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“Young man, in mathematics you don’t understand things. You just get used to them.”
John von Neumann
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Chapter 1

Introduction

1.1 Motivation

The motivation for this project is to develop numerical methods for the simulation of plasma
physics. Plasma is roughly speaking the fourth state of matter. A working definition of
plasma, as found in [3], is simply an ionized gas. The temperature required for ionization is
calculated through the Saha equation [1]. In general, the temperature for ionization is much
higher than the average temperature experienced on earth (288K), so creating a plasma state
must be down in a laboratory with sophisticated equipment. For example, the Z-Machine at
Sandia National Laboratories has achieved plasma states[15].

Plasma also occurs naturally in stars. In fact, astronomers agree that 90% of matter in
the universe is in a plasma state. This makes sense since stars are the largest stellar bodies,
and much of star matter is in a plasma state.
Thus, the two main application areas for studying plasma are

1. How a plasma can be sustained (through magnetic and inertial confinement) on earth
for the purpose of controlled nuclear fusion

2. Interstellar plasma, in particular magnetized astrophysical plasmas

These two fields share the common theme that what is studied in particular is a plasma
interacting with a magnetic field. The continuum approximation we will be using to model
plasma is know as magnetohydrodynamics (MHD).

1.2 Numerical Solution

1.2.1 Discretization Methods

Mathematically, at the continuum level MHD is expressed as simultaneous partial differen-
tial equations (PDEs). These PDEs are in general non-linear and highly coupled, making
solving them analytically extremely difficult. For this reason, we seek to discretize the equa-
tions so that they can be solved numerically by computers. There are several existing meth-
ods for discretizing PDEs, namely finite difference, finite element, and finite volume. There
are pros and cons to each of these methods. However in this exposition we will focus on
the finite element method (FEM). Some advantages of FEM are that it easily accommodates
complicated geometries, boundary conditions are usually trivial to implement, and there is
an elegant mathematical foundation in functional analysis (this is a mathematical thesis after
all). Some cons of FEM are the added complexity of enforcing mass conservation, and diffi-
culty when discretizing highly convective operators (leading to techniques like Streamlined
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(A) The Core of
the Sun

(B) Z-Machine at
Sandia Labs

FIGURE 1.1: Examples of Plasma States

Updwind Petrov Galerkin and Discontinuous Galerkin). Despite their similarities and dif-
ferences, all the methods described here produce a large sparse linear system of equations.
The algebraic solution of this system is representative of the analytic solution in a way that
can be made precise.

1.2.2 Linear Solvers

Solving linear systems in an old problem in mathematics. There is a great deal of theory
concerning the exact solution to linear systems. These so-called direct methods are mostly
based on the fundamental approach of Gaussian elimination. Solving a linear system using
direct methods, e.g. Gaussian elimination, take O(n3), or in special cases O(n2) iterations. If
n is very large (millions or billions), obtaining an exact solution using modern computers is
almost always infeasible. Instead we seek numerical methods for approximating the solution
v, to within a desired tolerance. Due to the sparsity of the matrices produces by FEM, this
can be done numerically with a lower asymptotic order. In particular, some methods of
interest are so-called Krylov methods and multilevel (multigrid) methods. In this project, a
multigrid method will be developed and tested on a variety of linear systems representative
of resistive MHD. Results are presented in chapter 4.

1.3 Preliminaries and Notation

The Lebesgue integral of a function f over a Lipschitz domain Ω will be denoted
∫

Ω f . Fur-
thermore, the L2 norm of a function f ∈ L2(Ω) as ‖f‖ = (

∫
Ω |f |

2)1/2. Similarly, the `2 norm
of a vector v ∈ Rn is defined as ‖v‖ = (

∑n
i=1 v

2
i )

1/2. Also for a vector v ∈ Rn, the infinity
norm of v, is

‖v‖∞ = max
i
|vi|.

We adopt the convention that, for a vector valued function, ~u : Rn → Rn where n = 2, 3 the
norm of ~u is defined as ‖~u‖ =

∥∥ ‖u1‖+ ‖u2‖+ ‖u3‖
∥∥.
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1.3.1 Vector Operators

Let ~u,~v : Rn → Rn, where n = 2, 3 be vector valued functions and let S,T be rank 2 tensors.
We use the BSL conventions so that

∇× ~v = εijk
∂vk
∂xj

êi,

∇~v =
∂vj
∂xi

êi × êj ,

∇ ·T =
∂Tij
∂xi

êj ,

S : T = SijTji.
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Chapter 2

The Finite Element Method

As stated in the introduction, the goal of this work is to numerically model the governing
equations of MHD. In order to numerically model equations, a discretization process must
take place so that the equations can be represented on a computer. The choice is discretiza-
tion for this project is the Finite Element Method (FEM)[5]. In this Chapter, we present FEM
for a simpler but still important PDE, Poisson’s equation, in detail.

2.1 Poisson’s Equation

Poisson’s equation is given by
−∇2u = f. (2.1)

where∇2 is the Laplace operator, and f, u are functions in some appropriate function space.
We suppose f is given data and the goal is to solve for u. This seemingly simple equation
appears in many contexts including electrostatics, Newtonian gravity, and diffusion.

2.2 Analytic vs Approximate Solution

While it can be shown that an analytical solution exists for Poisson’s equation (through the
method of eigenfunction expansion) we will focus on numerical solutions. in particular, we
focus on the solution of the system obtained by FEM. The goal of FEM is to construct a linear
system that is representative of the continuous problem. In order to do this however, one
must first formulate an equivalent problem, namely the variational problem.

2.2.1 Variational Formulation

Consider Poisson’s equation with homogeneous Dirichlet boundary conditions:

−∇2u(x) = f(x), x ∈ Ω (2.2)
u(x) = 0, x ∈ ∂Ω (2.3)

where Ω ⊂ Rn, ∂Ω is it’s (Lipshitz) boundary. We say that u ∈ V where V := H1
0(Ω) is the

Sobelev space of functions on Ω that vanish on ∂Ω. The first step is to multiply both sides of
(2.2) by a “test function”, v ∈ V , and integrate over the entire domain Ω. We obtain

−
∫

Ω
v∇2u =

∫
Ω
vf. (2.4)
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It is not clear we have gained anything here. To observe the advantage, recall the generalized
product rule:

∇ · (v∇u) = v∇2u+∇v · ∇u.

Taking this in combination with the divergence theorem we obtain Green’s first identity:∫
Ω
∇u · ∇v =

∫
∂Ω
u∇v · ∂u

∂n
−
∫

Ω
u∇2v. (2.5)

where ∂u
∂n is the directional derivative of u in the direction of n. Substituting (2.5) into the left

hand side of (2.4) yields ∫
Ω
∇v · ∇u−

∫
∂Ω

∂u

∂n
v =

∫
Ω
vf. (2.6)

Since v vanishes on ∂Ω, the second term of the left hand side goes to zero so (2.6) reduces to∫
Ω
∇u · ∇v =

∫
Ω
fv. (2.7)

We refer to (2.7) as the weak form of Poisson’s equation. We now have an equivalent problem
to the one defined in (2.2)-(2.3), namely, find u ∈ V such that (2.7) is satisfied for all v ∈ V .
We call this variational problem. To simplify things later we introduce the notation

a(u, v) = L(v) ∀v ∈ V, (2.8)

to be equivalent to (2.7) where a(u, v) :=
∫

Ω∇u · ∇v and L(v) =
∫

Ω fv.
In order to numerically solve the variational problem, we must first restrict ourselves to
searching for a solution in a finite-dimensional space.

