 / 60

SAS batch processing in Linux

Now your SAS output is in the files ending with .1st, and you've run
three SAS “jobs” without having to launch SAS.

This can be espcially useful in supercomputing environments, where you
can send different jobs to different machines and have them run in parallel.
If you are doing difficult statistics on each file or each file is very big, then
instead of taking 10 hours to run all 10 data sets, you might get all of
them running in parallel and get them all done in 1 hour because you've
run them on multiple machines. Of course, B71 has 10 machines with
SAS, so you could also log into all 10 and run parallel SAS sessions that
way assuming no one else is using them...

With genetic data, I've had 10,000 jobs (one for each gene), each running
MCMC and taking several minutes per job, that | wanted to run in parallel.

SAS Programming August 29, 2018 17 / 60

Tips on Linux SAS: cleaning up carriage returns

When SAS creates output files, it puts in Window's-style carriage returns,
whereas Linux/Unix/OS X use newline carriage returns only. This usually

shows up in output as Ctrl-M.

swNne

first_
visit

9295
9295
9296
9296

/0 superjames — jamdeg@vulcan:~/Teaching/SAS — s
W PICO 5.04 File: hwi-3.lst

SAS Programming

Tips on Linux SAS: cleaning up carriage returns

Carriage returns can kind of screw up the output a little bit.
To clean up the carriage returns, you can type the following

sed -1 $’s/\r//’ hwil-3.1st

This is very obscure syntax, and comes from the UNIX/LINUX utility sed
which does some text processing. It can do things like replace all
characters or character strings in a file in an automated way, without
opening the file. The usual syntax is something like

sed ’s/oldstring/newstring/g’ file
Here \r stands for carriage return, and because we are replacing it with
nothing, we get two forward slashes in a row. There are probably other

ways to do this, but this is the easiest way | know of.

SAS Programming August 29, 2018 19 / 60

[jamdeg@vulcan SAS]$ sas hwl-:

Starting SAS

The http://Fastinfo.unm.edu entry for SAS is:

http://unm.custhelp.com/cgi-bin/unm.cfg/php/enduser/std_adp.php?p_faqid=6341

[jamdeg@vulcan SAS]$ cat hwl-3.1lst
The SAS System

first_ second_
Obs visit visit SSN
7701 1 9295 16996 556-45-9565
10275 2 9295 19570 556-65-7687
3 9296 14669 556-33-4325
10458 4 9296 19754 575-56-3322

[jamdeg@vulcan SAS]$ sed -i $'s/\r//' hwl-3.1lst
[jamdeg@vulcan SAS]$ cat hwl-3.1lst
The SAS System

first_ second_
Obs visit visit SSN
1 9295 16996 556-45-9565
2 9295 19570 556-65-7687
3 9296 14669 556-33-4325
4 9296 19754 575-56-3322
[jamdegevulcan SAS1$ JI

17:13 Monday,

name time
david
liang
beatrice 5373
jenny

17:13 Monday,

name time
david 7701
liang 10275
beatrice 5373
jenny 10458

August 25, 2014

August 25, 2014

1

1

August 29, 2018

How it looks in MS-Word: fine

b oo i & IR NS R Q> (search in Document

| DocumentElements | Tables | Charts | SmartArt | Review
Font Paragraph Styes nsert
A . o -
5[] [AsAr &][o AaBOCEDAE AaBbCeDE | AaBDCCDI| AsBbCDdE: A - & =
1A L= A 2 Normal | | NoSpacng | | Headingl || Heading 2 @ Textox shape Picuwre
g subscript A ————— PR S — FRR F— |
The SAS System 20:50 Monday,
August 25, 2014 1
first_ second_
Obs visit visit SSN name time
1 9295 16996 556-45-9565 david 7701
2 9295 19570 556-65-7687 liang 10275
3 9296 14669 556-33-4325 beatrice 5373
4 9296 19754 575-56-3322 jenny 10458

