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LOCAL COHOMOLOGY MODULES
WITH INFINITE DIMENSIONAL SOCLES
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(Communicated by Bernd Ulrich)

Abstract. In this paper we prove the following generalization of a result of
Hartshorne: Let T be a commutative Noetherian local ring of dimension at
least two, R = T [x1, . . . , xn], and I = (x1, . . . , xn). Let f be a homogeneous
element of R such that the coefficients of f form a system of parameters for
T . Then the socle of Hn

I (R/fR) is infinite dimensional.

1. Introduction

The third of Huneke’s four problems in local cohomology [Hu] is to determine
when Hi

I(M) is Artinian for a given ideal I of a commutative Noetherian local ring
R and finitely generated R-module M . An R-module N is Artinian if and only if
SuppRN ⊆ {m} and HomR(R/m,N) is finitely generated, where m is the maximal
ideal of R. Thus, Huneke’s problem may be separated into two subproblems:

• When is SuppRH
i
I(M) ⊆ {m}?

• When is HomR(R/m,Hi
I(M)) finitely generated?

This article is concerned with the second question. For an R-module N , one
may identify HomR(R/m,N) with the submodule {x ∈ N | mx = 0}, which is
an R/m-vector space called the socle of N (denoted socRN). It is known that if
R is an unramified regular local ring, then the local cohomology modules Hi

I(R)
have finite dimensional socles for all i ≥ 0 and all ideals I of R ([HS], [L1], [L2]).
The first example of a local cohomology module with an infinite dimensional so-
cle was given in 1970 by Hartshorne [Ha]: Let k be a field, R = k[[u, v]][x, y],
P = (u, v, x, y)R, I = (x, y)R, and f = ux + vy. Then socRP H2

IRP
(RP /fRP ) is

infinite dimensional. Of course, since I and f are homogeneous, this is equivalent
to saying that HomR(R/P,H2

I (R/fR)) (the ∗socle of H2
I (R/fR)) is infinite dimen-

sional. Hartshorne proved this by exhibiting an infinite set of linearly independent
elements in the ∗socle of H2

I (R).
In the last 30 years there have been few results in the literature which explain or

generalize Harthshorne’s example. For affine semigroup rings, a remarkable result
proved by Helm and Miller [HM] gives necessary and sufficient conditions (on the
semigroup) for the ring to possess a local cohomology module (of a finitely generated
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module) having infinite dimensional socle. Beyond that work, however, little has
been done.

In this paper we prove the following:

Theorem 1.1. Let (T,m) be a Noetherian local ring of dimension at least two. Let
R = T [x1, . . . , xn] be a polynomial ring in n variables over T , I = (x1, . . . , xn), and
f ∈ R a homogeneous polynomial whose coefficients form a system of parameters
for T . Then the ∗socle of Hn

I (R/fR) is infinite dimensional.

Hartshorne’s example is obtained by letting T = k[[u, v]], n = 2, and f = ux+vy
(homogeneous of degree 1). Note, however, that we do not require the coefficient
ring to be regular, or even Cohen-Macaulay. As a further illustration, consider the
following:

Example 1.2. Let R = k[[u4, u3v, uv3, v4]][x, y, z], I = (x, y, z)R, and f = u4x2 +
v8yz. Then the ∗socle of H3

I (R/fR) is infinite dimensional.

Part of the proof of Theorem 1.1 was inspired by the recent work of Katzman
[Ka] where information on the graded pieces ofHn

I (R/fR) is obtained by examining
matrices of a particular form. We apply this technique in the proof of Lemma 2.8.

Throughout, all rings are assumed to be commutative with identity. The reader
should consult [Mat] or [BH] for any unexplained terms or notation and [BS] for
the basic properties of local cohomology.

2. The main result

Let R =
⊕
R` be a Noetherian ring graded by the nonnegative integers. Assume

R0 is local and let P be the homogeneous maximal ideal of R. Given a finitely
generated graded R-module M we define the ∗socle of M by

∗ socRM = {x ∈M | Px = 0}
∼= HomR(R/P,M).

Clearly, ∗ socRM ∼= socRP MP . An interesting special case of Huneke’s third
problem is the following:

Question 2.1. Let n := µR(R+/PR+), the minimal number of generators of R+.
When is ∗ socHn

R+
(R) finitely generated?