2.2.2 Deriving a Linear System from The Weak Form

We now provide a solution for the original problem, that is, how the finite element constructs
a representative linear system for a continuous PDE (Poisson in this case). The trick is use
(2.8), and a few facts from linear algebra.

It is actually possible to proceed with the derivation at a high level of abstraction. Let V h

be the finite dimensional subspace of V , and let dim(V h) = n. Next, let {ϕj}nj=1 be a basis
for V h so we can uniquely decompose a vector u ∈ V h as

u =
n∑
j=1

ujϕj .
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FIGURE 2.1: Example of two hat functions. These types of functions can form
a basis of the subspace V h described in Section 2.2.3

It follows from (2.8)

a(u, v) = f(v), ∀v ∈ V h ⇐⇒ (2.9)
a(u, ϕi) = f(ϕi), i = 1, ..., n ⇐⇒ (2.10)

a
( n∑
j=1

ujϕj , ϕi

)
= f(ϕi), i = 1, ..., n ⇐⇒ (2.11)

n∑
j=1

a
(
ϕj , ϕi

)
uj = f(ϕi), i = 1, ..., n (2.12)

where the linearity of a justifies the last equivalence. If we now consider the matrix A where
Aij = a(ϕj , ϕi) and fi = f(ϕi), then (2.12) can be written more compactly as

Au = f . (2.13)

2.2.3 FEM in 1D

We now examine some real examples of constructing this finite dimensional space V h. We
will consider only one and two spatial dimensions for simplicity.
For one dimension, consider the case where Ω = (0, 1). Then letP = {0 = x0 < · · · < xn = 1}
be a partition of Ω with subintervals Ij ∈ P, Ij = [xj , xj+1], and |Ij | = hj = h. Next define
V h as V h ⊂ V = C(0, 1) such that ϕ ∈ V h is linear on Ij for all j = 0, . . . , n. It is a quick
matter to show that the set of functions

ϕj(xi) =

{
1, i = j

0 i 6= j
, (2.14)

form a basis for V h. See Figure 2.1 for a graph of several of these so-called hat functions. If
we proceed in constructing the linear system outlined in the last section, the equationAu = f
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FIGURE 2.2: Simplicial decomposition of Ω defined by a Polygonal Curve Γ =
∂Ω

becomes 
2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2




v1

v2
...

vn−2

vn−1

 =


f1

f2
...

fn−2

fn−1

 . (2.15)

2.2.4 Simplicial 2D FEM

In two dimensions, we assume also that ∂Ω is a polygonal curve. Let T = {T1, ..., Tm} be a
set of non-overlapping triangles such that

Ω =

m⋃
i=1

Ti,

as in Figure 2.2. In the language of homotopy theory, T is a simplicial complex, but we refer
T as a simplicial decomposition of ∂Ω. Next, define V h ⊂ C(Ω) as

V h = {v : v continuous on Ω, v|T is linear for T ∈ T }

Now to construct the basis {ϕi}ni=1 ⊂ V h, we first introduce the nodes Nj , for j = 1, . . . , n
running through the nodes of T viewed as a graph. Then we can define the basis function in
a similar fashion as in one dimension:

ϕj(Nj) =

{
1, i = j

0 i 6= j
. (2.16)
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4

-1

-1

-1-1

FIGURE 2.3: Regular Simplicial Decomposition of Ω = (0, 1)× (0, 1)

Notice that the support of ϕj is exactly all the simplices Tk such that Tk has Nj as one if its
vertices. In the special case of a uniform triangulation for a square domain (Ω = (0, 1) ×
(0, 1)), depicted in Figure 2.3, the resulting linear system is given by

4 −1 . . . 0 −1
−1 4 −1 0 . . . −1

−1 4 −1 0 −1
. . . . . .

. . .
−1 0 . . . 0 −1 4 −1 0 . . . 0 −1

−1 0 −1 4 −1
−1 0 −1 4





v1

v2

...

vn−2

vn−1


=



f1

f2

...

fn−2

fn−1


(2.17)

2.2.5 Quadrilateral 2D FEM

Alternatively, we can discretize a domain using quadrilateral meshes. For simplicity, we will
take a square domain, so let Ω = (0, 1) × (0, 1). Then proceeding as before, we decompose
Ω into non-overlapping squares, Q = {Qi}mi=1. Consider again the nodes {Nj}nj=1, and the
basis functions indexed by nodes, {ϕj}nj=1 the same as in (2.16). Then our new space is V h =
span{ϕj}nj=1 . Here we see, as in Figure 2.5, that when comparing to a finite difference stencil,
there will be five nonzeros in each row for the discrete Laplacian. The difference between
a simplicial and quadrilateral discretization changes the sparsity pattern of the resulting
matrix as seen in Figure 2.4.

2.2.6 Numerical Experiment

Once our problem is in the form of (2.8), we are more or less ready to solve using the FEniCS
software[8]. First, we define Ω = (0, 1)× (0, 1). Then we take Ωh to be an 40x40 triangulation
of our domain, and

V h = {space of piecewise linear polynomials}
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Discretization

FIGURE 2.4: Demonstrating the different sparsity patterns for discretizing the
Laplacian on (0, 1) for solving Poisson’s equation

8

-1

-1

-1

-1

-1

-1

-1

-1

FIGURE 2.5: Regular Quadrilateral Decomposition of Ω = (0, 1)× (0, 1)
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FIGURE 2.6: FEniCS Solution to (2.18)-(2.19)

i.e. if uh ∈ V h, uh|T ∈ P1 for all simplices T ∈ T . Additionally, we set u(x, y) = sin(2πx) sin(2πy)
so that f(x, y) = 8π2 sin(πx) sin(πy). Thus our PDE is given by

−∇2u(x, y) = 8π2 sin(2πx) sin(2πy), x, y ∈ Ω (2.18)
u(x, y) = 0, x, y ∈ ∂Ω (2.19)

The plot of the solution, u(x, y), is given in 2.6. This result matches the analytical solution
well. Indeed, we obtain the theoretical convergence rate to the exact solution as presented in
the next section.

2.2.7 Error Analysis

In numerical analysis, one important feature of a numerical method is that of consistency.
We define consistency of a numerical method as follows. If we have an approximation of a
solution, uh, and the true solution u, then the consistency error is defined as

eh = ‖u− uh‖ . (2.20)

We call a numerical method for solving Poisson’s equation consistent if

lim
h→0

eh = 0. (2.21)

We would like to show some numerical evidence that indeed the consistency error is tending
to zero as h → 0. In Table 2.1, values of h are taken along with the L2 norm as well as the
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h L2 Error L∞ Error
0.1 0.055645 0.045543
0.05 0.014479 0.011269
0.025 0.003656 0.002809
0.0125 0.000916 0.002809

TABLE 2.1: Consistency Test for (2.18)-(2.19). Here h represents the mesh pa-
rameter in one spatial dimension, i.e. if there are 10 elements in the x direction
then h should be 1

10 . Since we are using a square mesh in 2D, this makes sense
as a metric for convergence.

infinity norm for the model Poisson problem, (2.18)-(2.19). In fact, it can be shown that FEM
should converge with a rate of h2, which agrees with the results of Table 2.1.
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Chapter 3

Multigrid Methods

As we saw in the last chapter, solving a linear system can allow us to effectively approximate
solutions to PDEs. The matrices we saw in the last section were sparse. In particular, for the
matrices of the previous section, the number of non-zeros was O(n), where n is the number
of rows or columns of the matrix. In this chapter we will formulate methods for numerically
solving such systems that are also O(n), namely, multigrid method. Unlike other numerical
methods, multigrid takes advantage of the underlying geometric structure of the discretiza-
tion. Specifically, multigrid transfers the problem attempting to be solved between different
grid resolutions. The advantage to this strategy is subtle, but the results are unparalleled.
Recall the matrix equation (2.15) for Poisson’s equation in 1D from chapter 2. We refer to this
matrix as the difference matrix of dimension n and denote it A.

