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An Illustrative Dataset

The CDI dataset contains Demographic information for the 440 most populated counties in the United States.
Throughout this handout, we will be focusing on two variables.

1. percentPoverty - The percent of the population which is below poverty level.
2. percentDiploma - The percent of the (adult) population with a High School diploma.

CDI_data <- read.csv('http://math.unm.edu/~knrumsey/classes/spring17/MiniProjects/data.csv')
percentPoverty <- CDI_data$PercentBelowPoverty

Measures of Center

Mean

The sample (arithmetic) mean, is what most people mean when they say “average”. In Statistics, we
denote the mean of observations x1, x2, · · ·xn by x̄, which we obtain by adding up the observations and
dividing by the sample size.

x̄ = 1
n

n∑
i=1

xi

We can compute the sample mean easily using R.
mean(percentPoverty)

## [1] 8.720682

Median

The sample median of a set of numbers (also referred to as the second quartile or the 50th percentile), is
any number M that separates the data in half. That is, the number of of observations which are less than or
equal to M should be the same as the number of observations which are greater than or equal to M . For
instance, if x1 = 1, x2 = 2 and x3 = 3, then the Median must be M = 2. However, if we add x4 = 4, then any
number between 2 and 3 fits the definition of a Median. In this case, we usually define M to be the midpoint
between 2 and 3, hence M = 2.5.

In general, if we have n observations x1, x2, · · ·xn, we can arrange them from smallest to biggest. We call the
sorted sample, x(1), x(2), · · ·x(n). Then the Median is defined as follows.

M =
{
x( n+1

2 ), n is odd
x(n/2)+x(n/2+1)

2 , n is even

We can compute the sample median easily using R.
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median(percentPoverty)

## [1] 7.9

Mode

The sample mode of a set of numbers, is the value which occurs most frequently. Intuitively, the Mode of
a distribution refers to the location of the highest peak of the distribution. Distributions sometimes have
multiple modes, so it is always a good idea to plot the data using a histogram. As an example, we consider
the following sample [1, 2, 4, 4, 4, 5, 6, 6, 7]. Since 4 occurs more often than any other value, it is the sample
Mode. We can find this in R by creating a table of the values, and extracting the value which occurs the
most often.
names(which.max(table(percentPoverty)))

## [1] "9.8"

When the observations can only take a handful of values (think discrete), the sample mode works well. But
in the percentPoverty example the data is nearly continuous. In these cases, the sample Mode can be
misleading. One simple approach is to round the data before computing the sample mode.
names(which.max(table(round(percentPoverty))))

## [1] "8"

Without going into too much detail, a non-parametric approach may provide better results. A kernel density
estimate (KDE) is a way of approximating the density curve of a data set. Since the population mode is
the location of the peak of a density curve, we can estimate the sample mode by finding the value which
maximizes the KDE of the dataset.
kde <- density(percentPoverty)
mode_np <- kde$x[which.max(kde$y)]
mode_np

## [1] 7.661602
#Plot density estimate and mode
plot(kde, lwd=2)
abline(v=mode_np, lwd=2, lty=2)
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Resistance

Note that the sample mean, sample median and sample mode are NOT the same as the mean and median
we discussed in chapters 3 and 4. We can refer to these as the “population” (or “true”) mean, median and
mode. Although we will discuss this more in chapter 7, it should be intuitive that the sample mean will be a
reasonable “estimator” for the population mean (and similarly for median and mode).

We say that an estimator is resistant, if it doesn’t change too much with an outlier. For instance, consider
this simple example.

• In the mid-1980’s, the average (sample mean) starting salary of geography students at UNC was about
150, 000.

• Seems suspiciously high. . . In fact, the Median was probably somewhere around 40, 000.
• We have Michael Jordan to thank for this.

Moral of the story, the sample mean is highly dependent on outliers, but the sample median is not. Another
quick example, consider three data points x1 = 1, x2 = 2, x3 = 3. Clearly the sample mean and median are
both 2. Now add a data point x4 = 1000, now x̄ = 251.5, but M = 2.5.

Measures of Spread

Sample Variance

The sample variance, denoted s2, is a commonly used measure of spread defined by

s2 =
∑n
i=1(xi − x̄)2

n− 1

The sample standard deviation, denoted s, is simply the square root of the sample variance. The term∑n
i=1(xi − x̄)2 is referred to as the sum of squares. The fact that we divide by n− 1 rather than n is often

unintuitive to people.

• Since the formula for s2 involves x̄, we have lost a degree of freedom. Thus we are dividing by the
degrees of freedom n− 1.
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• The variance of a single observation is now undefined instead of 0.
• We will see in chapter 7, that dividing by n leads to an “biased” estimator of σ2, but dividing by n− 1

yeilds an “unbiased” estimator.