For i ∈ N it is well known that Hi
R+(R) is a graded R-module, each graded piece

H i
R+

(R)` is a finitely generated R0-module, and Hi
R+

(R)` = 0 for all sufficiently
large integers ` ([BS, 15.1.5]). If we know a priori that Hn

R+(R)` has finite length
for all ` (e.g., if SuppRH

n
R+

(R) ⊆ {P}), then Question 2.1 is equivalent to:

Question 2.2. When is HomR(R/R+, H
n
R+

(R)) finitely generated?

We give a partial answer to these questions for hypersurfaces. For the remain-
der of this section we adopt the following notation: Let (T,m) be a local ring of
dimension d and R = T [x1, . . . , xn] a polynomial ring in n variables over T . We
endow R with an N-grading by setting deg T = 0 and deg xi = 1 for all i. Let
I = R+ = (x1, . . . , xn)R and let P = m + I be the homogeneous maximal ideal
of R. Let f ∈ R be a homogeneous element of degree p and Cf the ideal of T
generated by the coefficients of f .
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Our main result is the following:

Theorem 2.3. Assume d ≥ 2 and the (nonzero) coefficients of f form a system of
parameters for T . Then ∗ socRHn

I (R/fR) is not finitely generated.

The proof of this theorem will be given in a series of lemmas below. Before
proceeding with the proof we make a couple of remarks:

Remark 2.4. (a) If d ≤ 1 in Theorem 2.3, then ∗ socHn
I (R/fR) is finitely gener-

ated. This follows from [DM, Corollary 2] since dimR/I = dimT ≤ 1.
(b) The hypothesis that the nonzero coefficients of f form a system of parameters

for T is stronger than our proof requires. One only needs that Cf be m-
primary and that there exists a dimension 2 ideal containing all but two of the
coefficients of f . (See the proof of Lemma 2.8.)

The following lemma identifies the support of Hn
I (R/fR) for a homogeneous

element f ∈ R. This lemma also follows from a much more general result recently
proved by Katzman and Sharp [KS, Theorem 1.5].

Lemma 2.5. Let f ∈ R be a homogeneous element. Then

SuppRH
n
I (R/fR) = {Q ∈ SpecR | Q ⊇ I + Cf}.

Proof. It is enough to prove that Hn
I (R/fR) = 0 if and only if Cf = T . As

Hn
I (R/fR)k is a finitely generated T -module for all k, we have by Nakayama that

Hn
I (R/fR) = 0 if and only if Hn

I (R/fR)⊗T T/m = 0. Now

Hn
I (R/fR)⊗T T/m ∼= Hn

I (R/fR⊗T T/m)
∼= Hn

N (S/fS)

where S = (T/m)[x1, . . . , xn] is a polynomial ring in n variables over a field and
N = (x1, . . . , xn)S. As dimS = n, we see that Hn

N (S/fS) = 0 if and only if the
image of f modulo m is nonzero. Hence, Hn

I (R/fR) = 0 if and only if at least one
coefficient of f is a unit, i.e., Cf = T . �

We are mainly interested in the case when the coefficients of f generate an
m-primary ideal:

Corollary 2.6. Let f ∈ R be homogeneous and suppose Cf is m-primary. Then

SuppRH
n
I (R/fR) = {P}.

Our next lemma is the key technical result in the proof of Theorem 2.3.

Lemma 2.7. Suppose u, v ∈ T such that ht(u, v)T = 2. For each integer n ≥ 1 let
Mn be the cokernel of φn : T n+1 → T n where φn is represented by the matrix

An =


u v 0 0 · · · 0 0
0 u v 0 · · · 0 0
0 0 u v · · · 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 · · · u v


n×(n+1)

.

Let J =
⋂
n≥1 annT Mn. Then dimT/J = dimT .
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Proof. Let T̂ denote the m-adic completion of T . Then ht(u, v)T̂ = 2, annT Mn =
annT̂ (Mn⊗T T̂ )∩T , and dim T/(I∩T ) ≥ dim T̂ /I for all ideals I of T̂ . Thus, we may
assume T is complete. Now let p be a prime ideal of T such that dimT/p = dimT .
Since T is catenary, ht(u, v)T/p = 2. Assume the lemma is true for complete
domains. Then

⋂
n≥1 annT/p(Mn ⊗T T/p) = p/p. Hence

J =
⋂
n≥1

annT Mn

⊆
⋂
n≥1

annT (Mn ⊗T T/p)

= p,

which implies that dimT/J ≥ dimT/p = dimT . Thus, it suffices to prove the
lemma for complete domains.