August 29, 2018 21 / 60

How it looks in Mac Pages: similar to linux

first_
Qbs visit
1 9295
7701
2 9295
10275
3 929
4 9296
10458

The SAS System

second_
visit

16996

19570

14669
19754

SSN name time
556-45-9565 david
556-65-7687 liang

556-33-4325 beatrice
575-56-3322 jenny

SAS Programming

5373

20:50 Monday, August 25, 2014 1

August 29, 2018

22 / 60

ASCII characters of the output

10 indicates Line Feed \n while 13 represents carriage return, \r. WORD
doesn’t start a new line until the Line Feed, while UNIX/LINUX do a new
line at the carriage return. Look up the entry for Newline in Wikipedia for
some of the history of the difference and lists of operating systems with
different ways to do Newlines characters. These issues can also cause
incompatibilities when programs do or do not expect a file to end with a
newline character. It usually safest to include a newline at the end of a file.

e 00 | SAS — emacs — 106x44.

SAS Programming August 29, 2018 23 / 60

ASCII table

ASCII tables are easy to search for online in case something funky is
happening and you need to know what the invisible characters really are.
Notice where the TAB is in hex code (recall >09°x is the delimiter name
in SAS). Extended ASCII goes up to number 255 (in decimal). This where
there are 8 bytes to code one character of data. 8 bytes = 28 = 256 bits,
so numbers between 0 and 255 can stored using 8 bytes.

Dec_HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Himl Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 @ @ | 96 60 140 `

1 1001 SOH (start of heading) 3 65 6 141 6#97; 2

2 2 002 STX (start of text) 66 142 «#98; b

3 3003 ETX (end of text) 35 23 043 6#35: § | 67 143 a#99; ©

4 4 004 EOT (end of tramnsmission) 36 24 044 «#36; § 68 144 d d

5 5 005 ENQ (enquiry) 37 25 045 % % 69 145 e e

6 6 006 ACK (acknowledge) 38 26 046 & « 70 146 «#102; £

7 7007 BEL (bell) 39 27 047 6#39; © |71 147 64103 4

8 8 010 BS (backspace) 40 28 050 ((72 150 h h

9 9 011 TAB (horizontal tab) 41 29 051)) 73 151
S; 1

10 A 012 LF (NL line feed, new line)| 42 2A 052 «#42: * 74 152 j)
11 B 013 VT (vertical tab) 43 2B 053 + + 75 153 k k
12 COL4 FF (NP form feed, new page)| 44 2C 054 c#4d; , | 76 154 c#l08; 1
13 D015 (R (carriage recumm) 45 2b 055 a#45; - |77 155 c#109; u
14 E 016 50 (shift out) 46 2E 056 ;. 78 156 &§110; n
15 F 017 5I (shift in) 47 2F 057 :/ 79 157 &#lll; o
16 10 020 DLE {data link escape) 48 30 060 :0 80 160 p p
17 11 021 DC1 (device control 1) 43 31 061 sl 81 161 q q
18 12 022 DC2Z (device control 2) 50 32 062 :2 82 162 &#l14; ©
19 13 023 DC3 (device control 3) 51 33 063 ;3 83 163 S5; S
20 14 024 DC4 (device control 4) 52 34 064 ;4 84 164 t ©
21 15 025 NAK (negative acknowledge) 53 35 065 ;5 85 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 2 6 86 166 v v
23 17 027 ETB (end of trans. block) | 55 37 067 7: 7 |87 167 al19; v
2418 030 CAN {cancel) 56 38 070 a#56: 5 | 88 170 a#120; %
25 19 031 EM (end of medium) 57 39 071 9 89 171 y: ¥
26 1A 032 5UB (substitute) 58 34 072 90 172 «#l22; z
27 1B 033 ESC (escape) 59 3B 073 91 SB 133 [[|123 7B 173 «#123; {
(file separator) 60 3¢ 074 92 5C 134 6#92; \ (124 7C 174 a#128; |

3p 075 135 4o }

S Programming August 29, 2018 24 / 60

Example SAS program

[libname mozart "~/Teaching/SAS";
data mozart.test_scores;

length ID $ 3 Name $ 15;

input ID $ Name $ Scorel-Score3 ;
datalines;

Sha 90 95 98

Yuancheng 78 77 75

Fiona 88 91 90

S WN R

un;

data ave_scores;

set mozart.test_scores;

ave_score = mean(of scorel-score3);
run;

proc print data=ave_scores;

var name ave_score scorel-score3 ;
run;

SAS Programming August 29, 2018 25 / 60

Example from previous slide

There is a lot going on in the previous slide.

