\qquad

Please adhere to the homework rules as given in the Syllabus.

1. Confidence Intervals for the Mean. Assume that $X_{1}, X_{2} \cdots X_{n}$ are iid with unknown mean μ. Suppose you calculate $\bar{x}=50$. Interpret all of your intervals!
a) Assume that the variance is known to be $\sigma^{2}=16$ and the sample size is $n=9$. Compute a 94% two sided confidence interval for μ.
b) Assume that the variance is known to be σ^{2} and the sample size is $n=9$. Compute a 99% upper confidence bound for μ.
c) Assume that the variance is unknown, but you calculate $s^{2}=16$. The sample size is still $n=9$. Compute a 94% two sided confidence interval for μ. Is your answer very different from part $a)$? Why is this?
d) Repeat parts a) and d) using the same numbers, but this time $n=144$. Are the intervals very different from each other now? Why is this?
2. Confidence Interval for Population Proportion. In the 2016-2017 season, Stephen Curry shot $n=790$ three-pointers and made 325 of them. Let p be the true proportion of three-pointers that Curry will make.
a) By realizing that the data x_{i} are bernoulli trials, we know that p is also the population mean. Moreover, we can determine that the sample variance is $S^{2}=0.24$. Challenge: Show that this is indeed the sample variance. Produce a 95% confidence interval for p using the t-procedures.
b) Create a confidence interval for p using the Normal approximation to the Binomial. Which method produces a narrower confidence interval?
c) According to your interval in b), do you feel comfortable asserting that Stephen Curry makes more than 40 percent of his three-pointers?
d) If you wanted to know the true proportion within 1% (i.e. 0.01), how many Stephen Curry three-pointers do you have to observe?
3. Data Analysis. Recall the CDI datast which contains demographic information on US counties. The dataset can be found at
```
math.unm.edu/~}knrumsey/classes/fall16/MiniProjects/data.csv
```

We will again consider the variable "PerCapitaIncome". Use R, Excel or any software of your choice to construct a 95% confidence interval for μ, the average per capita income in the United States. Interpret your interval.
4. Exponential Distribution. Assume that $X_{1}, X_{2}, \cdots X_{15}$ are iid $\operatorname{Exp}(\lambda)$, and suppose we calculate $\sum_{i=1}^{15} x_{i}=31$ and $\sum_{i=1}^{15} x_{i}^{2}=130$.
a) Compute \bar{x} and s^{2}. Hint: Use the shortcut method to find s^{2}.
b) Set $\mu=\frac{1}{\lambda}$ and compute a small sample 95% CI for μ (using t-procedures).
c) Convert your CI for μ to a CI for λ by noting that $P(a<\mu<b)=P(1 / b<\lambda<1 / a)$.
d) Define $T=\sum_{i=1}^{15} X_{i}$. Recall that T has a $\operatorname{Gamma}(15, \lambda)$ distribution (since it is the sum of exponentials). When r is a positive integer, the CDF of a $\operatorname{Gamma}(r, \lambda)$ distribution can be written as

$$
F(x)=P(T \leq x)=1-\sum_{j=0}^{r-1} \frac{e^{-\lambda x}(\lambda x)^{r}}{j!}
$$

Define $U=\lambda T$ and find the CDF of U. Use this to argue that $U \sim \operatorname{Gamma}(15,1)$.
e) Using an online calculator find a and b such that $P(a \leq U \leq b)=0.95$. Hint: Choose a such that $P(U \leq a)=.025$ and b such that $P(U \geq b)=0.025$
g) Convert your interval for U to an interval for λ by "pivoting". How does this interval differ from the one in part c)? Fun fact: I simulated this data using $\lambda=0.5$. Does your interval capture the true value?
5. Challenge Problem. The Bootstrap. Suppose you have n data points $x_{1}, x_{2}, \cdots x_{n}$ and would like to develop a confidence interval for a parameter θ. If you have an estimator $\hat{\theta}$, the Bootstrap algorithm works as follows.

1. Sample from the data points with replacement until you have a new data set of length n. Estimate θ using this new dataset and call this estimate $\hat{\theta}^{(1)}$.
2. Repeat step 1. M times, so you have M estimates $\hat{\theta}^{(1)}, \hat{\theta}^{(2)}, \ldots \hat{\theta}^{(n)}$.
3. For some confidence level $C \in(0,1)$ find the interval (a, b) which contains $100 \times C \%$ of the estimates $\hat{\theta}^{(m)}$. This gives a Bootstrapped CI for θ.

The skew of a distribution was discussed in an earlier HW (homework 6 I believe). Denote the "true" skew of a distribution as γ, and consider the estimator

$$
\hat{\gamma}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{s^{3}}
$$

where \bar{x} and s are the sample mean and standard deviation respectively.
Using the same data as in problem 3 on this homework, use the Bootstrap to give a 95% CI for the population skewness γ. Set $M=10,000$.

