
The Strengths, Weaknesses and Promise of
Differential Privacy as a Privacy-Protection

Framework
Catherine Wright

Dept. of Computer Science
University of New Mexico

wrightc@unm.edu

Kellin Rumsey
Dept. of Mathematics and Statistics

University of New Mexico
knrumsey@unm.edu

Abstract—Protection of personal information inside a database
is an important and challenging problems. With the advance-
ments in theory of hardware over the past several decades,
database systems are more than ever before vulnerable to
database reconstruction and linkage attacks. We discuss Dif-
ferential Privacy as a framework for privacy protection, which
makes mathematical guarantees to individuals that they not
be harmed by their participation in a database. We discuss
query response methods which achieve differential privacy, and
thoroughly examine the associated challenges.

Index Terms—database reconstruction, differential privacy,
linkage attacks

I. INTRODUCTION

Statistical databases are an essential part of life in the
21st century and lead directly to the betterment of society
as a whole. These datasets are used daily to inform policy
decisions, advise allocation of resources, lead to innovations in
technology and are critical to scientific learning in fields such
as medicine. Although statistical databases benefit society as
a whole, recent hardware and theoretical advancements have
made individuals vulnerable to adversarial privacy attacks.
Although there is little or no consensus as to the ”how”, most
agree that database distributers have an ethical obligation to
protect the data of an individual to a reasonable extent.

Sensitive data publishers have long been aware of privacy
concerns, and take elementary steps towards protection of each
individuals privacy. Historically, this means withholding data
at the individual level and publication of data only at the
higher sub-group level. Even if data is published at high levels
of aggregation, the original microdata can be reconstructed
in what is known as a database reconstruction attack [1].
This reconstruction of microdata involves (i) specification
of mathematical constraints, (ii) translation of constraints to
boolean variables and (iii) solving the satisfiability (SAT)
problem. The first step, while challenging in it’s own ways,
is not a computationally challenging task. Translation of these
constraints can now be accomplished using special languages
such as Sugar. Once the constraints have been translated, the
SAT problem must be solved. Although the SAT problem
is NP-complete, rapid progress over the last 2-3 decades

has produced SAT solvers which use a variety of advanced
heuristics to prune vast amounts of the search space and
are capable of solving systems with over a million variables
in just a couple of minutes [2]. As capabilities for parallel
processing continue to improve, a well-equipped adversary can
completely undermine the privacy of a vulnerable dataset.

There are at least three modern approaches for defense
against adversarial reconstruction attacks, which we outline
here. The first and most straightforward solution is to publish
less data. This defensive strategy has the obvious drawback
of limiting inferences which can be made about the popula-
tion as a whole, limiting the usefulness of the database. If
the theoretical promises of quantum computing for NP-hard
problems ever become a reality or other unforeseen speed-
ups lead to SAT solvers which continue to improve, even
this seemingly obvious solution may become unreasonable.
A related challenge is the determination of how much (or
little) data is safe to publish. The second and third strategy are
both related to noise injection, either to query results (output)
or to the published data itself (input). Both of these ideas,
along with a comprehensive comparison, will be discussed
in greater detail throughout this paper. It is hopefully clear
that such a method must depend on the noise injection level,
with two extreme cases on either end of the spectrum. Adding
too little noise to the data clearly compromises privacy of the
data, but adding too much noise renders the dataset practically
ineffectual for inferential purposes. To achieve a meaningful
balance between these two extremes, a rigorous mathematical
framework will be desired [3]. Although it comes equipped
with its own set of challenges and weaknesses, differential
privacy has shown a tremendous amount of promise in the
search for such a framework.

The rest of this paper is outlined as follows. In section 2,
we provide a general discussion of privacy requirements for
private databases and some of the general challenges. Section
3 defines differential privacy and illustrates the theoretical ap-
plication with a number of examples and Section 4 illustrates
the extension of the framework to a more complicated setting.
Section 5 provides a detailed discussion of the weaknesses of
the differential privacy framework as the relate to practical im-



plementations, and section 5 describes some modern attempts
to overcome these practical challenges. Section 6 discusses the
closely related notion of Pan-privacy and concluding remarks
are found in section 7.

II. PRIVATE DATABASES

A. The ”Why?” of Database Privacy

It is almost universally accepted that a database publisher
should be required to keep anonymity and protect the privacy
of its participants. We first note that not all datasets are
created equally, and it is worth discussing what differences,
if any, apply ethically to the publishers of these datasets. Data
is collected primarily in three different ways: compulsory,
altruistically and opportunistically [1]. Compulsory data, such
as census or tax data, is often mandated by an official organi-
zation such as State or Country. Altruistic data refers to data
which is willingly given by respondents who choose to share
their data in hope that it will help inform decision making.
This data may include medical or political survey responses.
Opportunistic data refers to data which is obtained, often
unknowingly to the participant, via circumstantial methods.
This class of data, for instance, refers to Google search history,
Snapchat selfie data, credit card history and twitter scraping.