1.

Scorel-Score3 is specified using a range, and SAS understands that
Score? exists as well — it interpolates the numbers

. Scorel-Score3 is capitalized in the datastep, but not later, yet this

capitalization is retianed in the printed output

| created a new dataset called ave_scores, which has a subset of the
variables of the first datset

. mean(of scorel-score3) computes the mean of Scorel,

Score2, Score3 for each row. Note that mean(scorel-score3)
would compute the mean of the difference between those two scores

In proc print, | am not printing the ID variable. Also, | am
changing the order in which variables are printed

SAS Programming August 29, 2018 26 / 60

Running program in batch mode

[jamdeg@polaris SAS]$ sas program4-1.sas

Starting SAS

The http://Fastinfo.unm.edu entry for SAS is:
http://unm.custhelp.com/cgi-bin/unm.cfg/php/enduser/std_adp.php?p_faqid=6341

[jamdeg@polaris SAS]$ cat program4-1.1lst
The SAS System

ave_
Obs Name score Scorel Score2 Score3
1 Sha 94.3333 90 95 98
2 Yuancheng 76.6667 78 77 75
Fiona 89.6667 88 91 90

3
[jamdeg@polaris SAS]$ cat program4-1.log | grep ERROR
[jamdeg@polaris SASI$ [I

August 29, 2018 27 / 60

data _null_

You can also use a datastep which doesn't create a new dataset, but
processes observations from another dataset and records information about
observations from the other dataset. This can be done using a
combination of data _null_ and set

data _null_;

set learn.test_scores;

if scorel ge 95 or score2 ge 95 or score3 ge 95 then
put ID= Scorel= Score2= Score3=;

run;

SAS Programming August 29, 2018 28 / 60

More on put

The output from the put statement goes to the log file by default, but can
be placed elsewhere, by putting

file "myfile".txt;
or
file print;

above the put statement. This either sends the output to an external file
or to the output window.

SAS Programming August 29, 2018 LA

data null_

data _null_ is especially useful for creating custom reports, such as
automatically generating tables, and making data look nicely formatted
instead of what is convenient for reading in for data analysis.

SAS Programming August 29, 2018 30 / 60

Example with used Toyota cars on Craigslist

year price miles title
1995 1200 150000 clean
2004 4500 184000 salvage
1995 3200 . clean

1998 1850 152000 salvage
1998 3400 136000 clean
2004 8500 85500 clean
2007 12400 89000 clean
2002 5450 137000 clean
2007 18500 64000 clean
1996 15000 134000 clean
2008 13999 143934 clean
1997 2500 . salvage

2007 8500 129000 clean
2003 . . salvage

1986 4500 190291 clean
1983 4300 . rebuilt

1976 4500 131000 clean
SAS Programming August 29, 2018 31/ 60

Printing the data to a file look nicer using data

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;

run;
data _null_;
set cars;
file "carsFormatted.txt";
if title = "clean"
then put year price miles;
run;

SAS Programming August 29, 2018

32 / 60

Printing the data to a file look nicer using data null_

1995 1200 150000
1995 3200 .

