Review - Set Theory and Counting
 Kellin Rumsey
 9/10/2018

Set Relations

Let A and B be sets.

- We say that $A \subset B(A$ is contained in $B)$ if:
- We say that $A=B(A$ is equal to $B)$ if:

Set Operations

-

$$
A \cup B=
$$

-

$$
A \cap B=
$$

-

$$
A^{c}=
$$

- In terms of union, intersection and complementation,

$$
A-B=
$$

Properties of Set Operations

- Commutativity:
- Associativity:
- Distributivity:
- DeMorgans Laws:

Random Experiments and Sample Space

- A random experiment is
- The Sample Space S is
- A Sample space is discrete if (also give an example)
- A Sample space is continuous if (also give an example)

Events

Let A and B be events.

- Define an event.
- Events A and B are disjoint if
- Events A and B are exhaustive if
- Let $B_{1}, B_{2}, \cdots B_{k}$ be a collection of events. What does it mean for the collection of events to be disjoint? Exhaustive?
- The events $B_{1}, B_{2}, \cdots B_{k}$ form a partition if:
- Given an event B, what is the simplest partition including B ?

Counting

Let S be a finite sample space such that every outcome is equally likely.

- For an event $A, P(A)=$
- Fundamental Theorem of Counting:
- Given n items, how many ways are there to choose an ordered sequence of k items with replacement? (License plate example)
- Given n items, how many ways are there to choose an ordered sequence of k items without replacement? (Race running example)
- Given n items, how many ways are there to choose an unordered sequence of k items wihtout replacement? (Yogurt lid race running example)
- Addition Rule:

$$
|A \cup B|=
$$

- If $B_{1}, B_{2}, \cdots B_{k}$ are disjoint, then

$$
\left|B_{1} \cup B_{2} \cup \cdots B_{k}\right|=
$$

Sampling With and Without Replacement

Suppose we have N items, K of which are marked and we plan to sample n of these items.

- If we sample with replacement, what is the probability the sample contains x marked items?
- If we sample without repalcement, what is the probability the sample contains x marked items?

