
The Euclidean Algorithm
for Janet Vassilev’s Math 327 course

Definition 0.1 A positive integer d is the greatest common divisor of two nonzero
integers n and m if

• d divides n and d divides m and

• for any c which divides both n and m then c divides d.

The Euclidean Algorithm allows us to express the greatest common divisor of two
nonzero integers n and m as an integral sum of n and m.

Theorem 0.2 Euclidean Algorithm Let n and m be nonzero integer and d the greatest
common divisor of n and m. There exists integers s and t such that d = sn + tm.

Proof: Let A = {ns + mt | s, t ∈ Z}. Since n, m, s and t are all integers ns + mt is
an integer. Suppose d = ns + mt is the smallest positive integer contained in A. We claim
that d is the greatest common divisor.

Suppose first that d is not a divisor of both n and m. In particular, d doesn’t divide
n. Then there exists unique q and r such that n = qd + r with 0 < r < d. Note that both
n = qd + r and qd = nqs + mqt are in A. So r = n− qd is in A but r < d contradicts that
d is the smallest positive integer in A. Similarly we can see that d must also divide m. So
d must divide both n and m.

Suppose c is a divisor of both n and m. Then there exists a and b integers such that
ca = n = cb. So d = cas+cbt = c(as+bt) so c divides d. Since d satisfies the properties of a
greatest common divisor, then d is the greatest common divisor of n and m and d = ns+mt.

The s and t in the Euclidean Algorithm are not unique. For example, 3 is the greatest
common divisor of 9 and 15 but we can express 3 as different integral sums of 9 and 15.
Two examples follow: 3 = 2 · 9 + (−1) · 15 = (−3) · 9 + 2 · 15.

One way to find how to express the greatest common multiple of n and m as an integral
sum of n and m is to repeatedly use the Division Algorithm and then use back substitution.

n = mq + r with 0 ≤ r < n

m = rq1 + r1 with 0 ≤ r1 < r

r = r1q2 + r2 with 0 ≤ r2 < r1

...

rn−1 = rnqn+1 + rn+1 with 0 ≤ rn+1 < rn

rn = rn+1qn+2

Since rn+1 divides rn, then it will divide rn−1, rn−2, · · · r1, r,m and n by substituting
back into the above equalities.

We can solve rn+1 = rn−1 − rnqn+1 = rn−1 − (rn−2 − rn−1qn)qn+1 = · · · = sn + tm.
For example,



Example 0.3 Write the greatest common divisor of 48 and 27 as an integral multiple of
48 and 27.

48 = 1 · 27 + 21

27 = 1 · 21 + 6

21 = 3 · 6 + 3

6 = 2 · 3

Now working backwards:

3 = 21− 3 · 6 = 21− 3(27− 21) = 4 · 21− 3 · 27 = 4(48− 27)− 3 · 27 = 4 · 48− 7 · 27

Another way to find the greatest common divisor of two numbers n and m as an integral
multiple of the two is keep track of the multiple as you go. For example make a table where
the left hand column keeps track of the successive ”remainders” and the second column
keeps track of the multiple n and the second keeps track of the multiple of m. The first
row will be n, 1, 0 and the second row will be m, 0, 1. To obtain the third and successive
rows you subtract the appropriate qi multiple of the row directly above the row you are
computing from two rows above the one you are trying to compute. We will illustrate this
for the example above.

multiple of 48 multiple of 27

48 1 0

27 0 1

21 1 -1

6 -1 2

3 4 -3
You are less likely to make arithmetic or sign errors if you use this tabular approach.
For example, if we want to express the greatest common divisor of 144 and 100, first

use our successive division algorithm to find the quotients and remainders:

144 = 1 · 100 + 44

100 = 2 · 44 + 12

44 = 3 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4
multiple of 144 multiple of 100

144 1 0

100 0 1

44 1 -1

12 -2 3

8 7 -10

4 -9 13
So 4 = −9 · 144 + 13 · 100.



Since you know that two relatively prime integers have greatest common divisor 1, one
can use the Euclidean Algorithm to express 1 as an integral multiple of the two integers.
This is particularly useful in proofs.

For example if you want to show the statement, “ For relatively prime integers a and b,
if a divides bc then a divides c.”

We can write 1 = sa + tb for some integers s and t. Multiply both sides by c and
we obtain c = sac + tbc. Now since a divides bc there is an integer r such that ra = bc.
Replacing bc by ra in the previous equality we see that c = sac+ tra = a(sc+ tr), showing
that a divides c.