1998 3400 136000
2004 8500 85500
2007 12400 89000
2002 5450 137000
2007 18500 64000

August 29, 2018 33 /60

Printing the data to a file look nicer using data null_

head -10 cars2.sas | tail -2

if title = "clean"

then put year price dollar8. miles;

[jamdeg@mizar SAS]$ cat carsFormatted.txt
1995 $1,200150000
1995 $3,200.
1998 $3,400136000
2004 $8,50085500
2007 $12,40089000
2002 $5,450137000
2007 $18,50064000

SAS Programming August 29, 2018 34 / 60

Printing the data to a file look nicer using data null_

[jamdeg@mizar SAS]$ 'head
head -10 cars2.sas | tail -2

if title = "clean"

then put year " " price dollar8. " " miles;

[jamdeg@mizar SAS]$ cat carsFormatted.txt
1995 $1,200 150000
1995 $3,200 .
1998 $3,400 136000
2004 $8,500 85500
2007 $12,400 89000
2002 $5,450 137000
2007 $18,500 64000

SAS Programming August 29, 2018 35 / 60

Printing the data to a file look nicer using data null_

[jamdeg@mizar SAS]$ 'h
head -10 cars2.sas | tail -2

if title = "clean"

then put year +1 price dollar8. +4 miles;

[jamdeg@mizar SAS]$!c
cat carsFormatted. txt
1995 $1,200 150000
1995 $3,200 .
1998 $3,400 136000
2004 $8,500 85500
2007 $12,400 89000
2002 $5,450 137000
2007 $18,500 64000

SAS Programming August 29, 2018 36 / 60

Printing the data to a file look nicer using data null_

[jamdeg@mizar SAS]$!'h

head -10 cars2.sas | tail -2
format price dollar8. miles comma8.;
if title = "clean"

[jamdeg@mizar SAS]$!c

cat carsFormatted.txt

1995 $1,200 150,000

1995 $3,200 .

1998 $3,400 136,000

2004 $8,500 85,500

2007 $12,400 89,000

2002 $5,450 137,000

2007 $18,500 64,000

SAS Programming August 29, 2018 37 / 60

Printing the data to a file look nicer using data null_

[jamdeg@mizar SAS]$ head -11 cars2.sas | tail -3
format price dollar8.2 miles commal3.1;
if title = "clean"
then put @1 year @10 price @21 miles;
[jamdeg@mizar SAS]$!c
cat carsFormatted.txt

1995 $1200.00 150,000.0
1995 $3200.00 .

1998 $3400.00 136,000.0
2004 $8500.00 85,500.0
2007 12400.00 89,000.0
2002 $5450.00 137,000.0
2007 18500.00 64,000.0

SAS Programming August 29, 2018 38 / 60

Printing the data to a file look nicer using data null_

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;

run;
data _null_;
set cars;

file "carsFormatted.txt";
format price dollar8.2 miles commal3.1;
if _n_ = 1 then do;

put;
put "—————- Clean Title Only—-————- "
put "YEAR" @10 "PRICE" @25 "MILES"-
put;

end;

if salvage = clean
then put @1 year @10 price @21 miles;

run;
SAS Programming

August 29, 2018

39 / 60

Printing the data to a file look nicer using data null_

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;

run;
data _null_;
set cars;

file "carsFormatted.txt";
format price dollar8.2 miles commal3.1;
iffl_n_ = 1 then do;

put;
put "—————— Clean Title Only—-————- "
put "YEAR" @10 "PRICE" @25 "MILES";
put;

end;

if title = "clean" then
put @1 year @10 price @21 miles;

run;

SAS Programming August 29, 2018 40 / 60

Printing the data to a file look nicer using data null_

PRICE

$1200.00
$3200.00
$3400.00
$8500.00
12400.00
$5450.00
18500.00

150,000.0

136,000.0
85,500.0
89,000.0
137,000.0
64,000.0

August 29, 2018

Printing the data to make a IATEX table

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;

run;

data _null_;
set cars;
file "carsFormatted.txt";
format price dollar8.2 miles commal3.1;
if _n_ = 1 then do;
put;
put "————— Clean Title Only-————- ",

put "YEAR" @6 "&" @10 "PRICE" @22 "&" @25 "MILES" @35 "\\";

put "\hline\\";
end;

if title = "clean"

then put @1 year @6 "&" @9 "\" @10 price @19 "&" @22 miles @32 "\\";

run;