The following figure illustrates both how the sample variance measures spread, and also demonstrates that s2

is NOT resistant to outliers. The sum of squares is just the sum of the areas of the squares in the figures
below.

1 2 3 4 5

0
1

2
3

4
5

Sum of Squares =  14.19

x

0 5 10 15 20 25
0

5
10

15
20

25

Sum of Squares =  423.7

x

There is also a convenient identity for calculating s2 which is sometimes called the shortcut method. This
identity will be very useful in the next chapter.

s2 = 1
n− 1

(
n∑
i=1

x2
i − nx̄2

)

Order Statistics

Given a sample x1, x2, · · ·xn, the order statistics are just the sorted observations x(1), x(2), · · ·x(n). That is
x(i) ≤ x(i+1) for every i = 1, 2, · · ·n− 1. This means that x(1) can be interpreted as the minimum observation,
and x(n) is the maximum observation.

The Five Number Summary refers to 5 numbers (shocker) which describe the spread of the observations.

• Minimum: x(1)
• Maximum: x(n)
• Median (M): Defined above
• First Quartile (Q1): The median of all observations to the left of M .
• Third Quartile (Q3): The median of all observations to the right of M .

Intuitively, the quartiles divide the observations into 4 (approximately) equally sized groups. For example,
25% of the observations should be less than Q1 and 25% of observations should be greater than Q3.

As our first example, consider the observations (3, 2, 5, 1, 4). The five number summary is found as follows:

• Minimum: x(1) = 1
• Maximum: x(5) = 5
• Median: M = 3
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• First Quartile: There are 3 observations less than or equal to M = 3. Q1 is the median of these
observations, hence Q1 = 2.

• Third Quartile: There are 3 observations greater than or equal to M = 3. Q3 is the median of these
observations, hence Q3 = 4.

We can calculate the 5 number summary in R as follows.
quantile(c(1,2,3,4,5))

## 0% 25% 50% 75% 100%
## 1 2 3 4 5
quantile(percentPoverty)

## 0% 25% 50% 75% 100%
## 1.4 5.3 7.9 10.9 36.3

Finally, we define the sample range R = x(n)−x(1) and the Inter-quartile range (IQR) IQR = Q3−Q1.

Identifying Outliers

An outlier is an observation point which is far from the other observations. An outlier can be an extreme
case, such as the Michael Jordan example from earlier, or it can indicate some kind of error (experimental,
measurement etc.). For instance, if a Bio-Statistics study records the weight of a subject to be 1,500 pounds,
we can assume that this outlier is due to mis-recorded data. In general, it is not okay to eliminate outliers
from the dataset without good reason.

Outliers are difficult to describe mathematically. Most of the time, it is sufficient to plot a histogram and
see if any of the points look weird. With that said, we will discuss two easy methods for flagging certain
observations that may be outliers.

First Method - Assuming Normality

If we believe the data is normal, then we know that a z-score which is larger than 2 in absolute value should
(theoretically) occur less than 5% of the time. Therefore, we can standardize each observation

zi = xi − x̄
s

and flag any observations such that |zi| > 2.
z <- (percentPoverty - mean(percentPoverty))/sd(percentPoverty)
outliers <- which(abs(z) > 2)
percentPoverty[outliers]

## [1] 19.5 22.4 27.3 20.6 36.3 33.7 19.1 19.6 20.7 33.1 18.6 18.7 20.8 20.7
hist(z, main='Standardized Values', xlab='z')
abline(v=c(-2,2), lwd=2, lty=2, col='red')
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Therefore, according to this rule, we have flagged several observations as “upper” outliers. We can see that
our data clearly isn’t symmetric, so this should be taken with a grain of salt.

Bonferonni Improvement

In the previous approach, we flag an observation as an outlier if it is so “extreme” that it would have occured
less than 5% of the time. This means that in a sample of 100 observations, we expect 5 of these points to be
classified as outliers on average. With this logic, are these points really outliers?

A better approach is to let the critical value grow with the sample size. Without going into details, we can
use Bonferonni’s rule. This replaces the criteria |zi| > 2 with |zi| > z∗ where z∗ is the 1− α

2n quantile of the
N(0, 1) distribution. Hence setting α = 0.05 and using n = 440, we have z∗ = 3.86. Roughly speaking, this
ensures that Normally distributed data with n observations will flag no outliers with probability 1− α.
z_crit <- qnorm(1-.05/(2*length(percentPoverty)))
z_crit

## [1] 3.859463
z <- (percentPoverty - mean(percentPoverty))/sd(percentPoverty)
outliers <- which(abs(z) > z_crit)
percentPoverty[outliers]

## [1] 27.3 36.3 33.7 33.1
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Second Method - Using Quantiles

There is another commonly use method of flagging potential outliers, which is subtly related to the previous
method. As before, it works best if the data is Normal, or at least symmetric. First, we discuss Boxplots.

