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The normal distribution is one of the most important distributions in all of statistics. In fact, one could

argue that the normal distribution is sometimes used more often than it should be. The normal distribution

is also know as a Gaussian distribtuion or the Bell-curve distribution. The normal distribution is character-

ized by two parameters, the mean µ and the standard deviation σ (or equivalently, the variance σ2). The

distribution is always symmetric, unimodal and "bell-shaped".

Definition: If X has a normal distribution with mean µ and sd σ, then the probability density function is

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 , ∞ < x <∞

The expected value and variance of X is

E(X) = µ Var(X) = σ2

Notationally, we write X ∼ N(µ, σ2).

Figure 1. Illustration of the so-called 68− 95− 99.7 rule.
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The CDF for a normal distribution cannot be written down analytically, and must be computed numer-

ically. We will discuss how to find normal probabilities shortly, but also note that the CDF of a normally

distributed RV X can be computed in R as P (X ≤ x)
R
= pnorm(x, mu, sigma).

The 68 − 95 − 99.7 rule is a very crude way to approximate probabilities for a normal RV. This rule,

illustrated in Figure 1, states that

P (µ− σ < X < µ+ σ) ≈ 0.68

P (µ− 2σ < X < µ+ 2σ) ≈ 0.95

P (µ− 3σ < X < µ+ 3σ) ≈ 0.997

Example: Suppose that the weights of adult male African elephants are normally distributed with a mean

of 13 thousand pounds and a standard deviation of 2.5 thousand pounds.

i) What is the probability that a randomly selected African elephant (adult male) weighs between 8

and 18 thousand pounds?

According to the normal distribution, this probability is approximately 0.95 because µ − 2σ =

13− 2(2.5) = 8 and µ+ 2σ = 13 + 2(2.5) = 18.

ii) What is the probability that a randomly selected adult male African elephant weighs less than 8

thousand pounds OR more than 18 thousand pounds?

Clearly this is the complement of the event from the previous problem, so the probability is ap-

proximately 0.05.

iii) What is the probability that an adult male African elephant weights more than 18 thousand pounds?

Since the normal distribution is symmetric, the probability found in the previous example must be

split evenly between the "less than 8 thousand pounds" and "more than 18 thousand pounds" cases.

So the probability is approximately 0.025.

iv) Suppose that Jumbo is an adult male African elephant. About 84% of other adult male African

elephants weigh more than Jumbo. How much (approximately) does Jumbo weight?

Let x be Jumbo’s weight and let X be the weight of a randomly selected adult male African elephant.

The problem statement tells us that P (X > x) = 0.84 or equivalently that P (X ≤ x) = 0.16. Using

similar logic as in the previous problems, we can reason that Jumbo’s height must be µ−σ = 13−2.5 =

11.5 thousand pounds.

Next, we state an important fact about the normal distribution.
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Theorem 1: If X is normally distributed, then so is any linear function of X. In other words, for constants

a and b, the RV aX + b is normally distributed with mean aµ+ b and variance a2σ2.

Definition: We say that Z has a standard normal distribution if it is normally distributed with mean µ = 0

and variance σ2 = 1. I.e. Z ∼ N(0, 1).

The PDF of Z is

f(z) =
1√
2π
e−z

2/2.

The CDF of Z is very important (at least historically) in statistics, so rather than using the usual F (z), we

use a capital "phi" to denote it. That is,

P (Z ≤ z) = Φ(z).

The CDF Φ(z) still must be computed numerically, but the value can be found for a large number of z using

a Standard Normal Table. This was very important/useful in the days before computing power was readily

available. In this class, we will try to use R (or the internet) to calculated the normal CDF, but it is fairly

straightforward to use the tables when required (demonstration was done in class).

Example. Let Z be a standard normal random variable. Find the following probabilities.

i)

P (Z ≤ 1.45) = Φ(1.45) = 0.9265

ii)

P (Z > 0.55) = 1− P (Z ≤ 0.55) = 1− Φ(0.55) = 1− 0.7088 = 0.2912

iii)

P (−1.36 < Z < 1.45) = Φ(1.45)− Φ(−1.36) = 0.9265− 0.0869 = 0.8396

Alternatively, I could give you a probability statement and ask you to find the corresponding z. For example,

if P (Z > z) = 0.25, then what is the value of z?

P (Z > z) = 0.25

1− P (Z ≤ z) = 0.25

Φ(z) = 0.75
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This means that z = Φ−1(0.75). This value can be found by "reversing the process" when using the table

(demonstrated in class), or in R using the "quantile function". In R,

Φ−1(p)
R
= qnorm(p, mu, sigma)

For this example, we find that z must be equal to z = 0.67.

Standardization. The nice thing about Theorem 1, is that we can use it to go back and forth between any

two normal distributions. The most common cases are given now.

If X ∼ N(µ, σ2), then Z = X−µ
σ has a standard normal distribution.

If Z ∼ N(0, 1), then X = µ+ σz has a N(µ, σ2) distribution.

This means that we can express the CDF of a normal distribution (for any µ and σ) in terms of the

standard normal CDF.

P (X ≤ x) = P (X − µ ≤ x− µ)

= P

(
X − µ
σ

≤ x− µ
σ

)
= P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)

Example: Let X be normally distributed with mean µ = 70 and sd σ = 3.

i) What is the probability that X is at least 74?

P (X > 74) = 1− P (X ≤ 74) = 1− Φ

(
74− 70

3

)
= 1− Φ(1.33) = 1− 0.9082 = 0.0917

ii) What is the probability that X is between 70 and 74?

