Name: _____

Please adhere to the homework rules as given in the Syllabus.

1. Mean Squared Error. Suppose that X_1 , X_2 and X_3 are independent random variables with mean θ and variance θ^2 . Timothy, Jimothy, Kimothy and Bob each suggest a possible estimator for θ .

$$\hat{\theta}_T = X_1 \qquad \quad \hat{\theta}_J = \frac{X_1 + 2X_2 + 3X_3}{6} \qquad \quad \hat{\theta}_K = \frac{X_1 + X_2 + X_3}{3} \qquad \quad \hat{\theta}_B = \frac{X_1 + X_2 + X_3}{7}$$

a) Find the Bias, Variance and MSE of each estimator. Which estimator is the "best" according to MSE?

b) Using a computer, create a plot of the MSE as a function of θ , for values of θ between 0 and 4. Use different colors for each estimator.

2. Continuation of Problem 1. For many distributions, we can prove that the sample mean (Kimothys estimator) is the "best" *unbiased* estimator. But if we are willing to accept some bias in exchange for reduced variance, we may be able to find a better estimator (at least according to MSE). Consider a new estimator

$$\hat{\theta}_c = \frac{X_1 + X_2 + X_3}{c}$$

where c is some positive constant.

a) Find the MSE of this estimator in terms of c.

b) Use a calculus argument to find the value of c which minimizes the MSE. Is it different from Kimothy's estimator? If so how, and why does this reduce the MSE?

3. Weighted Means. NOTE: Nobody is required to do this problem, it's good practice for MSE, so I'm leaving it for reference. Suppose $X_1, X_2, \dots X_n$ are independent random variables but they are not necessarily identically distributed. Specifically, let us assume that $E(X_i) = \mu$ and $Var(X_i) = i^2$. Consider the weighted mean estimator

$$\hat{\mu}_w = \sum_{i=1}^n w_i X_i$$

where the w_i are constants such that $\sum_{i=1}^{n} w_i = 1$.

a) Show that $\hat{\mu}_w$ is unbiased and that the variance is $\sum_{i=1}^n w_i^2 i^2$.

b) If we set $w_i = 1/n$ for $i = 1, 2, \dots, n$, then we get back the original sample mean \bar{X} . Find the MSE of this estimator for n = 30 using the results from part a).

c) In this problem, we expect that X_i is closer to μ for smaller values of i, since the variance is smaller. Therefore we may want to weight these observations more heavily when estimating the mean. If we set $w_i = \frac{1/i}{\sum_{i=1}^{n} 1/i}$, then we get the following estimator for μ .

$$\hat{\mu}_w = \frac{\sum_{i=1}^n X_i/i}{\sum_{i=1}^n 1/i}$$

Using the results from part a), find the MSE of this estimator for n = 30. Is it smaller than the original sample mean? Hint: The sum $\sum_{i=1}^{n} 1/i$ is called the n^{th} Harmonic number. This sum is very well approximated by $0.577 + \ln(n)$. You may use this approximation in your answer.

4. Method of Moments.

a) Professor Halfbrain conducts the following random experiment with a fair six-sided die. He rolls the die η times and records how many times he rolls a 1. He repeats this 5 times and collects the data $x_1 = 3$, $x_2 = 1$, $x_3 = 2$, $x_4 = 1$ and $x_5 = 3$. Unfortunately... he can't remember what the value of η was. Help him estimate η using Method of Moments.

b) Alf wants to know the probability of getting a match each time he swipes right on Tinder (call this parameter θ), so he conducts the following random experiment. Each day for a week, he will swipe right until he gets a match and then he stops. He collects the following data, (18, 15, 4, 35, 17). Use Method of Moments to estimate θ .

c) The Log-Normal Distribution. Assume that Y_1, Y_2, \dots, Y_n follow a Log-Normal distribution with parameters θ and ω . Recall that $E(Y) = e^{\theta + \omega^2/2}$ and $Var(Y) = e^{2\theta + \omega^2}(e^{\omega^2} - 1)$. Find $\hat{\theta}_{mom}$ and $\hat{\omega}_{mom}$, the Method Moments estimators. *Hint: Notice that* $Var(Y) = E(Y)^2(e^{\omega^2} - 1)$.