Boxplots

Boxplots are a convenient way to readily visualize the 5 number summary. R has a built in function for
plotting these easily.
boxplot(percentPoverty)
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The point symbols in the box-plot are potential outliers, according the 1.5× IQR rule.

1.5× IQR Rule

We define the upper and lower fence by

UF = Q3 + 1.5(IQR)

LF = Q1 − 1.5(IQR)

any observations below the lower fence, or above the upper fence are flagged as potential outliers. We can
accomplish this in R with the following code.
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UF <- quantile(percentPoverty, probs=0.75) + 1.5*IQR(percentPoverty)
LF <- quantile(percentPoverty, probs=0.25) - 1.5*IQR(percentPoverty)
outliers <- union(which(percentPoverty > UF), which(percentPoverty < LF))
percentPoverty[outliers]

## [1] 19.5 22.4 27.3 20.6 36.3 33.7 19.6 20.7 33.1 20.8 20.7

Assessing Distributional Fit

As we move along with the Statistics portion of this class. We will often have to assume a distribution for
the data. If the distributional assumption is wrong, this can lead us to false conclusions.

Probability Plots

Often, we assume that our data is Normally distributed. Plotting a histogram of the data is a good way to
determine if this assumption is reasonable. Probability plots are another good way to assess this fit, and they
can be extended to other distributions as well. Simply put, a probability plot, creates a scatterplot of x(i) vs
E(X(i)) under some distributional assumption. Clearly, these expected values can be hard to find, and is
beyond the scope of this class. Still, we can benefit from other peoples hard work.

If the distributional assumption is appropriate, then we expect these points to fall approximately on a line.
qqnorm(percentPoverty)
qqline(percentPoverty)
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Since these points don’t fall on the line, they tell us (what we already knew) that these data are most likely
not Normally distributed. In general,

• If the points are concave up, the distribution is skewed right.
• If the points are concave down, the distribution is skewed left.
• If the points are S shaped, the distribution has “heavy tails”.

Transformations

Sometimes, we can transform our data yi = g(xi) and acheive (approximate) normality. One useful family of
transformations known as the Box-Cox Power Transformation is

yi =
{
xλi , λ 6= 0
ln(xi), λ = 0

A Box-Cox plot tries out many of these transformations very quickly, and gives a curve indicating which values
of λ are the most likely. To do this in R, we need to install the “MASS” package install.packages('MASS').
library(MASS)
boxcox(lm(percentPoverty~1))
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We typically prefer to stick to transformations which make sense (such as λ = 1/2 or λ ∈ Z). Since the
dotted band is pretty close to 0, this indicates that a log transformation might help. We check this by
creating a histogram and Normal probability plot of yi = ln(xi).
y <- log(percentPoverty)
par(mfrow=c(1,2))
hist(y, main='Histogram of Transformed Data')
qqnorm(y)
qqline(y)
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The data appear much more normal than before. We may now be able to continue with our analysis assuming
normality, but we can’t forget to transform our results back to the original scale at the end.

Question: If a log-transformation makes our data normal, what does that say about the
distribution of percent below poverty level?

Relationships Between Variables

Assume we have paired observations of two variables (xi, yi). For instance xi and yi could represent the
height and weight of a particular person. Let x̄, ȳ, sx and sy denote the means and standard deviations of
the two variables. We define the sample correlation as

r = 1
n− 1

∑n
i=1(xi − x̄)(yi − ȳ)

sxsy

As with the population correlation ρ, we have that −1 ≤ r ≤ 1. The sample correlation is a quantitative
measure of the strength of direction of the linear relationship between two variables.

For our example with the CDI dataset, we consider a second variable, “percent of population with HS
diploma”. The correlation can be calculated in R as follows.
percentGraduate <- CDI_data$PercentHSGraduates
cor(percentGraduate, percentPoverty)

## [1] -0.6917505

Thus we can determine that the relationship between these variables is moderately strong, and they are
inversely related (as expected).
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Scatter Plots

Scatter plots are great tools for quickly visualizing the relationship between two variables. Each pair (xi, yi)
simply becomes a point on the plot. The plot() function in R handles this readily.
plot(percentGraduate, percentPoverty, pch=16, main='Scatterplot of Education vs Poverty')
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Linear Regression is a big topic in Statistics (you can take an entire course on it here at UNM). It deals
with understanding the relationship between two or more variables, and often involves using a “covariate” to
predict a “response” variable of interest. Although it is not within the scope of this class, we comment that
R makes it very easy to add a Linear Regression line to a Scatterplot.
plot(percentGraduate, percentPoverty, pch=16, main='Scatterplot of Education vs Poverty')
fit <- lm(percentGraduate ~ percentPoverty)
abline(fit, lwd=2, lty=2, col='orange')
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It should be apparent from the plot that a linear relationship may not be adequate for describing the
relationship between these variables.
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