Compulsory data, especially when compelled by govern-
mental institutions, is required by law to abide by certain
privacy requirements. In a similar vein, altruistic data donors
rightfully expect that their personal data will be kept private. If
altruistic data regularly violates this inherent agreement, there
will quickly be few individuals who are willing to provide
data. Opportunistic data is an interesting case, especially
given it’s relatively new emergence. These organizations are
often privately owned or at least not held to the same legal
requirements as compulsory data. There have been a number
of privacy violations as of late, such as Facebook exposing
the personal information of nearly 50 million users after a
computer network attack in 2018 or Amazon sending 1,700
personal ”Alexa” recordings to the wrong person [4]. If the
public blowback alone is not enough to encourage these
companies to protect the privacy of its users, ethical and
legal requirements should. It seems reasonable that for the
betterment of society, all forms of data should be held to (at
least) a minimal requirement of privacy.

B. The ”How?” of Database Privacy

Before we discuss the rigorous framework provided by
differential privacy, we begin our discussion with a number of
informal ideas for privacy protection of statistical databases
[5]. A common suggestion is to restrict queries which ask
about individuals or small groups and limit only to larger
subgroups. Our previous discussion on microdata reconstruc-
tion through a database reconstruction attack should make it
obvious that this approach will fall flat, but we give a simple
example anyways. Suppose an adversary makes the following
two queries about the entire dataset.
Q1: How many people in the database have blue eyes?

Q2: How many people in the database, not named Alan
Turing, have blue eyes?

If these queries return different counts (clearly separated by
one value), we have deduced that Alan Turing must have blue
eyes. A simple fix, it would seem, is to disallow queries about
unique identifiers such as name. Equipped with the mathemat-
ical and computational tools such as a fast SAT solver and the
appropriate set of constraints however, a database reconstruc-
tion attack can be performed regardless of this attempt. If we
add auxiliary information into the equation then matters get
even worse, but more on this later. A natural follow up is the
idea referred to as query auditing, which designates that each
query should be evaluated in the context of the query history
to determine if a query might disclose personal information.
Such an approach however is a computational impossibility for
large databases and query histories. In addition, we consider
the blue-eyed Alan Turing example from above, and note that
if the query system had chosen not to respond, this fact alone
may be disclosive of Alan’s eye color. Next, we recall the
idea of publishing less data (discussed in the introduction)
and suggest a related approach. Subsampling methods revolve
around the idea of publishing only a sample of the population,
denoted by a random sample of rows in the table. In some
sense, this seems to achieve the balance between privacy and
efficacy that we so desperately need. If the subsample is large,
then the data will be useful for inference. If the population
is larger still, so that the subsample is small in comparison,
each persons privacy will be protected on average. Although
”average privacy protection” sounds nice in principle, it means
nothing to the unlucky individual whose social security num-
ber was just leaked. Subsampling methods can be improved,
by applying them at the query level so that certain statistical
inferences can be made for the population while having some
level of probabilistic control over the privacy protection of an
individual. If the consequences are high however, or if the
population is small/moderate in size, this method too will fall
far short and an individual will be harmed.

C. The ”What?” of Database Privacy

This last example leads our discussion to an interesting
arena. In the preceding paragraph, we discussed the short-
comings of several informal ”hows” of private data analysis.
Perhaps a more important question, for now at least, is ”what”?
In 1977, a statistician named Tore Dalenius proposed a privacy
goal for statistical databases which was considered to be a gold
standard for many years [?]. The idea is simple,

”Anything that can be learned about a respondent
from the statistical database should be learnable
without access to the database.” - Tore Dalenius

Five years later, the concept of Semantic security was intro-
duced to the world, and is strikingly similar to Dalenius’ goal.
Even today, Semantic security is considered the gold standard
for security of cryptosystems. Semantic security states that
the encryption of a message should reveal nothing about the
message itself. In fact, the lack of semantic security was



precisely the ingredient needed for the real Alan Turing (et. al.)
to crack Enigma during WWII. Semantic security is formalized
by requiring an optimal adversary with exhaustive auxiliary
information to gain no information when he/she obtains access
to the ciphertext. Attempts to formalize Dalenius’ criterion for
private databases usually boil down to Bayesian approaches,
in which a characteristic or feature of an individual is assigned
a prior distribution. With each query, the prior distribution is
”updated” and turned into a posterior distribution. If Dalenius’
goal is to be achieved, we should require that the prior
and posterior distributions are ”not too different”, measured
perhaps by Kulback Leibler divergence or some similar metric
[8]. This idea, which works so well in related fields, feels
intuitively like the right direction. It feels like the benchmark
criterion we have been looking for. So what goes wrong? Let
us turn again to our imaginary blue eyed Alan Turing. Suppose
Alan Turing proudly tweets that his eye color is the third
most common eye color in all of England. A strange thing
to post to Twitter, but let us carry on with the hypothetical for
illustrations sake. Alan Turing has revealed nothing directly
about his eye color, but if a quick database query reveals that
the third most common eye color in Britain is ”blue”, we have
learned something ”private” about Alan Turing that we did not
know before. This use of auxiliary information leads to what
we call a linkage attack. This silly hypothetical example can be
formalized by a rigorous impossibility result, and the entirety
of Dalenius’ desideratum comes crashing down. Turing did
not even need to be a member of the database to be ”hurt” by
this adversarial attack. Surely we can agree however, that it is
not the publishers of this eye-color database responsibility to
protect Alan Turing’s private information from this sort of an
attack.

