\qquad

Please adhere to the homework rules as given in the Syllabus.

1. Consider the following joint mass function for discrete random variables X and Y.

$$
f_{X, Y}(x, y)= \begin{cases}\frac{c x}{2^{y}}, & y=1,2,3 \text { and } x=1, \cdots y \\ 0, & \text { otherwise }\end{cases}
$$

The idea is that x and y can both take values 1, 2 and 3 but x must be less than or equal to y.
a) Find the value of c which makes this a valid joint mass function. Hint: There are 6 possible combinations of X and Y. Write them out and evaluate $f(x, y)$ for each case.
b) What is the probability that $X+Y \geq 5$?
c) Find $E(X Y)$
2. Chili Peppers. The Rate my Professor website recently eliminated the Chili Pepper feature on the website. Intuitively, whether or not a professor has a Chili Pepper should have nothing to do with their effectiveness as a teacher, but a 2006 paper by Rionolo et al. showed a link between professor evaluations and perceived attractiveness. Suppose that X is a random variable describing the Quality ranking that a student gives to a professor (5 being highest quality), and Y is a random variable which is 1 is the student gives a Chili Pepper and 0 otherwise. The following table describes the Joint PMF of X and Y (based on a sample of 200 professor ratings, simulated via data from Rionolo's paper).

	$x=1$	$x=2$	$x=3$	$x=4$	$x=5$
$y=0$	0.01	0.05	0.15	0.2	0.1
$\mathrm{y}=1$	0.005	0.02	0.06	0.16	0.245

a) Explain why this is a valid Joint PMF.
b) Find $P(Y=1, X \geq 3)$, and $P(Y=0, X \geq 3)$
c) Find the Marginal PMFs of X and Y.
d) Are X and Y independent? Why or why not?
f) Given that Professor Halfbrain has a chili pepper on Rate my Professor, what is the average rating a student will give him? What is the probability that a student gives him at least a 3? Hint: Find the conditional distribution of X given that $Y=1$.
3. Correlation. Let $X \sim \operatorname{Exp}(1)$.
a) Use the Gamma function to show that $E\left(X^{k}\right)=k$! for a positive integer k. (we did this in class)
a) Let $Y=X^{3}$. Show that $\operatorname{Var}(Y)=684$. Hint: $Y^{2}=\left(X^{3}\right)^{2}=X^{6}$
b) Find $\operatorname{Cor}(X, Y)$.
4. Linear Model. Let $X \sim U(0,2), \epsilon \sim N(0,1)$ and assume X and ϵ are independent. Now suppose $Y=X+\epsilon$.
a) Find the expected value and the variance of both X and Y.
b) Find $E(X Y)$. Hint: Notice that $E(X Y)=E(X(X+\epsilon))$. Now use linearity of expectation and independence.
c) Use the above to find $\operatorname{Cov}(X, Y)$ and then $\operatorname{Cor}(X, Y)$.
5. Linearity of Expectation. A mail-man must deliver mail to n different mailboxes. He has n letters to deliver, exactly one letter for each box. Unfortunately, the mail-man had a "few too many" last night and places each letter into a mailbox at random. Note: This problem is easy. Don't overthink things.
a) Suppose you are the owner of the $i^{\text {th }}$ mailbox. What is the probability that you get your letter?
b) Let X_{i} be a Bernoulli random variable, where $X_{i}=1$ if the owner of the $i^{\text {th }}$ mailbox gets his/her letter and $X_{i}=0$ otherwise. What is $E\left(X_{i}\right)$?
c) If we let $Y=\sum_{i=1}^{n} X_{i}$, then Y is the total number of people who get their letter. Using Linearity of Expectation, what is the expected number of people who get their letter?
6. Bivariate Bernoulli Distribution. A disc is checked for scratch and shock resistance. Let $X=1$ if the disc has high scratch resistance and $X=0$ otherwise. Let $Y=1$ if the disc has high shock resistance and $Y=0$ otherwise. Marginally, the distribution of X is Bernoulli with $p=0.7$. Additionally, assume that $f_{X, Y}(1,1)=0.5$ and $f_{X, Y}(0,0)=0.2$.
a) Complete the table giving the Joint Probability Mass Function for X and Y.

$$
\begin{array}{l||ll}
& x=0 \quad x=1 \\
\hline \hline y=0 & & \\
y=1 & &
\end{array}
$$

b) Give the marginal distributions of X and Y.
c) Find the correlation of X and Y.

7. Linear Functions of Random Variables.

a) Let $X_{1} \sim \operatorname{Exp}(1), X_{2} \sim \operatorname{Exp}(2)$ and $X_{3} \sim \operatorname{Exp}(3)$ and assume that they are independent of eachother. Let $Y=X_{1}+4 X_{2}-6 X_{3}$. Find the mean and variance of Y.
b) Let $U \sim \operatorname{Binom}(20,0.5), V \sim \operatorname{Poiss}(4)$ and $\operatorname{Cor}(U, V)=-1 / 3$. Find $E(W)$ and $\operatorname{Var}(W)$ where $W=3 U-V / 2$.
c) Let X_{1} and X_{2} be independent random variables with mean μ and variance σ^{2} and let p be a constant such that $0<p<1$. Find the mean and variance of $Y=p X_{1}+(1-p) X_{2}$. Use a calculus argument to show that $\operatorname{Var}(Y)$ is minimized when $p=1 / 2$, i.e. for $Y=\frac{X_{1}+X_{2}}{2}$.

8. General Functions of Random Variables.

a) Timothy will flip a fair coin until he gets a Tails. Lt X be the number of flips, and let X^{2} be the number of points Timothy scores. Find the PMF of Y, and find $P(Y>10)$.
b) Jimothy will flip a fair coin 5 times. Let X be the number of times he gets Tails, and let $Y=2^{X}$ be the number of points that Jimothy scores. Find the PMF of Y and find $P(Y>10)$. Is Timothy or Jimothy more likely to score more than 10 points?
9. Challenge Problem: Timothy throws a baseball with speed a speed of v meters per second at an angle A above the ground. The ball will land on the ground at a distance of

$$
R=\frac{v^{2}}{g} \sin 2 A
$$

from where Timothy was standing (where $g=10$ meters per second squared is the gravitational constant).
a) If $v=10 \mathrm{~m} / \mathrm{s}$ is fixed and known, but the angle A is uniformly distributed between 0 and $\pi / 2$, find the CDF and PDF of R. Hint: Find the CDF of R first and then take the derivative.
b) Jimothy is standing in front of Timothy. He can catch the ball if Timothy throws it between 6 and 8 meters. What is the probability that Jimothy catches the ball?
c) Now assume that the speed v is also random, and distributed as

$$
v \sim \operatorname{Gamma}(r=1000, \lambda=100)
$$

Use Monte Carlo (notes on webpage) to approximate the mean and variance of R. Also approximate the probability that Jimothy catches the ball. Finally, provide a Histogram of the distribution of R.

