
STAT 345 Spring 2018
Homework 9 - Point Estimation Name:

Please adhere to the homework rules as given in the Syllabus.

1. Mean Squared Error. Suppose that X1, X2 and X3 are independent random variables
with mean θ and variance θ2. Timothy, Jimothy, Kimothy and Bob each suggest a possible
estimator for θ.

θ̂T = X1 θ̂J =
X1 + 2X2 + 3X3

6
θ̂K =

X1 +X2 +X3

3
θ̂B =

X1 +X2 +X3

7

a) Find the Bias, Variance and MSE of each estimator. Which estimator is the ”best” ac-
cording to MSE?

b) Using a computer, create a plot of the MSE as a function of θ, for values of θ between 0
and 4. Use different colors for each estimator.



2. Continuation of Problem 1. For many distributions, we can prove that the sample
mean (Kimothys estimator) is the ”best” unbiased estimator. But if we are willing to accept
some bias in exchange for reduced variance, we may be able to find a better estimator (at least
according to MSE). Consider a new estimator

θ̂c =
X1 +X2 +X3

c

where c is some positive constant.

a) Find the MSE of this estimator in terms of c.

b) Use a calculus argument to find the value of c which minimizes the MSE. Is it different
from Kimothy’s estimator? If so how, and why does this reduce the MSE?



3. Weighted Means. NOTE: Nobody is required to do this problem, it’s good
practice for MSE, so I’m leaving it for reference. Suppose X1, X2, · · ·Xn are independent
random variables but they are not necessarily identically distributed. Specifically, let us assume
that E(Xi) = µ and V ar(Xi) = i2. Consider the weighted mean estimator

µ̂w =

n∑
i=1

wiXi

where the wi are constants such that
∑n

i=1wi = 1.

a) Show that µ̂w is unbiased and that the variance is
∑n

i=1w
2
i i

2.

b) If we set wi = 1/n for i = 1, 2, · · ·n, then we get back the original sample mean X̄. Find the
MSE of this estimator for n = 30 using the results from part a).

c) In this problem, we expect that Xi is closer to µ for smaller values of i, since the variance is
smaller. Therefore we may want to weight these observations more heavily when estimating the
mean. If we set wi = 1/i∑n

i=1 1/i
, then we get the following estimator for µ.

µ̂w =

∑n
i=1Xi/i∑n
i=1 1/i

Using the results from part a), find the MSE of this estimator for n = 30. Is it smaller than the
original sample mean? Hint: The sum

∑n
i=1 1/i is called the nth Harmonic number. This sum

is very well approximated by 0.577 + ln(n). You may use this approximation in your answer.



4. Method of Moments.

a) Professor Halfbrain conducts the following random experiment with a fair six-sided die.
He rolls the die η times and records how many times he rolls a 1. He repeats this 5 times
and collects the data x1 = 3, x2 = 1, x3 = 2, x4 = 1 and x5 = 3. Unfortunately... he can’t
remember what the value of η was. Help him estimate η using Method of Moments.

b) Alf wants to know the probability of getting a match each time he swipes right on Tinder
(call this parameter θ), so he conducts the following random experiment. Each day for a
week, he will swipe right until he gets a match and then he stops. He collects the following
data, (18, 15, 4, 35, 17). Use Method of Moments to estimate θ.

c) The Log-Normal Distribution. Assume that Y1, Y2, · · ·Yn follow a Log-Normal distri-
bution with parameters θ and ω. Recall that E(Y ) = eθ+ω

2/2 and V ar(Y ) = e2θ+ω
2
(eω

2 −
1). Find θ̂mom and ω̂mom, the Method Moments estimators. Hint: Notice that V ar(Y ) =
E(Y )2(eω

2 − 1).



5. Data Analysis. The CDI dataset contains Demographic information for the 440 most
populated counties in the United States. See the Chapter 6 lecture notes if you need a reminder
on how to read this dataset into R. We will consider the variable ”Percent of Population with a
Highschool diploma”. Divide this variable by 100 to give you proportions instead of percentages.

a) Create a histogram of this data. Use the option freq=FALSE inside the hist() function. You
don’t have to turn in this plot.

b) The Beta distribution is an excellent candidate for this distribution. The Method of Moments
estimators are given by

α̂ = X̄

(
X̄(1− X̄)

S2
− 1

)
β̂ = (1− X̄)

(
X̄(1− X̄)

S2
− 1

)
Calculate the MoM estimates for the HS Diploma data. Create another histogram (with the
freq=FALSE option), and use curve() to plot the fitted Beta distribution over the histogram.
How does the fit look? Turn in this plot.

c) The CDF of a beta distribution can be computed in R as

F (x) = pbeta(x, alpha, beta)

Using your answer estimates from part b), estimate the probability that a county has between
0.6 and 0.9 of the population with a HS Diploma.



6. Maximum Likelihood. The Rayleigh Distribution has probability density function,

f(xi) =
xi
θ
e−x

2
i /2θ, xi > 0, θ > 0

a) Find the CDF of the Rayleigh distribution.

b) Use the CDF to find Q.99, the 99th percentile of the Rayleigh Distribution. Hint: Set
F (Qp) = p and solve for Qp.

c) Assume that X1, X2, · · ·Xn
iid∼ Rayleigh(θ). Find the MLE of θ .

d) Use the invariance property of the MLE to find the MLE of Q.99. What is the maximum
likelihood estimate of Q.99 when n = 30 and

∑30
i=1 x

2
i = 180?



7. Challenge Problem. Maximum Likelihood Data Analysis. The goal of this problem
is to repeat the analysis in problem 5, but this time using Maximum Likelihood. Assume that

X1, X2, · · ·Xn
iid∼ Beta(α, β). Recall that

f(xi|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1
i (1− xi)β−1

a) Find the likelihood function L(α, β|x1, · · ·xn) by taking the product of the f(xi|α, β). Then
find the Log-likelihood function. Show all of your work for credit, but you should get:

logL(α, β|x) = n log

(
Γ(α+ β)

Γ(α)Γ(β)

)
+ (α− 1)

n∑
i=1

log xi + (β − 1)
n∑
i=1

log(1− xi)

b) Write a function in R called neg log likelihood(theta, x) which takes two arguments
theta and x and returns the negative Log-likelihood. Where theta is a vector (α, β) and x
represents the data. Once you have written this function, the Maximum Likelihood Estimates
can be found by using R’s optimization routine. Note: the optim() function minimizes the
function fn, which is why we give it the negative log-likelihood. Also, a0 and b0 are supposed to
be good starting guesses. The MoM estimates from problem 5 are a reasonable choice here.

optim(c(a0, b0), fn=neg log likelihood, x=x)

Report the maximum likelihood estimates α̂ and β̂. Do they differ from the MoM estimates?
Repeat parts b) and c) of problem 5 using these estimates.