Whether the data is compulsory, opportunistic or altruistic,
Dalenius’ goal is unreasonable in far too many settings,
especially as hybrid opportunistic/altruistic data becomes more
readily available in the modern era of social media and big
data. Thus we need to seek a more realistic goal. Publication
of a database can by no means guarantee that no harm comes
to an individual. Take another simple example for illustration.
Consider a medical database which conclusively demonstrates
that smoking severely increases the risk of cancer. There
is no way to guarantee that a current smoker will not be
harmed by this result. His insurance costs may increase and
the state he lives in may raise tobacco taxes. Most would
agree however, that this not the fault or responsibility of
the agency who conducted the study or the agency who
published/hosted the database. We certainly know more about
the smoker as an individual after the results of the study than
we did before. The key takeaway here, is that the impact on
the smoker had nothing to do with his inclusion or exclusion
from the study. The information gained on this individual, via
auxiliary information, could have been gained regardless of
his participation. It appears that a reasonable and achievable
standard has just made itself known [7].

”[This form of] privacy promises to protect individ-

uals from any additional harm that they might face
due to their data being in the private database x
that they would not have faced had their data not
been part of x.”

While it may not be as illustrious as Dalenius’ unachievable
goal, many have argued that this is in many ways sufficient.
To the altruistic donor, this is more than sufficient for the
perceived pros to outweigh the cons. A compulsory donor
may still have reason to complain, but if the database is truly
necessary then this requirement should be satisfactory. It turns
out that this is exactly the promise made by differential privacy
and, as we will shortly see, it takes a mathematically rigorous
path in doing so.

III. DIFFERENTIAL PRIVACY

The primary goal of differential privacy is to formalize
the promise of the previous section. Put another way,
differential privacy guarantees that the ability of an adversary
to learn information about an individual is almost the
same, independent of the individuals participation status
in the dataset. To put this in the Bayesian framework, as
we did for Dalenius, the distance between our prior and
posterior distribution for an individual should be essentially
independent of his inclusion or exclusion in the dataset. We
formalize this notion by first considering pairs of datasets
A and B which differ by exactly one row. This single row
corresponds to an individual who is either being added or
removed from the database. Returning to the idea of noise
injection which was discussed in Section I, we consider a
randomized perturbation function K, which maps a dataset D
to a possibly altered dataset K(D) = D′. We are now ready
to formally state the definition of differential privacy.

Definition: A randomized function K provides ε-differential
privacy if for all datasets A and B differing by exactly one
row, we have

P (K(A) ∈ S) ≤ eεP (K(B) ∈ S)

where S is an arbitrary subset of Range(K).

To better understand this definition, let us fix our attention
on a particular pair of datasets A which is complete and B
which is identical to A with the omission of exactly one
individual. Note that the definition given above applies in both
directions. This yields the inequalities

P (K(B) ∈ S)e−ε ≤ P (K(D) ∈ S) ≤ P (K(B) ∈ S)eε.

The region defined by these inequalities in shown in Figure 1,
where P (K(A) ∈ S) is taken (arbitrarily) to be 0.25. Notice
that as ε → 0 we are requiring that the privacy mechanism
yields K(B) ∈ S with exactly the same probability as K(A) ∈
S regardless of the single omitted individuals participation. As
ε increases, this probability bound increases as well decreasing
the strength of the guarantee.

To understand a 0-differentially private mechanism, consider
the ridiculous (and completely useless) perturbation function



Fig. 1. Implications of ε-differential privacy. The horizontal dotted line
represents P (K(A) ∈ S). The shaded region represents the ε-differential
privacy equations for P (K(B) ∈ S)

K0 which maps any dataset D to a dataset Z which consists
entirely of random entries according to some fixed probability
distribution. Clearly, this non-sensical privacy mechanism is
outputting garbage which will provide no inference at all about
the population of interest. An individuals information will
always be protected trivially, and inclusion or exclusion from
the dataset makes no difference at all. On the other extreme
consider a not-so-random mechanism K1 which always maps
D to itself (the identity function). There will always be
datasets and queries which violate differential privacy for any
reasonable ε value. To see this, we return to the example of
section 2 where we first discovered that Alan Turing has blue
eyes. Let S be the set of possible databases which such that
the result of Q1 minus the result of Q2 is equal to 1. If A is
the dataset with Alan and B is the dataset without him, then
we have:

P (K1(A) ∈ S) = 1 and P (K1(B) ∈ S) = 0

It can immediately be seen that differential privacy cannot be
achieved for any value of ε > 0 no matter how large. Now that
we have explored, somewhat humorously, these two extremes,
we turn our attention to more realistic choices of K.