5. Data Analysis. The CDI dataset contains Demographic information for the 440 most populated counties in the United States. See the Chapter 6 lecture notes if you need a reminder on how to read this dataset into R. We will consider the variable "Percent of Population with a Highschool diploma". Divide this variable by 100 to give you proportions instead of percentages.

a) Create a histogram of this data. Use the option freq=FALSE inside the hist() function. You don't have to turn in this plot.

b) The Beta distribution is an excellent candidate for this distribution. The Method of Moments estimators are given by

$$\hat{\alpha} = \bar{X} \left(\frac{X(1-X)}{S^2} - 1 \right)$$
$$\hat{\beta} = (1-\bar{X}) \left(\frac{\bar{X}(1-\bar{X})}{S^2} - 1 \right)$$

Calculate the MoM estimates for the HS Diploma data. Create another histogram (with the freq=FALSE option), and use curve() to plot the fitted Beta distribution over the histogram. How does the fit look? Turn in this plot.

c) The CDF of a beta distribution can be computed in R as

$$F(x) = pbeta(x, alpha, beta)$$

Using your answer estimates from part b), estimate the probability that a county has between 0.6 and 0.9 of the population with a HS Diploma.

6. Maximum Likelihood. The Rayleigh Distribution has probability density function,

$$f(x_i) = \frac{x_i}{\theta} e^{-x_i^2/2\theta}, \ x_i > 0, \ \theta > 0$$

a) Find the CDF of the Rayleigh distribution.

b) Use the CDF to find $Q_{.99}$, the 99th percentile of the Rayleigh Distribution. *Hint: Set* $F(Q_p) = p$ and solve for Q_p .

c) Assume that $X_1, X_2, \cdots X_n \stackrel{iid}{\sim} Rayleigh(\theta)$. Find the MLE of θ .

d) Use the invariance property of the MLE to find the MLE of $Q_{.99}$. What is the maximum likelihood estimate of $Q_{.99}$ when n = 30 and $\sum_{i=1}^{30} x_i^2 = 180$?

7. Challenge Problem. Maximum Likelihood Data Analysis. The goal of this problem is to repeat the analysis in problem 5, but this time using Maximum Likelihood. Assume that $X_1, X_2, \dots X_n \stackrel{iid}{\sim} Beta(\alpha, \beta)$. Recall that

$$f(x_i|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x_i^{\alpha-1} (1-x_i)^{\beta-1}$$

a) Find the likelihood function $L(\alpha, \beta | x_1, \dots, x_n)$ by taking the product of the $f(x_i | \alpha, \beta)$. Then find the Log-likelihood function. Show all of your work for credit, but you should get:

$$\log L(\alpha,\beta|x) = n \log \left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right) + (\alpha-1) \sum_{i=1}^{n} \log x_i + (\beta-1) \sum_{i=1}^{n} \log(1-x_i)$$

b) Write a function in R called neg_log_likelihood(theta, x) which takes two arguments theta and x and returns the *negative* Log-likelihood. Where theta is a vector (α, β) and x represents the data. Once you have written this function, the Maximum Likelihood Estimates can be found by using R's optimization routine. Note: the optim() function minimizes the function fn, which is why we give it the negative log-likelihood. Also, a0 and b0 are supposed to be good starting guesses. The MoM estimates from problem 5 are a reasonable choice here.

optim(c(a0, b0), fn=neg_log_likelihood, x=x)

Report the maximum likelihood estimates $\hat{\alpha}$ and $\hat{\beta}$. Do they differ from the MoM estimates? Repeat parts b) and c) of problem 5 using these estimates.