
Multivariate Regression (Chapter 10)

This week we’ll cover multivariate regression and maybe a bit of canonical
correlation. Today we’ll mostly review univariate multivariate regression.

With multivariate regression, there are typically multiple dependent
variables as well as multiple independent or explanatory variables. A
special case of this is when the explanatory variables are categorical and
the dependent variables are continuous (particularly multivariate normal),
in which case we have MANOVA. For multivariate regression, we allow the
explanatory variables to be continuous. This approach generalizes multiple
regression much as MANOVA generalizes ANOVA.

Typically in regression, we think of the y variables as random and the x
variables as fixed. For multivariate regression, we’ll consider x variables as
either fixed or random. We’ll start with them being treated as fixed.
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Multivariate regression

First, we’ll review multiple (univariate) regression with fixed x variables.
For this model, we have

y1 = β0 +

p∑
j=1

βjx1j + ε1

y2 = β0 +

p∑
j=1

βjx2j + ε2

...

yn = β0 +

p∑
j=1

βjxnj + εn
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Multivariate regression

The standard assumptions for multiple regression are

E (εi ) = 0

Var(εi ) = σ2

cov(εi , εj) = 0

Equivalently, you can write

E (ε) = 0

Cov(ε) = σ2I
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Multivariate regression

Under the assumption that the xs are fixed, we have

E (yi ) = β0 +

p∑
j=1

βjx1j

Var(yi ) = σ2

Cov(yi , yj) = Cov(εi , εj) = 0

Equivalently,

E (y) = Xβ

Cov(y) = σ2I
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Multivariate regression

The regression model using matrix notation is

y = Xβ + ε

When I was an undergrad, my Calc III professor suggested that we get
tattoos of

f = ma,

but if you are a statistics,
y = Xβ + ε

would be better....
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Multivariate regression
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Multivariate regression

Written out, the matrix form looks like this
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Multivariate regression

The X is called the design matrix and recall that it has a column of 1s
which is necessary for the β0 term.

For estimation and hypothesis testing (for which variances are needed),
you need n > q + 1
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Multivariate regression

The least squares approach for estimating β is to minimize the following

SSE =
n∑

i=1

ε̂2i =
n∑

i=1

(yi − ŷi )
2

=
n∑

i=1

(yi − β̂0 + β̂1x1i − · · · − β̂qxiq)2

This problem can be solved with calculus, or with less effort, using matrix
algebra:

y = Xβ

If you set ŷ equal to its expectation and to solve for β, then get

β̂ = (X′X)−1X′y
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Multivariate regression

The previous solution for estimating β is the least squares solution
regardless of the distribution of the error term. If the error terms are
independent and identically distributed (i.i.d.) as N(0, σ2), then the
solution is also the maximum likelihood solution.
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Multivariate regression

An unbiased estimator for σ2 is

s2 =
SSE

n − q − 1
=

1

n − q − 1
(y − Xβ̂)′(y − Xβ̂) = y′y − β̂X′y
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Multivariate regression

Another way of writing the model is to center the xs, so you have

x1 =
n∑

i=1

xi1, · · · , xq =
n∑

i=1

xiq

Then we write (next slide)
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Multivariate regression

This approach is equivalent, and corresponds to the model

yi = α +

q∑
j=1

βj(xij − x j)

so the xs are centered and the intercept term is changed and becomes

α̂ = y

The term β̂1 is (q − 1)× 1 rather than q × 1, so we have

β̂ = (β̂0, β̂1)′

where

β̂0 = α̂−
q∑

j=1

β̂jx j
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Multivariate regression

To do hypothesis tests, the total sums of squares for y is partitioned into
SSE and SSR. This is done as follows

y′y = y′y − β̂
′
Xy + β̂

′
Xy

= SSE + β̂
′
Xy

= SSE + β̂
′
Xy + ny2 − ny2

= SSE + SSR − ny2

⇒ y′y + ny2 = SSE + SSR
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Multivariate regression

A test for the nonintercept coefficients

H0 : β1 = 0

is

F =
SSR/q

SSE/(n − q − 1)

which has an Fq,n−q−1 distribution under the null (and assuming normally
distributed y values).
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Multivariate regression

You can also test whether a subset of coefficients is 0. To do this, let βd

be the subset of interest so that the null is

H0 : βd = 0

Have the betas arranged so that

β =

(
βr

βd

)
The reduced model is

y = Xrβr + εr

The idea is that the reduced model has only the variables with nonzero
coefficients.

April 29, 2015 17 / 35



Multivariate regression

The term βr is estimated by

β̂r = (X′rXr )−1Xry

The reduced model is tested against the full model using

F =
(β̂
′
X′y − β̂

′
rX
′
ry)/h

(y′y − β̂
′
X′y)/(n − q − 1)

=
SSRf − SSRr )/h

SSEf /(n − q − 1)
=

MSR

MSE

where the subscript f refers to the full model and h is the number of
parameters in βd . The test statistic is compared to a Fh,n−q−1
distirbution.
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Multivariate regression

A special case is testing individual predictor variables, in which case h = 1,
but the formulas hold for this case as well. In this particular case (with
numerator degrees of freedom equal to 1), the F statistic is the square of
a t statistic.