A. Achieving Differential Privacy

As a first attempt at achieving differential privacy, we can
utilize a rather old idea from the Statistics literature. Consider
the following problem for a moment. The year is 1965 and
researchers are interested in determining the proportion of
High school students who use illegal drugs [9]. Because
students will often lie about such a question, for fear of
repercussion, the following scheme was used. The researcher
asks the student to flip a coin. After the flip, the student is
asked to answer yes or no to one of the following questions:

• If heads: Have you used an illegal drug in the last month?
• If tails: Was your birthday in the month of June?

Since the probability of the coin landing heads is known
(1/2) and the probability of a birthday in June is also known
(1/12), the researchers were able to adjust the inference on the
unknown parameter of interest accordingly while protecting
the privacy of the students. This scheme can be generalized for
a larger class of problems and can be shown to be differentially
private. Consider a property-count query which asks for the
number of individuals in a dataset satisfying some property
Q. For each individual in the dataset have them ”respond
truthfully” (i.e. count them) with probability p and have them
”lie” with probability 1−p. The odds of telling the truth is the
ratio p/(1−p), and it can be shown that this sampling scheme
satisfies ε-differential privacy when ε is equal to the ”log odds”
(ε = ln(p) − ln(1 − p)). We can analyze the inferential error
using standard properties of the Binomial distribution. Let
bi = 1 if the ith person in the database satisfies property
Q and let Ci be a random variable (representing the coin flip)
which is equal to 1 with probability p and 0 otherwise. Then
the ”response” of the ith individual is a random variable Xi

defined by
Xi = biCi + (1− bi)(1− Ci)

Now the error in the response can be defined as ∆ =∑n
i=1 bi−

∑n
i=1Xi. If the true answer to the query is m, we

have the following results for the expected value and variance
of ∆.

E(∆) = 2m(p− 1) + n(1− p)
V (∆) = 4mp(1− p) + np(1− p)

We note that when p ≈ 1 the error term is approximately
zero. Unfortunately, if p ∈ (0, 1), a necessary requirement
for protection of privacy, then the variance of the error term
grows linearly with the sample size n. Let us summarize by
considering two simple cases with n = 1000 and m = 400.
Suppose the query ”lies” with probability 1/3 leading to a
ln(2) (ε = 0.69) differentially private algorithm. The error
term has an expected magnitude of 100 with a variance of
467 leading to nearly useless inference. We can decrease 1−p
to 1/10 shrinking the expected value of error to 30 and the
variance to 189, but the algorithm is far less private with ε =
2.2. This approach is the one outlined in [7], and we note that
the ”bias” of the response can be reduced via a careful bias
adjustment, but the variance of the error always scales linearly
with n. Although this is a decent first attempt at achieving
differential privacy, we will see that we can do much better by
achieving error on this type of query whose growth is constant
as a function of n.

B. Improving Differential Privacy with Laplacian Noise

In order to achieve differential privacy, we must build
around the idea of hiding the participation of a single individ-
ual. We start by examining a few simple queries in particular
for a hypothetical database containing salary information for
some population.



• How many individuals in the database have a salary of
more than $45, 000?

• What is the average salary of individuals in the database?
• What is the maximum salary of individuals in the

database?

The first query is ideal for differential privacy, since par-
ticipation (or lack thereof) of an individual can change the
answer by at most 1. If the dataset is relatively small and
contains an outlier (i.e. the CEO of a medium size company),
the second query can be strongly influenced by the inclusion
or exclusion of this outlying individual. Nonetheless in many
large data settings, or if skew and outliers are limited, this
query might be easily handled by differential privacy. On the
other hand, the third query presents a challenge since the
maximum depends solely on a single individuals private data.
If this individual opts out of the study and the next highest
salary is significantly lower a tremendous amount of noise
will need to be added to ensure differential privacy. We will
discuss these practical shortcomings of differential privacy in
more detail in Section 5. For now, we focus on queries of the
first type, generally stated as ”how many rows in a database
satisfy property Q”? Differential privacy for these types of
queries can be ensured by adding noise to the query response
in an appropriate manner. Consider two databases A ⊂ B
differing by a single row, and let S be the set which contains
all databases whose answer to the property-count query lies
between [r−1, r+1]. Suppose the true response on dataset B
is r and the true response on dataset A is r−1. For differential
privacy to hold, we need the privacy mechanism to add noise
δ such that

P (r + δ − 1 ∈ [r − c, r + c]) ≤ eεP (r + δ ∈ [r − c, r + c])

By standard inequality manipulation, the r drops out of this

Fig. 2. Distribution of responses to the salary query with ε = 1.

equation and rearranging yields:

P (1− c ≤ δ ≤ c+ 1)

P (−c ≤ δ ≤ c)
≤ eε

Thus when you shift the interval by at most 1 unit, the ratio
of probabilities should be bounded above by eε. An identical
argument (swapping the role of A and B in the definition)
gives a lower bound of e−ε. So to satisfy ε-differential privacy
for the property-count query, we only need to determine
a distribution which has this property. This property can
be easily guaranteed by using noise δ which is distributed
according to a Laplacian (or double exponential) distribution
with density function

p(z|ε) =
ε

2
exp(−ε|z|), z ∈ R

The variance of the Laplace distribution is 2/ε2 and it is
centered at 0. Consider the first query in our hypothetical
salary database where B is the complete data and A is identical
except for the removal of the CEO. The true answer to this
query with respect to B is 205 and is 204 with respect to
A. Figures 2 and 3 illustrate the trade-off between precise
inference and privacy protection as ε decreases from 1 to
0.2. When ε takes on larger values such as 1, we maintain
the ability to perform precise inference on the population of
interest at a privacy cost. Decreasing ε strengthens the promise
of differential privacy, but inference necessarily becomes less
precise.