As T is complete, the integral closure S of T is a finite T -module ([Mat, page
263]). Since ht(u, v)S = 2 ([Mat, Theorem 15.6]) and S is normal, {u, v} is a
regular sequence on S. It is easily seen that In(An), the ideal of n × n minors of
An, is (u, v)nT . By the main result of [BE] we obtain annS(Mn ⊗T S) = (u, v)nS.
Hence annT Mn ⊆ (u, v)nS ∩ T . As S is a finite T -module, there exists an integer
k such that annT Mn ⊆ (u, v)n−kT for all n ≥ k. Therefore,

⋂
n≥1 annT Mn = (0),

which completes the proof. �

Lemma 2.8. Assume d ≥ 2 and let f ∈ R be a homogeneous element of de-
gree p such that the coefficients of f form a system of parameters for T . Then
dimT/ annT Hn

I (R/fR) ≥ 2.

Proof. Let c1, . . . , cd be the nonzero coefficients of f . Let T ′ = T/(c3, . . . , cd)T and
R′ = T ′[x1, . . . , xn] ∼= R/(c3, . . . , cd)R ∼= R⊗T T ′. Since

dimT/ annT Hn
I (R/fR) ≥ dim T/ annT (Hn

I (R/fR)⊗T T ′)
= dim T ′/ annT ′ Hn

IR′(R
′/fR′),

we may assume that dim T = 2 and f has exactly two nonzero terms.
For any w ∈ R there is a surjective map Hn

I (R/wfR) → Hn
I (R/fR). Hence,

annT Hn
I (R/wfR) ⊆ annT Hn

I (R/fR). Thus, we may assume that the terms of
f have no (non-unit) common factor. Without loss of generality, we may write
R = T [x1, . . . , xk, y1, . . . yr] and f = uxd1

1 · · ·x
dk
k + vye11 · · · yerr = uxd + vye, where

{u, v} is a system of parameters for T . As f is homogeneous, p =
∑

i di =
∑

i ei.

Applying the right exact functor Hn
I (·) to R(−p) f−→ R→ R/fR→ 0 we obtain

the exact sequence

Hn
I (R)−`−p

f−→ Hn
I (R)−` → Hn

I (R/fR)−` → 0

for each ` ∈ Z. For each `, Hn
I (R)−` is a free T -module with basis

{x−αy−β |
∑
i,j

αi + βj = `, αi > 0, βj > 0 ∀ i, j}

(e.g., [BS, Example 12.4.1]). Let q be an arbitrary positive integer and let `(q) =
qp+ k+ r. Define L−`(q) to be the free T -summand of Hn

I (R)−`(q) spanned by the
set

{x−sd−1y−te−1 | s+ t = q, s, t ≥ 0}.
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Then the cokernel of δq : L−`(q+1)
f−→ L−`(q) is a direct summand (as a T -module)

of Hn
I (R/fR)−`(q). For a given q we order the basis elements for L−`(q) as follows:

x−sd−1y−te−1 > x−s
′d−1y−t

′e−1

if and only if s > s′. With respect to these ordered bases, the matrix representing
δq is 

u v 0 0 · · · 0 0
0 u v 0 · · · 0 0
0 0 u v · · · 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 · · · u v


(q+1)×(q+2)

.

By Lemma 2.7, if J =
⋂
q≥1 annT coker δq, then dimT/J = dim T = 2. As coker δq

is a direct T -summand of Hn
I (R/fR), we have annT Hn

I (R/fR) ⊆ J . This com-
pletes the proof. �

Lemma 2.9. Under the assumptions of Lemma 2.8, HomR(R/I,Hn
I (R/fR)) is not

finitely generated as an R-module. Consequently, HomR(R/I,Hn
I (R/fR))k 6= 0 for

infinitely many k.

Proof. Suppose HomR(R/I,Hn
I (R/fR)) is finitely generated. By Lemma 3.5 of

[MV] we have that I + annRHn
I (R/fR) is P -primary. (One should note that the

hypothesis in [MV, Lemma 3.5] that the ring be complete is not necessary.) This
implies that annRHn

I (R/fR) ∩ T = annT Hn
I (R/fR) is m-primary, contradicting

Lemma 2.8. �

We now give the proof of our main result:

Proof of Theorem 2.3. By Corollary 2.6, SuppRH
n
I (R/fR) = {P}. Thus,

HomR(R/I,Hn
I (R/fR))k has finite length as a T -module for all k and is nonzero

for infinitely many k by Lemma 2.9. Consequently,

HomR(R/P,Hn
I (R/fR))k = HomT (T/m,HomR(R/I,Hn

I (R/fR))k)

is nonzero for infinitely many k. Hence
∗ socR(Hn

I (R/fR)) = HomR(R/P,Hn
I (R/fR))

is not finitely generated. �
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