SAS Programming

August 29, 2018

42 / 60

Printing the data to make a IATEX table

YEAR & PRICE & MILES \\
\hline\\

1995 & 1\$1200.00 & 150,000.0 \\
1995 & 1\$3200.00 & . \\
1998 & \$3400.00 & 136,000.0 \\
2004 & \$8500.00 & 85,500.0 \\
2007 & \12400.00 & 89,000.0 \\
2002 & \$5450.00 & 137,000.0 \\
2007 & 1\18500.00 & 64,000.0 \\

SAS Programming August 29, 2018 43 / 60

More on logic statements in SAS

The chapter dealing with logic in the book is in Chapter 7, so we're
skipping ahead a little bit, but it was natural to use conditional processing
with data _null_, which was introduced at the end of Chapter 4.

We'll go ahead and look more at conditional processing now since it is so
useful.

SAS Programming August 29, 2018 44 / 60

|F statements

We already introduced the IF statement with the data _null_ example.
The general syntax for an IF statement is

if CONDITION then ACTION ;
or

if CONDITION then do;
ACTIONL1 ;
ACTION2 ;

end;

SAS Programming August 29, 2018 45 / 60

Logical comparisons

The condition for IF statement

is typically a logical comparison, such as

whether one value is greater than another. Here are some common
comparisons and their syntax (use either symbol or code)

Comparison symbol two-letter code
equal to = eq

not equal to = or = ne

less than < 1t

greater than > gt

less than or equal to >= le

greater than or equal to >= ge

and & and

or | or

SAS Programming August 29, 2018 46 / 60

Example of using IF statements to create new variables

You might wish to use IF statements to create new variables that will be
more useful to you. For the car example, the variable title had 4
observed values: clean, salvage, rebuilt, and missing. You might want
a variable that just indicates whether or not the title is clean for example.
Here you can modify the data step.

data cars;

infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = clean then cleanTitle=1;

if title ne clean then cleanTitle=0;
run;

SAS Programming August 29, 2018 47 / 60

Instead of having two IF statements, you can also use the

IF-ELSE construction

data cars;
Pl infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
else cleanTitle=0;
run;

proc print data=cars;
run;

SAS Programming August 29, 2018 48 / 60

Constructing variables from ranges

Often different categories or ranges are collapsed, sometimes converting
continuous variables into categorical or ordinal variables. For example, we
might consider car mileage to be either low, medium, high, or very high,

depending on the range. It is natural to use IF-ELSE constructions. Here
is an example of doing this

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
if title ne "clean" then cleanTitle=0;
l if @ < miles < 70000 then mileage="low";
else if 70000 <= miles < 100000 then mileage="medium";
else if 100000 <= miles < 150000 then mileage="high";
else mileage="very high";
run;

proc print data=cars;
run;

SAS Programming August 29, 2018 49 / 60

Variables from ranges

Obs

WoNOULA WN PP

year

1995
2004
1995
1998
1998
2004
2007
2002
2007

price

1200
4500
3200
1850
3400
8500
12400
5450
18500

miles

150000
184000

152000
136000
85500
89000
137000
64000

title

clean
salvage
clean
salvage
clean
clean
clean
clean
clean

SAS Programming

clean
Title mileage

RPRRPRPRRPORLROR

ver
ver
ver
ver
hig
med
med
hig
low

August 29, 2018

50 / 60

Variables from ranges

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
if title ne "clean" then cleanTitle=0;
format mileage $10.;
if @ < miles < 70000 then mileage="1low";
else if 70000 <= miles < 100000 then mileage="medium";
else if 100000 <= miles < 150000 then mileage="high";
else mileage="very high";
run;

proc print data=cars;
run;

SAS Programming August 29, 2018 51 / 60

Variables from ranges

clean
Obs year price miles title Title mileage
1 1995 1200 150000 clean 1 very high
2 2004 4500 184000 salvage 0 very high
3 1995 3200 . clean 1 very high
4 1998 1850 152000 salvage 0 very high
5 1998 3400 136000 clean 1 high
6 2004 8500 85500 clean 1 medium
7 2007 12400 89000 clean 1 medium
8 2002 5450 137000 clean 1 high
9 2007 18500 64000 clean 1 low

SAS Programming August 29, 2018 52 / 60

Care with missing values

Missing values are set to the smallest negative number, which can cause
problems when using inequalities. Note that one of the values set to “low
is actually missing. It is best to specify ranges instead of relying on else.