One particularly nice feature of this approach, is that the
variance of the error is constant, independent of the number
of dataset rows or sample size n. If the true response to a
property-count query is m, then the response to the query is
m+δ, δ ∼ Laplace(ε) so that the error is 0 on average and has
a variance of 2/ε2 which is independent of n. In other words,
the error of this approach is O(ε) compared to the O(

√
neε)

Fig. 3. Distribution of responses to the salary query with ε = 0.2.



error of the randomized response approach from the previous
subsection.

For this type of query, i.e asking for the number of rows
which satisfy a property, differential privacy provides a suit-
able robust and mathematically rigorous approach which can
still allow for precise inference about the database population
as a whole. For other queries, such as arithmetic or rank
queries, the required amount of noise will be a function of
the query sensitivity which in turn relies of the underlying
distribution of the variable with respect to the database.
Unless we are willing to make distributional assumptions, a
reasonable approach in many scenarios, then the required noise
will be unbounded leading to useless privacy mechanisms
with regards to reliable inference. These difficulties will be
discussed further in Section 5. Although differential privacy
with Laplacian noise is a natural and effective solution to
the property-count query, we next consider an attack which
allows for a large number of such queries. As we will shortly
formalize, it is easy to see that differentially private systems
will be vulnerable to such attacks based on the limit theorems
of Statistics.

C. Protection Against Multiple Queries

If an adversary makes a query Qi, hoping to discover the
true response m, he will receive a response equal to m + δi.
Suppose the adversary makes N such queries, Q1, Q2, · · ·QN
and takes the average response Q̄.

Q̄ =
1

N

N∑
i=1

Qi = m+
1

N

N∑
i=1

δi

This random variable, denoted δ̄ = 1
N

∑N
i=1 δi is subject to

the Central Limit Theorem and the Law of Large Numbers,
meaning that as N grows large δ̄ ∼ N(0, 2

ε2N ) [10]. As
the number of queries grows, the quantity Q̄ converges in
probability to the true response m. For instance, if ε = 1 as
it does in Figure 2, only 20 queries are required to know the
value of m with 95% confidence. If ε = 0.2 as in Figure 3, the
same level of confidence can be achieved with a modest 500
queries. A seemingly obvious solution to this problem is to
fix the pseudo-random procedure so that a query provides the
same ”random” response m + δi each time. To see why this
approach fails, consider a series of antithetic queries given as
follows.
• How many rows in the database satisfy property Q?
• How many rows in the database do not satisfy property
Q?

• How many rows in the database satisfy property Q and
property R?

• How many rows in the database satisfy property Q̃?
The first two queries look different, but in fact uncover exactly
the same information. In the third query, if R is a property
which is always satisfied for any row this also gives the same
information. If R is almost always satisfied, then the query
will give nearly the same result. If R is a complicated set
of mathematical constraints, we find ourselves back at the

beginning subject to a database reconstruction attack. The
key realization is that seeding the pseudo-random responses
is futile, since there are a number of related queries that can
uncover the same information as the first, and identifying the
complete set of related queries is a computationally infeasible
practice. The final query in the list given above refers to a
property Q̃ which is correlated with property Q. A response
to this query will not fully uncover the answer to the first, but
it provides some level of information nonetheless [11]. When
two queries are completely unrelated, differential privacy can
precede as in the previous subsection unharmed. Consider a
database which stores information on height and weight of
American women, and an adversary is interested in learning
the true average weight w of this population. A direct query
will produce the result w+δw where δw is a Laplacian random
variable with variance e. A second query for the height of
these women returns the response h+ δh where δh again has
variance e. At first, this does not appear to have given any
additional information to the adversary about w. Suppose now
that the adversary has access to an auxiliary study giving the
relationship:

w = −45.7 + 0.63× h+ δr

where δr is random noise with a variance of 20. Using this
information, the adversaries best guess for w is now

ŵ =
w + δw − 45.7 + 0.63(h+ δh) + δr

2

which is an unbiased estimate for w with variance 0.7e+ 10.
If the privacy guarantees are such that ε < 0.25 then this
estimate is an improvement. If ε is public information, then
a weighted average approach can always lead to improved
estimation. This example is important because it shows that
any two queries, whether or not they initially seem related,
can provide information about the other. Thus query systems

Fig. 4. Distribution of responses to the salary query with ε = 1 as the number
of query repetitions (N ) increases.



which allow multiple queries should handle the noise injection
carefully in order to maintain the privacy requirements.