The R2 value gives the proportion of variance “explained” by the model,
which is

R2 =
regression sum of squares

total sum of squares
=
β̂
′
X′y − ny2

y′y − ny2
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Multivariate regression

For multivariate regression, we have p variables for y , so that Y = (yij) is
an n × p matrix. The observation vectors are y′i , i = 1, . . . , n. As usual,
observation vectors are considered as column vectors even though they are
written horizontally in the data file and even though they correspond to
rows of Y.
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Multivariate regression

The design matrix X is as before with a column of 1s and q columns
corresponding to x variables. However, there is now a column of q β
coefficients for each of the p response variables. The model now has

B = (β1, . . . ,βp) = (βij),

which is a (q + 1)× p matrix. The model can be written as

Y = XB + Ξ

The model for an individual column of Y is equivalent to a univariate
multiple regression model. (It so happens that B is the capital of β in
Greek. However Ξ is not the capital of ε, so this choice of notation seems

a bit inconsistent. However E is used as Ξ̂
′
Ξ̂, which is the matrix analogue

of SSE.
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Multivariate regression

The assumptions of the model are

1. E (Y) = XB,E (Ξ) = O

2. Cov(y)i ) = Σ, for i = 1, . . . , n, where y′i is the ith row of Y

3. Cov(yi , yj) = O for i 6= j

Note that Cov(y)i is p × p.
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Multivariate regression

Similar to univrariate multiple regression,

B̂ = (X′X)−1X′Y

so y was replaced with Y in the formula.
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Multivariate regression

An estimator for the covariance matrix of yi is

Se =
E

n − q − 1
=

(Y − XB̂)′(Y − XB̂)

n − q − 1

The B can be partitioned so that there is essentially a vector of intercept
terms, one for each response variable, and a matrix of other non-intercept
coefficients.
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Multivariate regression

You can also express B̂ as
B̂ = S−1xx Sxy

where we use an estimated covariance matrix of all variables (whether or
not they are really random):

y1, . . . , yp, x1, . . . , xq

S =

(
Syy Syx

Sxy Sxx

)
Here S is (p + q)× (p + q).
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Multivariate regression

We typically wish to test H0 : B1 = 0 against HA : B1 6= 0. This only
requires that one βij 6= 0 for some i ≥ 1 and some j ≥ 1.

Similar to MANOVA, we define matrices E and H. To total sum of
squares can be partitioned into these two matrices:

Y′Y − ny ′y = (Y′Y − B̂′X′Y) + (B̂′X′Y − ny ′y)

= E + H
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Multivariate regression

Similar to MANOVA, the eigenvalues of E−1H can be used to create test
statistics for testing the null hypothesis.

Wilk’s Lambda: |Λ =

min(p,q)∏
i=1

1

1 + λi

Roy’s greatest root:
λ1

1 + λ1

Pillai’s test:

min(p,q)∑
i=1

1

1 + λi

Lawley-Hotelling test:

min(p,q)∑
i=1

λi
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Multivariate regression

If you don’t want to use specialized tables of critical values in the book for
these statistics, you can use the same F approximations that we used for
MANOVA for Wilk’s Lambda, where Λ = Λq,p,n−p−1, so that the degrees
of freedom for the F test are a function of q, p, and n − p − 1.
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Multivariate regression

As in the univariate, multiple regression case, you can whether subsets of
the x variables have coefficients of 0. In this case, there is a matrix in the
null hypothesis, H0 : Bd = 0. The E and H matrices are given by

E = Y′Y − B̂′X′Y

H = B̂′X′Y − B̂′rX
′
rY

And the test statistics are given as before.

It is also possible to try to pick a subset of the y variables if some of the y
variables are not well-explained by the x variables. This can also be done
with stepwise procedures.
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Canonical correlation analysis

Correlation between two variables measure the linear relationship between
those two variables. In canonical correlation, we measure the linear
relationship between two sets of variables. Typically, variables within each
set will be related in some way, for example a set of student aptitudes or
qualifications (high school GPA, SAT scores) and outcomes (college GPA,
GRE scores), or variables on a child and similar variables on their parent.
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Canonical correlation analysis

If you only have one variable in one set, y , and q variables in the other set,
x1, . . . , xq, then you can define

S =

(
s2y s′yx
sxy Sxx

)

R =

(
1 r′yx

rxy Rxx

)
where r′yx is a vectorwith sample correlations between y and xi ,
i = 1, . . . , q.
The squared multiple correlation between y and x1, . . . , xq is

R2 = r′yxR−1xx rxy
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Canonical correlation analysis

When there are multiple y variables, we use

S =

(
Syy Syx

Sxy Sxx

)
A measure of association is

R2
M =

|SyxS−1xx Sxy |
|Syy |

= |S−1yy SyxS−1xx Sxy | =

min(p,q)∏
i=1

r2i

where the r2i terms are the eigenvalues of S−1yy SyxS−1xx Sxy .

The values ri , i = 1, . . . ,min(p, q) are called the canonical correlations.
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Canonical correlation analysis

The largest canonical correlation r1, is used as a measure of association of
the two sets of variables. An interpretation of r21 is that it is the maximum
squared correlation between a linear combination of the y variables and a
linear combination of the x variables.

With each canonical correlation, there is a set of associated linear
combinations so that there exist ai and bi such that

ri = cor(a′y,b′x)
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Canonical correlation analysis

There is some interesting discussion in the book about how the author
thinks that canonical correlation is often misapplied in practice.

If you are ever asked to use canonical correlation, try looking this up!

April 29, 2015 36 / 35


