1. We did this one in class.
2. Let A, B and C be the events that Alf, Betty and Carl are the killers. Let E be the event that poison was used. Let's start by noting the information we are given.

$$
\begin{gathered}
P(A)=P(B)=P(C)=1 / 3 \\
P(E \mid A)=0.5 \quad P(E \mid B)=0.1 \quad P(E \mid C)=0.99
\end{gathered}
$$

I am asking you for the probability that Carl is the killer given that poison was used, i.e. $P(C \mid E)$. Using Bayes theorem and the Law of TOtal probability in the denominator we have
$P(C \mid E)=\frac{P(E \mid C) P(C)}{P(E)}=\frac{P(E \mid C) P(C)}{P(E \mid A) P(A)+P(E \mid B) P(B)+P(E \mid C) P(C)}=\frac{0.99(1 / 3)}{(1 / 3)(0.5+0.1+0.99)}$
And we find that $P(C \mid E)=0.6226$. Although this evidence gives us some new information, it is not enough to convict Carl (in my humble opinion).
3.
a)

$$
\begin{aligned}
P\left(B \mid C^{c}\right) & =\frac{P\left(B \cap C^{c}\right)}{P\left(C^{c}\right)} & & \text { definition of conditional prob } \\
& =\frac{P\left(B \cap C^{c}\right)}{1-P(C)} & & \text { complementation } \\
& =\frac{0.15}{1-0.4}=0.25 & &
\end{aligned}
$$

b) By law of total probability,

$$
P(B)=P(B \mid C) P(C)+P\left(B \mid C^{c}\right) P\left(C^{c}\right)=0.5(0.4)+0.25(0.6)=0.35
$$

c) We use independence here: $P(A \cap B)=P(A) P(B)$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A) P(B)=0.45+0.35-(0.45)(0.35)=0.5075
$$

4.

a)

$$
\begin{gathered}
E(X)=1(0.1)+2(0.5)+3(0.2)+5(0.1)+7(0.1)=2.9 \\
E\left(X^{2}\right)=1^{2}(0.1)+2^{2}(0.5)+3^{2}(0.2)+5^{2}(0.1)+7^{2}(0.1)=11.3 \\
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=11.3-2.9^{2}=2.89
\end{gathered}
$$

b)

$$
E(\sqrt{X})=\sqrt{1}(0.1)+\sqrt{2}(0.5)+\sqrt{3}(0.2)+\sqrt{5}(0.1)+\sqrt{7}(0.1)=1.11
$$

c)

$$
F(x)= \begin{cases}0, & x<1 \\ 0.1, & 1 \leq x<2 \\ 0.6, & 2 \leq x<3 \\ 0.8, & 3 \leq x<5 \\ 0.9, & 5 \leq x<7 \\ 1, & x \geq 7\end{cases}
$$

5. We did this one in class too. Also similar to a previous homework question for which the solution is online.
6. We did this one in class, but I'll recap it very breifly. $X \sim \operatorname{Binom}(50,1 / 3)$.

$$
\begin{gathered}
E(X)=n p=50 / 3=16.67 \\
\operatorname{Var}(X)=n p(1-p)=100 / 9=11.11 \\
P(X=20)=f(20)=(1 / 3)(2 / 3)^{19}=.0705 \\
P(X \leq 20) \approx \Phi\left(\frac{20-16.67}{\sqrt{11.11}}\right)=0.8411
\end{gathered}
$$

Note that the exact probability (found with R) is 0.8741 .

Note that $Y \sim \operatorname{Geom}(1 / 20)$.

$$
\begin{gathered}
E(Y)=1 / p=20 \\
\operatorname{Var}(Y)=(1-p) / p^{2}=(19 / 20) /\left(1 / 20^{2}\right)=380 \\
P(Y=10)=(1 / 20)(19 / 20)^{9}=0.0315 \\
P(Y \geq 10)=1-P(Y<10)=1-P(Y \leq 9)=1-\left(1-(19 / 20)^{9}\right)=0.6302
\end{gathered}
$$

7. We did this one in class. Also several similar examples on homework.
8.

a)

$$
P(X>150)=1-P(X \leq 150)=1-\Phi\left(\frac{150-140}{20}\right)=1-\Phi(0.5)=0.3085
$$

b)

$$
P(90<X<150)=\Phi\left(\frac{150-140}{20}\right)-\Phi\left(\frac{90-140}{20}\right)=0.6853
$$

c) They are looking for z such that $\Phi(z)=0.01$. This gives $z=-2.33$. To convert to mg we use

$$
x=\mu+\sigma z=140+20(-2.33)=93.4 m g
$$

They should offer a refund if the coffee has less than 93.4 mg of caffeine.