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
if title ne "clean" then cleanTitle=0;
format mileage $10.;
if miles < 70000 then mileage="Tlow";
else if 70000 <= miles < 100000 then mileage="medium";
else if 100000 <= miles < 150000 then mileage="high";
else if miles >= 150000 then mileage="very high";
run;

SAS Programming August 29, 2018 53 / 60

Variables from ranges: missing values

Obs

CoONOOULA WN PP

year

1995
2004
1995
1998
1998
2004
2007
2002
2007

price

1200
4500
3200
1850
3400
8500
12400
5450
18500

miles title

150000 clean
184000 salvage
. clean
152000 salvage
136000 clean
85500 clean
89000 clean
137000 clean
64000 clean

SAS Programming

clean
Title

PRPRPRRPRORLROR

mileage

very high
very high
low

very high
high
medium
medium
high

low

August 29, 2018

54 / 60

Variables from ranges: missing values

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
if title ne "clean" then cleanTitle=0;
format mileage $10.;
if @ <= miles < 70000 then mileage="Tlow";
else if 70000 <= miles < 100000 then mileage="medium";
else if 100000 <= miles < 150000 then mileage="high";
else if miles >= 150000 then mileage="very high";
run;

proc print data=cars;
run;

SAS Programming August 29, 2018 55 / 60

Variables from ranges

clean

Obs year price miles title Title mileage

1 1995 1200 150000 clean 1 very high
2 2004 4500 184000 salvage 0 very high
3 1995 3200 . clean 1

4 1998 1850 152000 salvage 0 very high
5 1998 3400 136000 clean 1 high

6 2004 8500 85500 clean 1 medium

7 2007 12400 89000 clean 1 medium

8 2002 5450 137000 clean 1 high

9 2007 18500 64000 clean 1 low

SAS Programming August 29, 2018 56 / 60

Variables from ranges: missing values

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;
if title = "clean" then cleanTitle=1;
if title ne "clean" then cleanTitle=0;
format mileage $10.;
if @ <= miles < 70000 then mileage="Tlow";
else if 70000 <= miles < 100000 then mileage="medium";
else if 100000 <= miles < 150000 then mileage="high";
else if miles >= 150000 then mileage="very high";
else if miles = . then mileage="missing";
run;

proc print data=cars;
run;

SAS Programming August 29, 2018 57 / 60

Variables from ranges: missing values

Obs

CoOoONOUEAE WN K

year

1995
2004
1995
1998
1998
2004
2007
2002
2007

price

1200
4500
3200
1850
3400
8500
12400
5450
18500

miles title

150000 clean
184000 salvage
. clean
152000 salvage
136000 clean
85500 clean
89000 clean
137000 clean
64000 clean

SAS Programming

clean
Title

PRRPRPRRPRORL SR

mileage

very high
very high
missing
very high
high
medium
medium
high

low

August 29, 2018

58 / 60

Nested IF statements

IF statments can be nested inside one another, just like with any other
programming language. An example:

data cars;
infile "cars.txt" firstobs=2 obs=10;
input year price miles title $;

run;

data _null_;
set cars;
file "carsFormatted.txt";
format price dollar8.2 miles commal3.1;
if title = "clean" then
if @ <= miles < 100000 then put year price miles "low miles";
else if miles >= 100000 then put year price miles "high miles";
run;

SAS Programming August 29, 2018 59 / 60

Nested IF statements

[jamdeg@mizar

1995 $1200.
1998 $3400.
2004 $8500.
2007 12400.
2002 $5450.
2007 18500.

00
00
00
00
00
00

SAS]$ cat carsFormatted.txt
150,000.0 high miles
136,000.0 high miles
85,500.0 low miles

89,000.0 low miles
137,000.0 high miles
64,000.0 low miles

SAS Programming August 29, 2018 60 / 60

