STAT 345 Spring 2018
Homework 5 - Continuous Random Variables
Name: $\qquad$

Please adhere to the homework rules as given in the Syllabus.

1. Trapezoidal Distribution. Consider the following probability density function.

$$
f(x)= \begin{cases}\frac{x+1}{5}, & -1 \leq x<0 \\ \frac{1}{5}, & 0 \leq x<4 \\ \frac{5-x}{5}, & 4 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

a) Sketch the PDF.
b) Show that the area under the curve is equal to 1 using geometry.
c) Find $P(X<3)$ using geometry.
2. Let $X$ have the following PDF, for $\theta>0$.

$$
f(x)= \begin{cases}\frac{c}{\theta^{2}}(\theta-x), & 0<x<\theta \\ 0, & \text { otherwise }\end{cases}
$$

a) Find the value of $c$ which makes $f(x)$ a valid PDF. Sketch the PDF (or plot it using R).
b) Find the mean (i.e expected value) and standard deviation of $X$. Your answers will be a function of $\theta$.
c) Find the CDF of $X$. Also sketch the CDF (or plot it using R).
d) The median of a RV, denoted $\eta$, is the value which is exceeded exactly half of the time. That is, $\eta$ must satisfy the equation: $F(\eta)=0.5$. Find the median of $X$.
e) Let $\theta=2$ for the remainder of this question. Find the probability of each of the following events:

$$
A=\{X>\sqrt{2}\} \quad B=\{0.5<X<1.5\} \quad C=\{X<0.5 \cup X>1.2\}
$$

3. Let $X$ be the height of a randomly selected UNM male student. Assume that $X$ is normally distributed with mean $\mu=70$ and standard deviation $\sigma=3$.
a) Find the probability that a randomly selected UNM male student is taller than legendary rapper Lonzo Ball ( 6 ft 6 in ).
b) Find the probability that a randomly selected UNM male student is between 5 feet and 6 feet tall.
c) If exactly $25 \%$ of UNM males are taller than Timothy, how tall is Timothy?
4. The Log-normal Distribution. In atmospheric science, the Log-normal distribution is often used to characterize particle size distributions. In one study, the distribution of silicone nanoparticle size (in nm ) was found to be approximately Log-normal with Log-mean $\theta=3.91$ and $\log$-sd $\omega=0.47$. Suppose the desired range of particle sizes is $(40 \mathrm{~nm}, 110 \mathrm{~nm})$. What percentage of silicone nanoparticles do you expect to fall within this range?

## 5. Normal Approximations.

a) Suppose that the number of cars that drive past Lomas on the I- 25 between 5 pm and 6 pm on a Wednesday can be modeled as a Poisson random variable with mean $\lambda=2100$. Use the Normal approximation to the Poisson distribution to determine the probability that less than 2000 cars drive past Lomas on the I- 25 between 5 pm and 6 pm this wednesday.
b) $37 \%$ of cars in Albuquerque are white. Last wednesday, 2200 cars drove past Lomas on the I-25 between 5 pm and 6 pm . Use the Normal approximation to the Binomial distribution to determine the probability that more than 800 of these cars were white.
6. Challenge Problem The Cauchy Distribution. Suppose that a flashlight is spun around its center, which is located 1 unit away from the $x$-axis. (See Figure below). Consider the point $X$ at which the beam intersects the x -axis when the flashlight has stopped spinning. (If the beam is not touching the x -axis at all, repeat the experiment.) In this problem, we will show that $X$ has a Cauchy distribution (equivalent to a t-distribution with only 1 degree of freedom).

a) The angle $\theta$ (shown in picture) is also a random variable, and it is reasonable to assume that $\theta \sim \operatorname{Unif}(-\pi / 2, \pi / 2)$. Write down the CDF of $\theta$.
b) Determine (using Trig) the relationship between $X$ and $\theta$. Use this relationship, and your answer in a), to find $F(x)$, the CDF of $X$. What is the median of $X$ ? Does this make sense?
c) Find $f(x)$, the PDF of $X$.
d) An interesting feature of the Cauchy distribution, is that the expected value is undefined (even though the median is perfectly reasonable). Show that this is true by finding

$$
I(a, b)=\int_{a}^{b} x f(x) d x
$$

and showing that

$$
\lim _{a \rightarrow-\infty} \lim _{b \rightarrow \infty} I(a, b)
$$

does not equal

$$
\lim _{b \rightarrow-\infty} \lim _{a \rightarrow \infty} I(a, b)
$$