3.1 Fixed Point Iterations and Their Shortcomings

A fixed point iteration is an algorithm for solving a problem where the approximate solution
at step i is constructed from the approximate solution at step i− 1. In the context of solving
linear systems, there are many well known iterative methods. Here, we will examine an
iterative method known as the Jacobi Method. Consider (2.2). We can split A up into a sum
of matrices DA + RA where DA is the diagonal of A and RA is the remainder. Consider the
equation Av = f then

(DA +RA)v = f =⇒ DAv = f −RAv =⇒ v = D−1
A (f −RAv).

Then if we take an initial guess v(0) we can compute the solution iteratively as

v(i) = D−1
A (f −RAv(i−1)). (3.1)

This reason for the name fixed point iteration is that is that the exact solution satisfies (3.1),
i.e. it is a fixed point of (3.1). We can measure the error in (3.1) by εi =

∥∥v(i) − v
∥∥ where

v is the true solution. We call an iterative method convergent if for all initial guesses v(0) we
have that limi→∞ εi = 0 Thus convergence implies

v = D−1
A (f −RAv). (3.2)

Let B := −D−1
A RA. We call the matrix B the iteration matrix. If we subtract (3.1) from (3.2)

and take the norm we obtain
∥∥v(i) − v

∥∥ = εi =
∥∥B(v(i−1) − v)

∥∥. If we substitute in a similar
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way for v(i−1) − v we see that εi =
∥∥B2(v(i−2) − v)

∥∥, εi =
∥∥B3(v(i−3) − v)

∥∥ and so on until

εi =
∥∥∥Bi(v(0) − v)

∥∥∥ . (3.3)

Therefore, we see that in order for the error to go to zero, limi→∞B
i must equal the zero

matrix.
Since it is difficult to determine the result of repeated matrix multiplications, we turn to

the theory of eigenvalues and eigenvectors to analyze convergence. It is known that

lim
i→∞

Bi = 0 ⇐⇒ ρ(B) < 1, (3.4)

where ρ denotes the spectral radius. So showing the eigenvalues of B are all strictly less
than 1 is equivalent to Jacobi’s method converging. Our first task will be computing the
eigenvectors and eigenvalues of A. We can make use of the trigonometric identity

sin((j + 1)θ) + sin((j − 1)θ) = 2 sin(jθ) cos θ (3.5)

as found in [14]. Define the vector u = [sin θ, sin 2θ, . . . , sinnθ]T . Then consider the equation

(A− 2(1− cos θ)In)u = sin((n+ 1)θ)en, (3.6)

where In is the identity matrix of dimension n and en is the nth column of this matrix. We
can prove (3.6) by considering three cases for j. For j = 1,

2 cos(θ) sin(θ)− sin(2θ) = 0 (3.7)

by the double angle identity. For 1 < j < n we have

− sin((j − 1)θ) + 2 cos(θ) sin(jθ)− sin((j + 1)θ) = 0 (3.8)

by using (3.5) this time. Finally, if j = n,

− sin((n− 1)θ) + 2 sin(nθ) + [−2 sin(nθ) + 2 cos θ sin(nθ)]

= − sin((n− 1)θ) + 2 cos θ sin(nθ).

We can again apply (3.5) with j = n to conclude the (3.6) holds. Then observe the RHS is 0
precisely for θ = θk := kπ

n+1 for k ∈ Z. If the RHS vector is 0, this is exactly the eigenvector
equation for the matrix A. We call k the wavenumber associated with θ for reasons that will
become apparent later. We conclude the eigenvalues of A are

λk = 2(1− cos θk) = 4 sin2 θk
2

k = 1, . . . , n (3.9)

and the associated eigenvectors are given by

uk =


sin θk

sin(2θk)
...

sin(nθk)

 , k = 1, . . . , n. (3.10)
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Recall that we are really concerned with the eigenvalues and eigenvectors of B, the it-
eration matrix for the Jacobi method. It is easy to verify that B = I − 1

2A. Then we
see the eigenvalues of B are λ(B) = 1 − 1

2λ(A) = 1 − 2 sin2( θk2 ). It is clear since 0 <

1 − 2 sin2( θk2 ) < 1, k = 1, ..., n, all eigenvalues of B are strictly less than 1 and so Jacobi
converges. Unfortunately, for large problems, assurance of convergence is not enough.
We must examine the rate at which our method is converging. We can do this here by defin-
ing the error vector e(i) = v(i) − v as the un-normed equivalent of εi.

It is easy to show that B and A have the same eigenvectors. Then since B has n distinct
eigenvectors u1, . . . ,un, they form a basis for Rn so we can write

e(0) =
n∑
k=1

ckuk. (3.11)

And so using (3.11) we see that

e(i) = Bi
n∑
k=1

ckuk =
n∑
k=1

ckB
iuk =

n∑
k=1

ckλ
i
kuk,

where λk is the eigenvalue of the iteration matrix with wavenumber k. It is then clear
that the convergence rate be bounded by the largest such eigenvalue. To gain further in-
sight into these eigenvalues we introduce some definitions. We will call the eigenvalues
with wavenumber satisfying 1 ≤ k < n

2 , smooth modes and the remaining eigenvalues
for which n

2 ≤ k ≤ n, oscillatory modes. Then consider the “smoothest” mode that is,
λ1 = 1− 2 sin2( π

2(n+1)) ≈ 1− sin2(hπ2 ) ≈ 1− π2h2

2 , which for small h is very close to 1. There-
fore, for the smoother modes the Jacobi method will be ineffectual.

The result is that the Jacobi iteration will initially work well, reducing the error in the
oscillatory modes. However, it will stall once all the oscillatory components have been re-
duced. The following figure shows the Jacobi method applied to Av = 0. Here, the initial
guess v(i)

k is kth eigenvector of A. Figure 3.1 shows the result of running a slightly modified
version of Jacobi’s algorithm, weighted Jacobi. The iteration for weighted Jacobi takes the
form

v(i+1) = ωD−1(f −Rv(i)) + (1− ω)v(i), (3.12)

where the parameter ω is usually chosen to be 2/3. The iteration matrix for weighted Jacobi
takes the form

Bω = I − ωD−1A.

The eigenvalues are then

λj(Bω) = 1− ω

2
(2− 2 sin θk) = 1− ω + ω sin θk.

The choice ω = 2
3 is then optimal for damping high frequencies because for k ≈ n,

1− 2

3
+

2

3
sin

(
n

n+ 1
π

)
≈ 1

3
,

in other words high modes get damped by at least a factor of three each iteration. In Fig-
ure 3.1, the initial guess uk is kth eigenvector of B. We see that indeed, convergence is much
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faster for higher values of k, i.e. more oscillatory modes, as initial guesses.

FIGURE 3.1: Using the kth eigenvector as described by (3.10) as an intial guess
for weighted Jacobi, (3.12)

3.2 Constructing The Two Grid Scheme

As seen in the last section, Jacobi’s method possesses a smoothing property, that is, it is
effective in reducing oscillatory modes of error, and ineffective for reducing smooth modes.
Thus if we were to take a linear combination of the pure modes of Figure 3.1, the oscillatory
modes will quickly be reduced but the method will stall on the smooth modes, e.g. for k=1.