P (70 < X < 74) = P (X ≤ 74)−P (X ≤ 70) = Φ

(
74− 70

3

)
−Φ

(
70− 70

3

)
= 0.9082−Φ(0) = 0.9082−0.5000 = 0.4082

i) What value x is exceeded with probability 0.6?
P (X > x) = 0.6 ⇒ P (X ≤ x) = 0.4 ⇒

Φ

(
x− 70

3

)
= 0.4 ⇒ x− 70

3
= Φ−1(0.4) ⇒

x = 70 + 3Φ−1(0.4) = 70 + 3(−0.25) = 69.25
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Normal Approximations. By typing "Binomial distribution applet" into google, you can find a tool which

will plot the PMF of a Binomial distribution for any values of n and p. Note that when n is large (and p is

not too close to 0 or 1), the distribution looks very much like a normal distribution.

Remember that np is the "expected" number of successes in the experiment. You are probably not

surprised to hear that n(1 − p) is the "expected" number of failures in the experiment. As long as both of

these quantities are reasonably large (some textbooks suggest they should be at least 15) then the normal

approximation is quite good.

This gives us an easy way of approximating probabilities which are otherwise too tedious (by hand) or

too computationally difficult (n has to be very very large for this to be a problem). The rough idea, is that

the Binomial CDF can be approximated using the normal CDF. Let X ∼ Binom(n, p), then

P (X ≤ x) ≈ Φ

(
x− np√
np(1− p)

)
(not the correct formula).

Similarly, we could define

P (X ≥ x) ≈ 1− Φ

(
x− np√
np(1− p)

)
(not the correct formula).

There is a small problem with these results. Since the Binomial distribution is discrete, these formulas won’t

always match. For example, let n = 100 and p = 0.5, so that µ = np = 50 and σ =
√
np(1− p) = 5,

and suppose we are looking for P (X < 40). There are two, seemingly correct ways to approximate this

probability.

P (X < 40) = P (X ≤ 39) ≈ Φ

(
39− 50

5

)
= Φ(−2.2) = 0.0139

P (X < 40) = 1− P (X ≥ 40) ≈ 1−
(

1− Φ

(
40− 50

5

))
= Φ(−2.0) = 0.0227

Do you see the problem? We can fix this by applying a continuity correction, which typically leads to a

better approximation as well. Here is the final result written down.

Normal approximation to the Binomial. Let X have a binomial distribution with n trials and success

probability p. If np and n(1− p) are large, then X is approximately normally distributed with mean µ = np

and variance σ2 = np(1− p), and the following approximations hold.

P (X ≤ x) ≈ Φ

(
x+ 0.5− np√
np(1− p)

)
P (X ≥ x) ≈ 1− Φ

(
x− 0.5− np√
np(1− p)

)
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You may remember that there is a relationship between the Binomial distribution and the Poisson dis-

tribution. So it should be unsurprising that a similar result holds for the Poisson distribution when the

expected value λ is large. For the same reasons as before, we will apply a continuity correction.

Normal approximation to the Poisson. Let X have a Poisson distribution with parameter λ. If λ is

large, then X is approximately normally distributed with mean µ = λ and variance σ2 = λ, and the following

approximations hold.

P (X ≤ x) ≈ Φ

(
x+ 0.5− λ√

λ

)
P (X ≥ x) ≈ 1− Φ

(
x− 0.5− λ√

λ

)

These formulas should be fairly straightforward to apply. For examples, see the homework questions about

these topics (and ask me if you have any questions).

The Lognormal Distribution. There are many real life applications, where the variable of interest must

take on a positive value. Examples include time, weight, height, mass, etc. The normal distribution may

not be a good choice for many of these variables, especially those with heavy skew. The exponential and

uniform distributions are often not flexible enough to be a good choice either. The Weibull, Gamma and

Lognormal distributions are more flexible distributions which can be used to describe the distribution for

many real world applications. Weibull was covered very briefly in the previous lecture notes. Gamma will

be covered briefly after spring break. Here, we briefly cover the Lognormal distribution.

Definition. Let Y be normally distributed with mean θ and standard deviation ω. If X = eY , then we say

that X has a lognormal distribution with "log-mean" θ and log-sd ω. The PDF of X can be written down

(look it up online if you want) but is not very useful. Notationally, we write X ∼ logN(θ, ω) and we have

E(X) = eθ+ω
2/2 V ar(X) =

(
eω

2

− 1
)
e2θ+ω

2

The CDF can be written as

P (X ≤ x) = Φ

(
ln(x)− θ

ω

)
, x > 0

Other facts about the lognormal distribution include that its median is eθ and its skewness is

Skew(X) =
(
eω

2

+ 2
)√

eω2 − 1.
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Note that the skewness is always positive. It is fairly close to 0 (i.e. symmetric) when ω is very small. When

ω is large however the skew can be very large, indicating that this distribution is useful for modeling data

with a heavy right skew. The last section of these notes focuses on further explaining why the lognormal

distribution gets its name, and deriving the CDF given above.

If X ∼ logN(θ, ω) and Y = ln(X), then Y is normally distributed with mean θ and variance ω2. Hence the

name, taking the log leads to a normal distribution. The CDF of the lognormal distribution can be derived

as:

P (X ≤ x) = P (ln(X) ≤ ln(x))

= P (Y ≤ ln(x))

= P

(
Y − θ
ω
≤ ln(x)− θ

ω

)
= Φ

(
ln(x)− θ

ω

)

Figure 2. The lognormal distribution for 3 different sets of parameters.
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