A simple solution to the multiple query problem is to
inject more noise for more multiple queries. If the queries
are required to be listed in advance, and there are N such
queries, this can be accomplished by generating response
m + δi where δi is Laplacian error with parameter ε/N
leading to a standard deviation of

√
2N/ε. Figure 4 shows the

distribution of responses, when the true response is m = 205,
as the number of ε = 1 differentially private queries increases
N = 1, 2, 5. For small values of N , the result looks reasonable
and precise inferences can still be made, but as N increases to
just 5, the inference is bound to be necessarily imprecise. As
privacy increases and ε gets smaller, it can become increas-
ingly difficult to guarantee precise procedures for inference.

D. Strengths of Differential Privacy

Protecting the privacy of an individuals data while
maintaining the statistical utility of a database has proven
itself to be a difficult task. Although differential privacy has
many challenges, it is nonetheless a powerful, useful and
promising tool for many problems. The level of noise injection
required for a query response is a direct product of the query
sensitivity which we formally define now for the first time [7].

Definition: Consider a query function g : D → Rd. The L1

sensitivity of the function f is

∆g = max
(D,D′)∈Ω1

‖g(D)− g(D′)‖1

= max
(D,D′)∈Ω1

d∑
i=1

|g(D)i − g(D′)i|

Where Ω1 is the set of all database pairs (D,D′) which differ
by exactly one row.

A property-count query gpc can be treated as a function
mapping a database into the set of non-negative integers.
For this type of query, the sensitivity reduces to ∆gpc =
max |gpc(A)−gpc(B)| where B is the complete dataset and A
is identical except for one missing row. This result can either
be 0 (if the missing row lacks the property of interest) or 1 (if
the missing row has the property of interest). The maximum
over all possible omitted individuals clearly indicates that
∆gpc = 1. If a series of N such queries are made, this can
be treated as a function g which maps each dataset D to the
cartesian product of N sets of non-negative integers:

{(z1, · · · zn) | zi ∈ Z+ ∪ {0}}.

If the omitted individual satisfies the property of each of the
N queries, the L1 sensitivity of this function is obviously
∆g = N . It can be shown that for a general query function of
sensitivity ∆g, a noise injection level of ε/∆g is sufficient to
guarantee ε-differential privacy. Indeed as we just illustrated,
this general result captures the multiple query scenario dis-
cussed in the previous subsection.

A histogram query refers to the process of ”binning” or
”partitioning” responses into a number of categories [5]. Take
for instance the following examples using a database of
employees at a fictional company.
• Return a table giving the number of employees in each

department.
• Return a table giving the number of employees in each

tax bracket (based on salary).
At first glance, this appears to be a separate property-count
query for each of the desired categories. If there are 20 depart-
ments, we might expect the sensitivity of such a query to be 20,
a number which would place stress on the privacy/precision
tradeoff. In fact, as long as the query forms a partition, i.e. the
categories are disjoint, then adding (or removing) an individual
will change exactly one of the counts and the sensitivity of
such a query is δg = 1. Thus a large amount of information can
be obtained, using a relatively small amount of noise injection
to the response.

Other queries, as we will show in Section 5, can be
more challenging. For now, we are content with the fact that
differential privacy can be achieved in a robust and statistically
powerful manner for a wide range of important queries. These
ideas are advanced in the next section, where we discuss more
complicated queries and how these can be implemented in a
differentially private way.

IV. DIFFERENTIAL PRIVATE PROGRAMMING

The goal of private programming is to provide primitives
which can be used in aggregate to perform complex functions
while remaining confident that the result remained private,
and to avoid the error-prone task of painstakingly proving the
algorithms themselves private.

One implementation of this type of framework was centered
around the Sub-Linear Query database (SuLQ) and was devel-
oped shortly before the formalization of differential privacy
[12]. The SuLQ framework assumes that the total number of
queries is smaller than the size of the database, a reasonable
constraint for many large databases. From this a set of SuLQ
primitives were derived that returned simple statistical queries
with an added amount of noise, which was a random number
distributed according to a mean zero normal distribution.
Together these primitives constructed the SuLQ framework,
which upon different invocations could be used to perform the
following computations: k-means clustering, ID3 decision tree
classification, principal component analysis, and many others.
Since the formalization of differential privacy, it has been
shown that many of these private programming algorithms
can be modified to achieve differential privacy. We illustrate
this idea in the following subsection using the example of the
differentially private k-means clustering algorithm.

A. k-Means Clustering

The k-means clustering algorithm attempts to find a solution
to the following problem: Given a collection of points {pi} ⊂
[0, 1]d, find clusters of points such that each cluster contains
points that are mutually proximate. The algorithm in its



standard, non-private implementation selects initial candidate
means µ1, ..., µk chosen at random from the d-dimensional
cube and performs the following update rule, which is iterated
over for a fixed number of times, or until a convergence
criterion is met. A solution is found when for a given cluster
of points, the points minimizing the radii of each cluster are
equal to the mean of the cluster.
• Partition the samples {pi} into k sets S1, ..., Sk, associ-

ating each pi with the nearest µj .
• For 1 ≤ j ≤ k, set µ′j =

∑
i∈Sj

pi/|Sj |, the mean of the
samples associated with µj .