Intuitively, if we sample a smooth vector in Ωh at only odd grid points, the vector will
appear more oscillatory as seen in Figure 3.2

This heuristic motivates multigrid methods: smoother modes appear more oscillatory on a
coarser grid. If we can apply a fixed point method like Jacobi as different grid resolutions, con-
vergence should be obtained in fewer iterations. The first ingredient for a multigrid method
are prolongation and restriction operators, P and R. The prolongation operator serves to
transfer vectors from a coarser to a finer mesh, and the restriction operator transfers vectors
from a finer to a coarser mesh.

Perhaps the most natural choice for the restriction operator is to simply map coarse points
on the fine mesh exactly into their corresponding positions on the coarse mesh. In other
words, taking the restriction operator to be the identity on coarse points. However, what
turns out to be a better choice is to first consider the prolongation operator P . For this op-
erator, it turns out that linear interpolation is a good choice. Thus, we define, for v2h ∈ Ω2h,
P hv2h = vh ∈ Ωh as

vh2j = v2h
j , (3.13)

vh2j+1 =
1

2
(v2h
j + v2h

j+1), 0 ≤ j ≤ n

2
− 1. (3.14)
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FIGURE 3.2: Comparing Modes on Ωh and Ω2h. Notice that in the first half of
the grid, the second mode appears more oscillatory.

Then we take the restriction operator R to be a constant times P T :

R = cP T , c ∈ R. (3.15)
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FIGURE 3.3: Showing the action of the prolongation operator P on a coarse
grid vector as described in section 3.2.
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For a 1D example like Figure 3.3 with 8 nodes on the fine grid instead of 15, we would have
the action of P on a coarse grid vector as

Pv2h =
1

2



1
2
1 1

2
1 1

2
1


v1

v2

v3


2h

=



v1

v2

v3

v4

v5

v6

v7


h

= vh. (3.16)

Finally, we note that the operator Ah itself must have some coarser analog. One approach
is to simply rediscretize on the coarser mesh using the finite element method. Other ap-
proaches are explored later, but for now, assume that grid information is explicitly known,
and an FEM discretization can be performed at each grid resolution.

The last piece of the algorithm is making the connection between the original equation,
Av = f and the so-called residual equation

Ae = r, (3.17)

where r = f −Av. It is easy to verify solving (2.15) is equivalent to solving (3.17). Addition-
ally, the error is also computed by eh = v−vh, so we can improve our approximate solution
by vh = vh + eh.

We are now ready to present the basic two grid scheme in algorithm 1.

Algorithm 1 Two-Grid Cycle

1: Relax on Ahv = f with initial guess v0 to obtain new guess vh

2: Compute the residual rh = f −Ahvh
3: Restrict r2h = Rhrh

4: Relax on A2he2h = r2h

5: Prolong the coarse grid error vector to the fine grid eh = P 2he2h

6: Correct v = v + eh

3.3 The V-Cycle

The two-grid-cycle is a good starting point for a multigrid scheme, but in practice it’s almost
always the case that many levels are necessary to damp all the various frequencies of the
error. It is natural to use recursion to generalize 1. This idea has many variants, but we will
study only one of these- the V-cycle. As depicted in Figure 3.7, a V-cycle consists of a nested
hierarchy of grids, Ωh, . . . ,Ω32h, in this case with Ωh being the finest and Ω32h being the
coarsest. Initially on the finest grid a smoothing operation like Jacobi’s iteration is performed
several times. The residual is then calculated, and projected onto the next coarsest grid.
Several smoothing sweeps are performed here, but this time on the residual equation, (3.17).
This is often called a pre-sweep. After smoothing, the residual is then restricted to the next
finest grid. This process is repeated until eventually, on the coarsest grid, the problem is
usually small enough to solve directly. Next, the error on the coarsest grid is prolonged
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up to the next finer grid. Relaxation is performed with this new initial guess, this is often
called a post-sweep. This process is summarized in the recursive algorithm, 2. An example
of using a V-cycle as a linear solver is presented in algorithm 3. Essentially, V-cycles are
performed until the residual is made as small as a user specified tolerance, tol. Note that in
all experiments performed in this work the initial guess v0 is chosen to be a constant vector,[
1, . . . , 1

]T .

Algorithm 2 V-Cycle
Input: v0, A, f
Output: vh

Relax on Ahvh = fh with initial guess v0 to obtain new guess vh

2: Compute the residual rh = f −Ahvh
if Ωh is not coarsest grid then

4: Restrict r2h = Rhrh

Take a new initial guess v2h = 0
6: Set e2h = V-Cycle(A2h,v2h, r2h)

else
8: Set e2h to Direct-Solve(Ah,Rhr2h)

end if
10: Correct v = v + P 2he2h

Relax on Ahvh = fh with initial guess v0

Algorithm 3 V-Cycle Linear Solver for Numerically Solving Av = f

Input: v0, tol, A, f
Output: vh

Set vh = v0

while ‖f −Avh‖ ≥ tol do
3: vh = V-Cycle(A,vh,f )

end while

So far we have been discussing so-called geometric multigrid, where the operators Anh

are constructed at each level using FEM on a grid at that level. There is therefore an implicit
assumption that such grid information is available. A more general approach is to assume
the only information given is the matrix Ah at the finest level. Multigrid methods that only
rely on this information are called algebraic multigrid methods. In the next sections we
will present a hybrid method that only relies on the operator Ah but also makes certain
assumptions about the grid that operator was constructed on.

3.4 Operator Induced Interpolation

In this section we will discuss operator induced interpolation, a hybrid geometric algebraic
version of multigrid. In purely geometric multigrid, all operators are constructed based on
information about the physical mesh at each level of resolution. However, if only the finest
level operator is provided, projections can be used to automate the process of constructing
the hierarchy of operators. This is exactly the approach of operator induced interpolation.
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One way of automatically generating the hierarchy is to minimize the error in transferring a
vector from a coarser to a finer grid. If there is no error at all in this prolongation process, we
will have a direct method if we can exactly solve at the coarsest grid. However, first a short
digression on Schur complements is in order.

3.4.1 Schur Complements

Let M be an (p+ q)× (p+ q) block matrix with blocks

M =

[
Ap×p Bp×q
Cq×p Dq×q

]
, (3.18)

and A invertible. Define the Schur complement of A in M , denoted M/A, as

M/A := D − CA−1B. (3.19)

The intuition for the Schur complement comes from a kind of block Gaussian elimination.
Observe that for the linear system given by

Ax +By = u (3.20)
Cx +Dy = v, (3.21)

multiplying (3.20) by CA−1 and subtracting it from (3.21), we obtain the so-called Schur
system in the second equation:

M/Ay = v − CA−1u, (3.22)

where the solution the the original system can be obtained by back substitution once (3.22)
is solved for y.

