\qquad

Please adhere to the homework rules as given in the Syllabus.

1. Frequency Distribution The total number of goals scored in a World Cup soccer match approximately follows the following distribution.

Goals Scored	0	1	2	3	4	5	6	7
Probability	0.1	0.2	0.25	0.2	0.15	0.06	0.03	0.01

a) Let X be the number of goals scored in a randomly selected World Cup soccer match. Write out the PMF for X and explain why it is a valid PMF.
b) Compute the mean and variance of X.
c) Find and sketch the CDF of X. Explain why it is a valid CDF.
2.
a) Recall that for a random variable X and constants a and $b, E(a X+b)=a E(X)+b$ (we proved this in class). Prove that

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

b) Mike agrees to donate 50 dollars to charity, plus 25 dollars for every goal scored in a particular World Cup soccer game. Thus Mike's donation is a random variable $Y=25 X+50$ where X is defined in problem 1. Find the expected value and the variance of Y using the results in part a.
3. Probability Mass Function. Let X be a discrete RV with the following PMF.

$$
f(x)= \begin{cases}\frac{c}{2^{x}} & x=1,2,3,4 \\ 0, & \text { otherwise }\end{cases}
$$

a) Find the value of c that makes $f(x)$ a valid PMF.
b) Find $P(X>2)$.
c) Find $E(X)$ and $\operatorname{Var}(X)$.
d) Find $E\left(2^{X}\right)$.
4. Linearity of Expectation. The SAT is a multiple choice exam, with 5 possible answers for each question. To discourage test takers from guessing, they use the following point system. If you get a question right you get 1 point. If you get a question wrong you lose 0.25 points. (If you leave a question blank, you get/lose nothing, but that doesn't matter for this problem).
a) Assuming you are completely guessing, what is the probability of getting the question correct?
b) We can model this using a Bernoulli random variable, where $X=1$ if you get the question right and $X=0$ if you get the question wrong. The number of points earned on a single question is a random variable and can be expressed as

$$
Y=X-0.25(1-X)=1.25 X-0.25
$$

Use linearity of expectation to show that $E(Y)=0$ if you are guessing at random.
c) Assume now that there are k possible answers for each question. In terms of k, how many points should we take off for a wrong answer if we want to ensure $E(Y)=0$ when a test-taker is guessing? Hint: Let $Y=X-L(1-X)$ where L is the number of points we remove. Find the expected value and solve for L.
5. Expected Values. Four buses are transporting 150 UNM students to Las Cruces for a football game. The buses carry, respectively, 20, 30, 40 and 60 students.

- A student is selected at random (call him Alf). Let X be the number of students on Alf's bus.
- A bus driver is selected at random (call her Betty). Let Y be the number of students on Betty's bus.

Find $E(X)$ and $E(Y)$. Which one is larger? Why?
6. Get Rich Quick. Professor Halfbrain has come up with a betting strategy for roulette which he guarantees will make you rich. Bet 100 dollars on red (which has probability $\frac{18}{38}$). If you win, take the 100 dollar profit and quit. If you lose, bet 100 dollars on red two more times and then quit. Let X denote your earnings.
a) Find the probability mass function of X. Hint: There are only 3 possible values that X can take. Find the two easier probabilities, and find the third by using the fact that the probabilities must sum to 1 .
b) What is $P(X>0)$. What do you think of the Professors scheme?
c) Find $E(X)$. What do you think of the Professors shceme now?
7. Challenge Problem. The Labrynth. You are trapped inside a chamber at the center of a Labrynth. You have 24 hours to escape before you run out of oxygen.

- This chamber has n tunnels leading out of it, the $i^{\text {th }}$ of which takes i hours to travel (the first tunnel takes 1 hour, the second tunnel takes 2 hours, etc...).
- The longest tunnel (tunnel n) will lead you to safety, but the rest of the tunnels just bring you back to the chamber.
- Every time you return to the tunnel, the room shifts, so you can only choose tunnels at random.

Let X be the amount of time that it takes you to escape.
Hint: For part a), use the Law of Total Expectation: For a partition $B_{1}, B_{2}, \cdots B_{k}$,

$$
E(X)=\sum_{i=1}^{k} E\left(X \mid B_{i}\right) P\left(B_{i}\right)
$$

a) How many hours will it take you to escape on average? For what values of n will you escape, on average, before your oxygen runs out?
b) Markov's Inequality states that, for a non-negative random variable X and a postive constant t,

$$
P(X \geq t) \leq \frac{E(X)}{t}
$$

Use Markov's Inequality to obtain a lower bound on the probability that you escape before you run out of oxygen. (i.e. find a lower bound for $P(X \leq 24)$.) Evaluate and interpret this for $n=7$ tunnels.