The first step of the update rule works specifically with each
individuals data to compute the nearest mean, rendering it
useless in terms of privacy. However, the algorithm can be
adapted in the following manner, keeping in mind that this
variation was initially implemented using the SuLQ frame-
work, and later was adapted to adding Laplace noise in order
to provide differential privacy. To calculate the update sum
it can be noticed that the sensitivity of a single point pi
affects at most one sum, and the sum can change by at
most 1 in each of the d dimensions. The candidate means
{µ1, ...µk} partition the space of [0, 1]d, which can be likened
to a standard histogram query and result in queries about the
cardinality of the sets {|S1|, ..., |Sk|} maintaining differential
privacy of individual points. Therefore, the primitives that
perform the update rule will remain differentially private so
long as the query sequence operates with total sensitivity of at
most d+ 1. If the update rule is set to run a fixed number of
iterations N , ε-differential privacy can be obtained using query
response m+δ, δ ∼ Laplace(ε/((d+1)N)). If the number of
iterations is unknown, differential privacy can be achieved by
increasing the amount of added noise with each computation
using a privacy budget, a method discussed further in the next
section [7].

Recent work has focused on the creation of a strongly-typed
framework to provide differentially private primitives that can
be used in conjunction to perform complex functions. One
framework, called PrivInfer, uses a type-based framework that
utilizes symbolic probability distribution to support provably
differentially private Bayesian machine learning algorithms
[13].

V. PRACTICAL DIFFICULTIES CONCERNING DIFFERENTIAL
PRIVACY

There are two primary weaknesses of using differentially
private systems in practice. Differential privacy refers to the
mathematical formalization of the promise that ”no additional
harm will come to an individual based on his inclusion (or ex-
clusion) in the database”. It is important to note that these con-
cerns, substantial though they may be, are not directly related
to differential privacy but deal more with the implementation
of differentially private databases. Primarily, we have focused
on achieving differential privacy via output noise injection,
where the noise level depends on the query sensitivity. When
the query-sensitivity is large, achieving differential privacy
may be challenging or impossible in a way that maintains the

desired statistical properties needed for precise inference. A
second concern is that of the privacy budget implementation.
There are already difficulties with maintaining an inferentially
useful system which allows multiple queries in theory. In
practice, these difficulties are amplified many times over.

A. Highly Sensitive Queries

Some useful queries, such as histogram queries, have a
sensitivity of 1. For other queries, the sensitivity may be
much larger. Consider the query which asks for the maximum
salary of all individuals in the database and suppose that the
current true response to this query is m. We consider a new
individual with salary 10m and create a new database C with
this addition. Clearly the sensitivity of this max-query is at
least 10m−m = 9m which is already highly sensitive when
m is large. Unless we know the salary of the richest man in
the world, the sensitivity of such a query is unbounded. Many
non-counting queries which request a numerical summary of
a variable, such as mean or variance will be plagued by this
same problem. If the range of a variable is unbounded, the
sensitivity of a mean-query will also be unbounded [15]. In
some instances, it may be reasonable to provide a truncation
threshold, or upper bound to the response returned by a query.
Adding boundaries to the universe of responses can guarantee
that the query-sensitivity exists, but if the upper bound is
much larger than a realistic response m the sensitivity can be
enormous as it is in the salary example above, rendering the
sensitivity result useless in practice. If the bound is tightened,
inferences will be biased unless a censoring indicator is also
returned by the query (i.e the response would be > m). This
is a reasonable solution, as the statistical field of survival
analysis is well equipped with the tools to analyze this kind
of censored data. Unfortunately, the information given by
a censoring mechanism may be difficult to analyze directly
making privacy guarantees hard to analyze. Much like we saw
with the query auditing suggestion, censoring itself can be
disclosive of private information [14].

A more promising strategy, for a wide variety of cases, is
to make distributional assumptions on the data and analyze
these queries from a statistical perspective. For illustration, we
consider an example using a hypothetical dataset containing
information for the 500 employees of a small company. We
begin by making a simple histogram query with sensitivity
∆g = 1. Figure 5 shows the true response to a histogram query
over the salary partition [0, 25), [25, 50), · · · , [250,∞) in
thousands of dollars. Figure 6 shows the noisy query returned
to the user using the exponential privacy mechanism with
ε = 1.

Salary data is often fitted with a log-normal assumption,
and the red dashed line in Figure 6 represents a log-normal
distribution, with mean 74.9 and standard deviation 38.3, fitted
to the noisy salary data using standard censored likelihood
approaches. An estimate response to the query for the mean
salary of this dataset would be the fitted value $74, 900. The
maximum value, given that the sample size is 500, can be
estimated as $267, 000 (the true max salary of this dataset



was actually $271, 450). This procedure satisfies ε-differential
privacy as a direct corollary of the histogram query since
it can be done by an adversary outside the query system.
While privacy guarantees can be made using this type of
approach, the validity of the statistical inference is highly
sensitive to the choice of distribution. For instance, if a Normal
distribution was assumed for the salaries (a poor assumption
given the skewness), the response to the maximum-salary-
query is severely underestimated at $197, 157. Of course,
not all datasets and variables can be appropriately analyzed
using parametric distributions, especially if there are outliers
in the dataset and inappropriate modeling choices can lead to
incorrect or badly biased query responses.