3.4.2 Building R and P

Returning to the idea of operator induced interpolation, we again consider the linear system
on the fine gridAhu = f . the first step is to construct a new operator Ãh given by a symmetric
permutation of the original operator Ah:

Ãh =

[
Aff Afc
Acf Acc

]
, (3.23)

where each of the submatrices encodes the dependencies of fine and coarse grid points (e.g.
Afc encodes how the fine nodes depend on the coarse nodes see Figure 3.4). It should be
noted that this permutation is only possible in a straightforward way if the original operator
was built on a structured quadrilateral mesh as depicted in 2D by Figure 3.4. As an aside,
the coarsening r is defined through the relation

nc =
nf
rD
, (3.24)

where nc is the total number of quadrilateral elements on the fine mesh, nc is the total number
of quadrilateral elements on the coarse mesh, and D is the spatial dimension of the mesh. In
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FIGURE 3.4: Diagram showing f and c points

Figure 3.4, r = 2 for example. Finally, using the operator (3.23), a linear system of the form
Ahu = f translates to [

Aff Afc
Acf Acc

] [
uf
uc

]
=

[
ff
fc

]
. (3.25)

The next step is to build restriction and prolongation operators:

P =

[
Pfc
Pcc

]
, Pfc = −A−1

ffAfc, Pcc = I, R = P T (3.26)

Pcc is chosen to be the identity to preserve coarse points. The choice of Pfc is related to the
Schur complement. Observe that for these choice of P and R, we have

RÃhP = (3.27)[
−A−1

ffAfc I
] [Aff Afc
Acf Acc

] [
−A−1

ffAfc
I

]
= (3.28)[

−A−1
ffAfc I

] [ 0

Acc −AcfA−1
ffAfc

]
= (3.29)

Acc −AcfA−1
ffAfc, (3.30)

which is exactly Aff/Ã, the Schur complement of Aff in Ãh. The matrix RÃhP is called the
Galerkin projection of Ãh. The Galerkin projection is often a viable choice for the operator
on the coarser mesh Ω2h, in this case Ã2h = RÃhP . Furthermore, for this choice of Ã2h the
coarse grid problem Ã2hu2h = f2h is the Schur complement system (3.22) which we have
shown is equivalent to solving the original system. The only problem is that inverting Aff is
almost as expensive as inverting the original matrix Ã. To get around this issue, we turn to
Black Box Multigrid.

3.5 Black Box Multigrid

Building off of the idea of operator induced interpolation, Black Box multigrid (BoxMG)
constructs an approximate Schur complement system to define restriction and interpolation
operators. Consider again the matrix Ã in (3.23). We can further subdivide the fine grid
points into fine-points embedded in coarse grid lines (γ) in either x or y, and fine-points in
the interior of a coarse grid cell (ι) (see Figure 3.5). Thus the already permuted Ã from (3.23)
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FIGURE 3.5: Diagram Showing ι, γ, and c points

is further divided as

Ã =

 Aιι Aιγ Aιc
ATιγ Aγγ Aγc
ATιc ATγc Acc

 . (3.31)

Recall our goal from the last section was to compute the inverse of Aff which in our new
notation is

Aff =

[
Aιι Aιγ
ATιγ Aγγ

]
. (3.32)

If Aιι and Aγγ were diagonal and ATιγ was 0, inverting Aff would be much easier as Aff
would be upper triangular. Of course to do this we must make assumptions that reduce the
connectivity of the graph Aff is representing.

3.5.1 Collapsing the 2D Stencil

To achieve the sparsity pattern outlined in the last section, we must make additional assump-
tions about the the values of the vector that Ã is operating on. Namely, we must assume that
for a γ point embedded in an x or y coarse grid line, the error is constant in the transverse
direction. This is a reasonable assumption since after smoothing is performed only smooth
vectors remain, which are often nearly constant locally. More concretely, consider a γ point
embedded in an x coarse grid line, i.e. the points to the west and east of γ are c points.−NW −N −NE

−W O −E
−SW −S −SE

 . (3.33)

If we assume that the error is constant in the y direction, we can “collapse” the stencil along
y. Performing this collapse, the 1D averaged stencil is given by,[

−(W + SW +NW ) (O − S −N) −(E + SE +NE)
]
. (3.34)

This determines the entries of Âγγ and Âγc. Having updated these matrices, our new opera-
tor takes the form

Ã =

 Aιι Aιγ Aιc
0 Âγγ Âγc
ATιc ATγc Acc

 .
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FIGURE 3.6: Demonstrating the BoxMG collapse described in 3.5 for a γ point
embedded in an x coarse grid line. The collapse in the y-direction both deletes

dependencies from γ to ι points and updates the entries in Aγγ and Aγc.

BoxMG for a Quadrilateral Discritization
n V Cycles Jacobi Sweeps Levels
9 31 (1,1) 2

27 35 (1,1) 3
81 39 (1,1) 4

(A) V-Cycle count using only
1 Jacobi pre and post sweep

BoxMG for a Quadrilateral Discritization
n V Cycles Jacobi Sweeps Levels
9 6 (3,3) 2

27 8 (3,3) 3
81 7 (3,3) 4

(B) V-Cycle count using 3 Ja-
cobi pre and post sweeps

TABLE 3.1: Demonstrating the mesh independence property of BoxMG for
solving Poisson’s equation on a quadrilateral mesh. The notation (a, b) means

a pre-sweeps are performed and b post-sweeps are performed.

Now, by construction,

Aff =

[
Aιι Aιγ
0 Âγγ

]
(3.35)

to build the prolongation operator,

P̂fc =

[
Aιι Aιγ
0 Âγγ

]−1 [
Aιc
Âγc

]
= −Â−1

ff Âfc (3.36)

gives an approximate to the P from the previous section. We should note that the method
presented here corresponds to a coarsening rate of 2, as described earlier. However, in all the
numerical studies presented here, a coarsening rate by a factor of 3 is used [6], which operates
using the same collapse operation described here. For a detailed example of BoxMG, see
Appendix A.

3.6 Return to Poisson’s Equation

We now present some results using a BoxMG scheme to iterative solve Poisson’s equation
in 2D. Table 3.1 shows BoxMG applied to a Quadrilateral Discretization and Table 3.2 shows
BoxMG applied to a simplicial discretization. Notice that fewer iterations are required in the
case of the quadrilateral discretization because BoxMG is assuming a quadrilateral structure
from the mesh, which in turn produces a specific sparsity pattern.
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BoxMG for a Simplicial Discritization
n V Cycles Jacobi Sweeps Number of Levels
9 46 (1,1) 2
27 54 (1,1) 3
81 61 (1,1) 4

TABLE 3.2: Demonstrating the mesh independence property of BoxMG for
solving Poisson’s equation on a quadrilateral mesh.The notation (a, b) means

a pre-sweeps are performed and b post-sweeps are performed

Ω32h

Ω16h

Ω8h

Ω4h

Ω2h

Ωh

Smoothing

Prolongation

Restriction

Direct Solve

FIGURE 3.7: Graphic illustration of a V-cycle as discussed in section 3.3 with 5
levels of coarsening.

3.7 BoxMG for Vector Problems

The goal of this work is to extend the BoxMG method for building a hierarchy of operators
for a vector PDE, i.e. a PDE where the unknown function ~u = (u1, u2, . . . , un)T is vector
valued with n component functions. These functions u1, . . . un are often called degrees of
freedom of the system, or for shorthand DOFs. In Chapter 4, we will look at vector PDE
systems governing magnetohydrodynamics. Also, in Appendix B we present results for a
scalar variant of BoxMG for Stokes equations. To clarify, the terminology vector and scalar
variants of BoxMG are both applied to vector problems. The scalar variant constructs the
BoxMG prolongation operator P = −Âff Âfc for each DOF separately. On the other hand,
the vector variant constructs P using information that includes the relationships between
DOFs, also known as coupling. This will be elaborated further in the following section.

