\qquad

Please adhere to the homework rules as given in the Syllabus.

1. Trapezoidal Distribution. Consider the following probability density function.

$$
f(x)= \begin{cases}\frac{x+1}{5}, & -1 \leq x<0 \\ \frac{1}{5}, & 0 \leq x<4 \\ \frac{5-x}{5}, & 4 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

a) Sketch the PDF.
b) Show that the area under the curve is equal to 1 using geometry.
c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into peices).
d) Find $P(X<3)$ using geometry.
e) Find $P(X<3)$ with integration.
2. PDF to CDF. For each of the following PDFs, find and sketch the CDF. The Median (M) of a continuous distribution is defined by the property $F(M)=0.5$. Use the CDF to find the Median of each distribution.
a) (Special case of Beta Distribution)

$$
f(x)=1.5 \sqrt{x}, \quad 0<x<1
$$

b) (Special case of Pareto Distribution)

$$
f(x)=\frac{1}{x^{2}}, \quad x>1
$$

3. CDF to PDF. For each of the following CDFs, find the PDF. Use the PDF you derived to compute the expected value of each distribution.
a)

$$
F(x)= \begin{cases}0, & x<0 \\ 1-\left(1-x^{2}\right)^{2}, & 0 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

b) Don't worry about finding the expected value of this guy. We will learn a really interesting trick for finding integrals of this form, but we haven't gotten to it yet..

$$
F(x)= \begin{cases}0, & x<0 \\ 1-e^{-x^{2}}, & x \geq 0\end{cases}
$$

4. Waiting Times. Suppose that the time it takes for Jules to get his food at Big Kahuna Burger is a random variable X with the following CDF (Note: This is an Exponential distribution with an expected waiting time of 1 minute.).

$$
F_{X}(x)=1-e^{-x}, x>0
$$

a) Find the probability that Jules waits at least 1 minute before getting his tasty burger.
b) Given that Jules has already waited 5 minutes, what is the probability he must wait at least 1 more minute before getting his tasty burger. Compare this answer to part a). Hint: Use the definition of Conditional Probability to find $P(X>6 \mid X>5)$.
c) Jules is happy as long as he gets his burger within 2 minutes. Let $Y=1$ if Jules is happy and $Y=0$ otherwise. What is the distribution of Y ? Also give the mean and variance of Y.
d) Jules visits Big Kahuna Burger every monday for a year. Each time he records his waiting time X_{i} and the corresponding random variable Y_{i} defined above for $i=1,2, \cdots 52$. Assume each visit is independent, and let $Z=\sum_{i=1}^{52} Y_{i}$. What is the distribution, mean and variance of Z ?
5. Project Dank. Professor Halfbrain is doing "extensive research" on the beer Project Dank from La Cumbre Brewing. The Professor has determined that, if X is the number of IBU's in a batch of Project Dank, then the probability density function of X is

$$
f(x)= \begin{cases}\frac{c}{x^{10}}, & x \geq 100 \\ 0, & \text { otherwise }\end{cases}
$$

a) Find the value of c which makes $f(x)$ a valid PDF. Sketch the PDF.
b) Find the mean and standard deviation of X.
c) Find the probability that a batch of Project Dank has more than 140 IBU's.
d) Assuming each batch is independent, what is the probability that exactly 2 out of 5 batches have more than 140 IBU's.

6. Expected Values.

a) If X is a Continuous Uniform RV with $a=0$ and $b=\pi$, then the density function is given by $f(x)=1 / \pi$ for $0<x<\pi$. Find $E\left(\pi^{2} \sin (X)\right)$.
b) Let X have PDF, $f(x)=2 x$ for $0<x<1$. Use integration by parts or tabular integration to find $E\left(X e^{X}\right)$.
c) If X is an Exponential RV with rate λ, then the density function is given by $f(x)=\lambda e^{-\lambda x}$ for $x>0$. Find $E\left(a^{X}\right)$ where $a>0$. Does $E\left(a^{X}\right)$ exist for all values of $a>0$? If not, give a condition on a for which the expected value exists. Hint: $a^{x} e^{-\lambda x}=\left(a e^{-\lambda}\right)^{x}$
7. Challenge Problem: The Moment Genrating Function (MGF) of a random variable X is defined as

$$
M_{X}(t)=E\left(e^{X t}\right)
$$

Inside the expected value, t can be regarded as a constant. However, $M_{X}()$ is a function of this t. (Note: If you are familiar with Laplace Transforms, note that for continuous X, the MGF is essentially the Laplace Transform of the PDF).
a) Find the Moment Generating Function of $X \sim \operatorname{Exp}(\lambda)$. You will need to look the $\operatorname{PDF} f(x)$ up in Table 1. Hint: With some manipulation, you can use the result from problem $6 c$.

Moment Generating Functions are useful for a variety of reasons (the most important of which will appear as a future challenge problem). As the name suggests, they can be useful for finding moments of the distribution. Specifically, the following identity holds for any non-negative integer k.

$$
E\left(X^{k}\right)=M^{(k)}(0)
$$

Notation: $M_{X}^{(k)}(0)$ is the $k^{\text {th }}$ derivative of $M_{X}(t)$ with respect to t, evaluated at 0 .
b) Use this identity to find $E(X)$ and $E\left(X^{2}\right)$ for $X \sim \operatorname{Exp}(\lambda)$. You should get the same answer as with the usual method.

I should note that the MGF does not exist for some distributions, in which case this method cannot be used. Now let's try to see why the MGF works!
c) Expand $M_{X}(t)=E\left(e^{X t}\right)$ by writing $e^{X t}$ as a Taylor Series expansion. Now use linearity of expectation. Explain (no need for formal proof) why the identity holds.