3.8 The Scalar and Vector Variants of BoxMG

3.8.1 Scalar BoxMG

For simplicity, consider a vector PDE with two unknown functions u1(x, y) and u2(x, y).
Suppose the discretized system using FEM us given by[

A BT

B A

] [
u1

u2

]
=

[
f1
f2

]
. (3.37)



3.8. The Scalar and Vector Variants of BoxMG 25

The scalar variant of BoxMG construct a prolongation matrix PA by first applying BoxMG to
the discretized Laplacian block A. Then the full P matrix is constructed simply as

P =

[
PA 0
0 PA

]
. (3.38)

This method is called the scalar variant because it relies on an application of BoxMG scalar
algorithm.

Vector BoxMG

Consider again (3.37). Clearly if the off diagonal block B = 0 the scalar BoxMG variant will
work perfectly well. However, in general this block will not be 0, and so the scalar variant
will be somehow missing coupling information in the operators it constructs. One option to
remedy this is to change our point of view from looking at the system in terms of DOFs to
looking at the system in terms of nodes. Assuming all the DOFs are collocated, there will
be n equations being solved at each node assuming there are n DOFs. The vector variant of
BoxMG constructs subsystems so that the compass stencils appear as−NWij −Nij −NEij

−Wij Oij −Eij
−SWij −Sij −SEij

 , (3.39)

where i ranges over the DOFS for the current node, and j ranges over the DOFs for the
node to collapse. Then the BoxMG collapse as presented before procedes in the exact same
manner. For a more detailed look at this algorithm, see [7].
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Chapter 4

BoxMG for MHD

We now return to the problem of modeling and efficiently solving MHD equations. First we
present the full coupled equations. Next we present a stabilized FEM discretization of one
of the MHD equations. Finally we make the connection with BoxMG for solving the system
and present numerical results. For this project we take a so-called one-fluid visco-resistive
MHD system [12][3], where the governing equations are given by

∂(ρ~u)

∂t
+∇ · [ρ~u⊗ ~u−T]− ~J × ~B − ~f(T ) = 0, (4.1)

∂ρ

∂t
+∇ · [ρ~u] = 0, (4.2)

∂(ρe)

∂t
+∇ · [ρ~ue+ ~q]−T : ∇~u− η‖ ~J‖2 = 0, (4.3)

∂ ~B

∂t
−∇× (~u× ~B) +∇×

(
η

µ0
∇× ~B

)
= ~0, ∇ · ~B = 0. (4.4)

where ~B is the unknown magnetic field and ~u is the unknown velocity field. The rest of the
variables are parameters depending on the system. We will be focusing our attention on (4.4)
for this project. This first equation of (4.4) is called the induction equation, and determines
the time evolution of the magnetic field ~B, while the second is called Gauss’ law for magnetic
fields. Physically it corresponds to the lack of magnetic monopoles.

4.1 Exact Penalty Method

The induction equation (4.4) is difficult to solve because the curl operator, ∇×, has a large
nullspace. In particular, all conservative vector fields ~B = ∇ϕ for a scalar potential ϕ, are in
the nullspace of the curl operator. In a finite dimensional setting this translates to a matrix
representation of the discretized operator having diagonal entries with small magnitude, i.e.
not strictly diagonally dominant (SDD). Unfortunately, multigrid methods tend to work best
for SDD systems. One stabilization approach, as taken in [11], is the so-called Exact Penalty
method. This method takes advantage of the vector identity

∇2A = ∇(∇ ·A)−∇× (∇×A). (4.5)
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Since analytically, ∇ · ~B = 0 we are justified to add the term −c2
p∇(∇ · ~B) (where different

choices of cp are chosen depending on the situation) into the strong form, thus (4.4) becomes

∂ ~B

∂t
−∇× (~u× ~B) +∇×

(
η

µ0
∇× ~B

)
− c2

p∇(∇ · ~B) = ~0. (4.6)

If we take cp =
√
η/µ0, we have “completed” the vector Laplacian. Well-posedness of this

solution is proven in [4]. In a finite dimensional setting this means adding terms back to the
diagonal of the matrix corresponding to the discretized operator. Restricting to an appro-
priate discrete vector subspace V h, and integrating against a test function Ch, we obtain the
weak formulation∫

Ω

~Ch ·
[
−∇× (~uh × ~Bh) +∇×

(
η

µ0
∇× ~Bh

)]
+

∫
Ω

η

µ0

[
~Ch · ∇(∇ · ~Bh)

]
= ~0, (4.7)

where the second integral is a stabilization in the weak form corresponding to the ∇(∇ · ~B)
in the strong form.

4.1.1 Numerical Experiments

Experiment 1

For this experiment, we set the velocity field, ~uh to ~0 and assume the ratio η/µ0 = 1. Thus
the weak form becomes∫

Ω

~Ch ·
[
∇× (∇× ~Bh)

]
+

∫
Ω

~Ch · ∇(∇ · ~Bh)
]

= ~0. (4.8)

We can simplify (4.8) using vector identities. The final weak form is then∫
Ω

(∇× ~Ch) · (∇× ~Bh) +

∫
Ω

(∇ · ~Ch)(∇ · ~Bh) = ~0. (4.9)

Using both the FEniCS software as well as Sandia’s Drekar [10], we construct a linear system
from this weak form for two manufactured problems. We define our problem on the unit
square, Ω = (0, 1) × (0, 1). For this manufactured problem we solve the modified strong
form, (4.6), given by

∇×
(
∇× ~B

)
−∇(∇ · ~B) + g(~x) = ~0, ~B ∈ Ω

~B = 0, ~B ∈ ∂Ω.
(4.10)

where g(~x) : R2 → R2, g(~x) =
[
0, −2

]T . The exact solution of (4.10) is ~B =
[
0, x(x− 1)

]T .
The quadratic profile is plotted in Figure 4.1 and the convergence rates are compared to the
theoretical expectation of h2 in Figure 4.3, where h is the mesh parameter 1

n where n is the
number of rows or columns of the FEM matrix.

The results of BoxMG for this problem are shown in Table 4.2 and Table 4.1. A tolerance
of 10−8 on the norm of the residual r := Av− f is used as a convergence criteria. We observe
a constant number of V-Cycles, even as we exponentially increase the size of the mesh. Since
a V-Cycle takes time preportional to n, we conclude the algorithm is running in O(n) time.
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Vector BoxMG for the Parabolic Problem (FEniCS)
n V Cycles Jacobi Sweeps Number of Levels
9 13 (3,3) 3
27 14 (3,3) 4
81 14 (3,3) 5

TABLE 4.1: Demonstrating the mesh independence property of the so-called
vector BoxMG method proposed in section 3.8 in solving (4.10), where the dis-
cretized problem is constructed and verified using the FEniCS software. The
notation (a, b) means a pre (respectively b post) smoother sweeps are applied

at each level.

This is the best we can possibly do since it takes O(n) time to process the data: the non-zero
entries of the FEM matrix.

We consider the problem (4.10) uncoupled in the sense that the equation for Bx does
not depend on By and vice versa. The results in Table 4.1 and Table 4.2 show that for this
uncoupled problem the difference between the vector BoxMG and scalar BoxMG variants
is negligible. In fact, both algorithms have exactly the same number of V-cycles for an in-
creasing mesh size. This is expected theoretically since the scalar BoxMG works well for an
uncoupled system like Equation 4.10.
For Table 4.3, there is again negligible difference between V-Cycle counts for a discretization
using Drekar, and one using FEniCS. This is a good indication that the problems being built
in both software packages are in agreement.

Experiment 2

For this experiment we include a nonzero velocity, which in turn produces a coupling be-
tween the Bx and By components of magnetic field. For the manufactured solution we take
Bx = sin(2πy) and By = sin(2πx). Then clearly this solution is divergence free i.e. ∇ · ~B = ~0.
Furthermore, we take a constant velocity field, ux = 1, uy = 0. The induction equation is
then

∇× (~u× ~B) +∇×
(
∇× ~B

)
−∇(∇ · ~B) + g(~x) = ~0, ~B ∈ Ω

~B = 0, ~B ∈ ∂Ω,
(4.11)

where g(~x) =
[
−4π2 sin(2πy), −4π2 sin(2πy)− 2π cos(2πy)

]T . We see a substantial differ-
ence between Table 4.4 and Table 4.5 in terms of V-Cycle count. We interpret this to mean
that the vector variant of BoxMG is more robust on a coupled problem, which is expected
since it preserves coupling in the intergrid transfer operators P and R.
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Scalar BoxMG for Parabolic Problem (FEniCS)
n V Cycles Jacobi Sweeps Number of Levels
9 13 (3,3) 3
27 14 (3,3) 4
81 14 (3,3) 5

TABLE 4.2: Demonstrating the mesh independence property of the so-called
scalar BoxMG method proposed in section 3.8 in solving (4.10), where the dis-
cretized problem is constructed and verified using the FEniCS software. The
notation (a, b) means a pre (respectively b post) smoother sweeps are applied

at each level.

Vector BoxMG for the Parabolic Problem (Drekar)
n V Cycles Jacobi Sweeps Number of Levels
3 8 (3,3) 2
9 11 (3,3) 3
27 12 (3,3) 4
81 13 (3,3) 5

TABLE 4.3: Demonstrating the mesh independence property of the so-called
vector BoxMG method proposed in section 3.8 in solving (4.10), where the dis-
cretized problem is constructed and verified using the Drekar SNL software.
The notation (a, b) means a pre (respectively b post) smoother sweeps are ap-

plied at each level.

Vector BoxMG for the Trigonometric Problem (Drekar)
n V Cycles Jacobi Sweeps Number of Levels
9 13 (3,3) 3
27 13 (3,3) 4
81 13 (3,3) 5

TABLE 4.4: Demonstrating the mesh independence property of the so-called
vector BoxMG method proposed in Chapter 3 in solving (4.11), where the dis-
cretized problem is constructed and verified using the Drekar SNL software.
The notation (a, b) means a pre (respectively b post) smoother sweeps are ap-

plied at each level.

Scalar BoxMG for the Trigonometric Problem (Drekar)
n V Cycles Jacobi Sweeps Number of Levels
9 35 (3,3) 3
27 109 (3,3) 4
81 320 (3,3) 5

TABLE 4.5: The number of v-cycles here suggests the mesh independence is
not achieved for the coupled version when the scalar version of BoxMG is
used. This is contrasted with a constant number of v-cycles at each level of
discretization in Table 4.4. Both the scalar and vector BoxMG methods are
discussed in section 3.8. The notation (a, b) means a pre (respectively b post)

smoother sweeps are applied at each level.
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(A) 8× 8 mesh (B) 64× 64 mesh

FIGURE 4.1: Plots of the numerical solution of y-component of ~B in (4.10) using
FEniCS on varying mesh sizes.

(A) 8× 8 mesh (B) 81× 81 mesh

FIGURE 4.2: Plots of the numerical solution of the magnitude of ~B in (4.11)
using Drekar on varying mesh sizes. The line plot is taken in the x direction of

the By component.
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(A) Drekar convergence
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(B) Fenics convergence

FIGURE 4.3: Rate of convergence Using both FEniCS and for the manufactured
problem (4.10) The quadratic convergence is consistent with theory for both
software packages. Here h is the the mesh parameter which is the reciprocal

of the number of elements on a line.
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FIGURE 4.4: Rate of convergence for Drekar on the nonzero velocity problem
(4.11) The quadratic convergence is consistent with theory. Here h is the the
mesh parameter which is the reciprocal of the number of elements on a line.
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Appendix A

BoxMG Detailed Example

A.1 BoxMG Example

To illustate this procedure of BoxMG, we will use the FEM discretization of the Laplacian
operator on a 4x4 element as our matrix A as depicted in (A.1). After the symmetric permu-
tation, we obtain the matrix Ã given by (A.2).

A =



4 −1 0 0 0 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 8 −1 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 8 −1 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 8 −1 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 4 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 0 0 0 8 −2 0 0 0 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 −1 0 0 0 −2 8 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 −2 0 0 0 8 −2 0 0 0 −1 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 −1 0 0 0 −2 8 0 0 0 −2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 −2 0 0 0 8 −2 0 0 0 −1 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −2 16 −2 0 0 −2 −2 −2
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 0 0 0 −2 8 0 0 0 −2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −2 0 0 0 4 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −1 8 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −1 8 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 −2 0 0 −1 8 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 0 0 0 −1 4


(A.1)

Ã =



16 0 0 0 −2 0 −2 0 0 0 −2 −2 0 0 0 0 −2 −2 0 −2 −2 0 0 0 0
0 16 0 0 0 −2 0 −2 0 0 0 −2 −2 0 0 0 0 −2 −2 0 −2 −2 0 0 0
0 0 16 0 0 0 −2 0 −2 0 0 0 0 −2 −2 0 0 0 0 −2 −2 0 −2 −2 0
0 0 0 16 0 0 0 −2 0 −2 0 0 0 0 −2 −2 0 0 0 0 −2 −2 0 −2 −2
−2 0 0 0 8 0 0 0 0 0 −2 −2 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 −2 0 0 0 8 0 0 0 0 0 −2 −2 0 0 0 0 −1 −1 0 0 0 0 0 0
−2 0 −2 0 0 0 16 0 0 0 −2 −2 0 −2 −2 0 0 0 0 −2 −2 0 0 0 0
0 −2 0 −2 0 0 0 16 0 0 0 −2 −2 0 −2 −2 0 0 0 0 −2 −2 0 0 0
0 0 −2 0 0 0 0 0 8 0 0 0 0 −2 −2 0 0 0 0 0 0 0 −1 −1 0
0 0 0 −2 0 0 0 0 0 8 0 0 0 0 −2 −2 0 0 0 0 0 0 0 −1 −1
−2 0 0 0 −2 0 −2 0 0 0 8 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0
−2 −2 0 0 −2 −2 −2 −2 0 0 0 16 0 0 0 0 0 −2 0 0 −2 0 0 0 0
0 −2 0 0 0 −2 0 −2 0 0 0 0 8 0 0 0 0 0 −1 0 0 −1 0 0 0
0 0 −2 0 0 0 −2 0 −2 0 0 0 0 8 0 0 0 0 0 −1 0 0 −1 0 0
0 0 −2 −2 0 0 −2 −2 −2 −2 0 0 0 0 16 0 0 0 0 0 −2 0 0 −2 0
0 0 0 −2 0 0 0 −2 0 −2 0 0 0 0 0 8 0 0 0 0 0 −1 0 0 −1
−2 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 4 0 0 0 0 0 0 0 0
−2 −2 0 0 −1 −1 0 0 0 0 0 −2 0 0 0 0 0 8 0 0 0 0 0 0 0
0 −2 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 4 0 0 0 0 0 0
−2 0 −2 0 0 0 −2 0 0 0 −1 0 0 −1 0 0 0 0 0 8 0 0 0 0 0
−2 −2 −2 −2 0 0 −2 −2 0 0 0 −2 0 0 −2 0 0 0 0 0 16 0 0 0 0
0 −2 0 −2 0 0 0 −2 0 0 0 0 −1 0 0 −1 0 0 0 0 0 8 0 0 0
0 0 −2 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 4 0 0
0 0 −2 −2 0 0 0 0 −1 −1 0 0 0 0 −2 0 0 0 0 0 0 0 0 8 0
0 0 0 −2 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 4



.

(A.2)
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It follows that the relevant matrices, Aγι, Aγγ , and Aγc are given by

Aγι =



−2 0 0 0
0 −2 0 0
−2 0 −2 0
0 −2 0 −2
0 0 −2 0
0 0 0 −2
−2 0 0 0
−2 −2 0 0
0 −2 0 0
0 0 −2 0
0 0 −2 −2
0 0 0 −2



(A.3)

Aγγ =



8 0 0 0 0 0 −2 −2 0 0 0 0
0 8 0 0 0 0 0 −2 −2 0 0 0
0 0 16 0 0 0 −2 −2 0 −2 −2 0
0 0 0 16 0 0 0 −2 −2 0 −2 −2
0 0 0 0 8 0 0 0 0 −2 −2 0
0 0 0 0 0 8 0 0 0 0 −2 −2
−2 0 −2 0 0 0 8 0 0 0 0 0
−2 −2 −2 −2 0 0 0 16 0 0 0 0
0 −2 0 −2 0 0 0 0 8 0 0 0
0 0 −2 0 −2 0 0 0 0 8 0 0
0 0 −2 −2 −2 −2 0 0 0 0 16 0
0 0 0 −2 0 −2 0 0 0 0 0 8



(A.4)

Aγc =



−1 −1 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0
0 0 0 −2 −2 0 0 0 0
0 0 0 0 −2 −2 0 0 0
0 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 −1 −1
−1 0 0 −1 0 0 0 0 0
0 −2 0 0 −2 0 0 0 0
0 0 −1 0 0 −1 0 0 0
0 0 0 −1 0 0 −1 0 0
0 0 0 0 −2 0 0 −2 0
0 0 0 0 0 −1 0 0 −1



. (A.5)
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After the collapse in the x direction is performed, the matrices appear as

(Âγγ)x =



10 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0
0 0 20 0 0 0 0 0 0 0 0 0
0 0 0 20 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0
−2 0 −2 0 0 0 8 0 0 0 0 0
−2 −2 −2 −2 0 0 0 16 0 0 0 0
0 −2 0 −2 0 0 0 0 8 0 0 0
0 0 −2 0 −2 0 0 0 0 8 0 0
0 0 −2 −2 −2 −2 0 0 0 0 16 0
0 0 0 −2 0 −2 0 0 0 0 0 8



(A.6)

(Âγc)x =



3 3 0 0 0 0 0 0 0
0 3 3 0 0 0 0 0 0
0 0 0 6 6 0 0 0 0
0 0 0 0 6 6 0 0 0
0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 0 3 3
−1 0 0 −1 0 0 0 0 0
0 −2 0 0 −2 0 0 0 0
0 0 −1 0 0 −1 0 0 0
0 0 0 −1 0 0 −1 0 0
0 0 0 0 −2 0 0 −2 0
0 0 0 0 0 −1 0 0 −1



. (A.7)
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Finally, the collapse in the y direction transforms the next rows and the hatted matrices are
finally obtained,

Âγγ =



10 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0
0 0 20 0 0 0 0 0 0 0 0 0
0 0 0 20 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 20 0 0 0 0
0 0 0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 0 0 0 0 10



(A.8)

Âγc =



3 3 0 0 0 0 0 0 0
0 3 3 0 0 0 0 0 0
0 0 0 6 6 0 0 0 0
0 0 0 0 6 6 0 0 0
0 0 0 0 0 0 3 3 0
0 0 0 0 0 0 0 3 3
3 0 0 3 0 0 0 0 0
0 6 0 0 6 0 0 0 0
0 0 3 0 0 3 0 0 0
0 0 0 3 0 0 3 0 0
0 0 0 0 6 0 0 6 0
0 0 0 0 0 3 0 0 3



. (A.9)
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Stokes Equations

Stokes equations, are a limiting case of the full Navier-Stokes equations for modelling fluid
dynamics. In particular, Stokes Equations provide a good model of so-called incompressible
flows. A flow is said to be incompressible if its velocity is divergence free, i.e., ∇ · ~u = 0
where ~u is the flow velocity. The coupled equations are

−∆~u+∇p = ~f

∇ · ~u = 0
(B.1)

where p represents the flow pressure. The second equation is known as the incompressibility
constraint. The finite dimensional analog of the continuous system is given by[

A BT

B 0

] [
u
p

]
=

[
~f
g

]
(B.2)

The nullspace of B is always non-trivial: N (B) = span{1}. This corresponds physically
to the fact that the solution is non-unique up to a constant pressure. One way to examine
the stability in the disrectization (B.2) is consider the equivalent pressure Schur complement
system

BA−1BT p = BA−1f − g (B.3)

It can be shown that (B.2) is numerically (inf-sup) stable if and only if S := BA−1BT satisfies

N (S) = N (B) = span{~1} (B.4)

Certain FEM element pairs have been proven to be inf-sup stable, but they introduce other
issues. If the element pairs result in an unstable problem, a matrix −βC, for β ∈ R, is often
introduced on the 2x2 block of (B.2) yielding[

A BT

B −βC

] [
~u
p

]
=

[
~f
g

]
(B.5)

This system is a stabilized version of (B.2).

B.0.1 BoxMG for Stokes Equations

In two dimensions, Stokes equations have 3 unknown functions,

ux(x, y), uy(x, y), p(x, y).
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n V-Cycles Vanka Iterations Number of Levels
3 9 (3,3) 2
9 14 (3,3) 2
27 17 (3,3) 3
81 19 (3,3) 4

TABLE B.1: Demonstrating mesh independence for solving the 2D lid driven
cavity problem with the BoxMG v-cycle described in subsection B.0.1.

We discritize Stokes equations using the IFISS software package[13]. In particular, a Q1-Q1
FEM scheme was used, so there will be 3 unknowns or degrees of freedom (DOFs) per node
in the FEM mesh. For this reason, it is not clear how to proceed with BoxMG, since it is
designed for a single DOF per node.

To overcome this difficulty, we turn our attention to the block matrix given in (B.5). The
matrix A turns out to be a block discrete Laplacian operator, with blocks

A =

[
Ax 0
0 Ay

]
, (B.6)

where Ax = Ay = A represent the two dimensional discretized Laplacian, as discussed in
Chapter 2. Without going into too much detail the matrix−βC, a so-called mass matrix, also
has a similar form to A, at least in terms of sparsity. Thus, one idea to apply BoxMG, is to
simply create three prolongation matrices, Px, Py, Pp by applying the BoxMG alogrithm to
Ax, Ay, and −βC respectively. The the full P matrix is given by

P =

Px 0 0
0 Py 0
0 0 Pp

 =

[
Pu 0
0 Pp

]
(B.7)

where each Ps is the prolongation operator constructed by BoxMG from the s-DOF ma-
trix. We present the results of solving the classic 2D lid-driven cavity problem [2] using a
BoxMG v-cycle in Table B.1. The prolongation matrix P is given by (B.7) andR is simply P T .
Galerkin projections RAP are used to construct the operator at each level. The smoother at
each level is a patch-based Vanka smoother [9].
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