Fig. 5. True response to the histogram query for the hypothetical salary
example.

Fig. 6. Response to the histogram query with noise injection (ε = 1) for the
hypothetical salary example. Red curve represents a Log-normal distribution,
fitted to the noisy query results using censored likelihood.

B. The Privacy Budget

Differential privacy is achieved primarily through output
noise injection which is a function of query sensitivity. We
showed in an earlier section that the N -query problem con-
sisting of sequential queries g1, · · · gn can be treated as a single
query g with L1 sensitivity ∆g =

∑n
i=1 ∆gi. Repeating the

same property-count query N times, for instance, results in a
sensitivity of N which requires a large amount of noise injec-
tion to protect each individuals privacy. This discussion was
focused on the ”theoretical how” of privacy protection against
multiple queries. In this section we discuss the ”practical how”
of multiple query protection and the implied limitations. The
first step towards accomplishing this is to introduce the idea
of a privacy budget [7].

Suppose that the user (or database system) specifies in
advance the total (or maximum) number of queries desired
(or allowed). Denoting this quantity by Nmax, each query
response can be injected with Laplacian noise using the
parameter ε = E/Nmax. Once Nmax queries have been made,
the user is cut off.

An alternative implementation places no restriction on the
maximum number of queries, but injects more noise as the
query session goes on. In particular, the first query Q1 is
answered at a ε = E/2 differentially private level. Query
Q2 is answered with ε = E/4 noise injection and in general
Qk is answer at the ε = E/2k level. Thus each query uses
half of the remaining privacy budget. While this doesn’t
technically induce a maximum number of queries made by
the user, the query responses quickly become useless for
practical inferential purposes. This idea can be generalized,
by allowing each query to use some proportion θ ∈ (0, 1)
of the remaining budget. This generalized level of noise
injection can be shown to satisfy E-differentially private for
any number of queries.

Procedure: Given a privacy budget E and query allowance
θ ∈ (0, 1), answer the kth query as

Qk ← m+ δk

where δk is a Laplacian random variable with noise parameter
(1− θ)θk−1E.

Since θ ∈ (0, 1), and the variance of the noise level
increases by O(ε−2), it is clear that each successive query
will require more noise injection than its predecessor. This is
required in order to maintain privacy requirements for a large
number of queries. This is guaranteed to be a E-differentially
private process for any number of queries N . The proof
of this statement is a straightforward consequence of the
geometric series.

Proof: This satisfies the privacy budget for any number of



queries N because:

N∑
k=1

(1− θ)θk−1E = (1− θ)E
N∑
k=1

θk−1

= E
1− θ
θ

N∑
k=1

θk

≤ E 1− θ
θ

∞∑
k=1

θk

= E
1− θ
θ

θ

1− θ
= E

Once the privacy budget E has been set, a user can decide
what allowance θ to use, which defines the decay rate of the
”usefulness” of each query. By choosing θ ≈ 1, the first query
will be maximally useful, but successive queries will suffer
from a large amount of noise injection. By setting θ ≈ 0,
each query will receive a large amount of noise injection.
Reasonable choices of the budget allowance parameter seem to
be θ = 1/2 or θ = 1/3. Although there is, strictly speaking, no
maximum number of queries allowed, there is an effective max
query size which we can define as the number of queries before
all but 1% of the budget has been exhausted. This effective
query limit evaluates to 7 queries for θ = 1/2 and 12 queries
for θ = 1/3.

This value E is known as the personal privacy budget since
it applies separately to each user. In practical settings however,
this may be insufficient. For instance, what is to stop the user
from storing the query results and logging into the database
system a second time (or third, fourth, etc.) and repeating the
process. It is obvious that careful precaution must be taken
on the back-end to avoid this, a challenging task for a data
publisher who wishes the societal benefits of the dataset to
be easily accessible. These concerns have led to the joke that
once a user has exhausted his or her personal privacy budget
we must ”kill the user”.

A much bigger problem emerges if we take this one step fur-
ther and allow for collusion between a collection of adversaries
[15]. If each of K adversaries are given a personal privacy
budget E, then the collective privacy budget of the group is
KE, an unacceptable breach of privacy when K is large. This
leads naturally to the concept of a Global privacy budget G,
which represents the privacy budget for the database system
as a whole. Allocation of these global resources becomes a
challenging task. If a first-come-first-serve approach is used,
the entire budget can be rapidly depleted rendering the dataset
useless. Another option is to partition the global budget G
to a pre-determined set of K users so that the allocated
personal budgets, Ek, sum to G. For particular cases, the
implementation of a global privacy budget may be feasible,
but it is clear that this solution seriously limits the statistical
usefulness of a database in practice.

VI. MODERN ADVANCEMENTS FOR DIFFERENTIAL
PRIVACY IN PRACTICE

A. Differentially Private Query Languages

There have been recent attempts to implement query lan-
guages which respond to queries in differentially private man-
ner [16] [17]. The Privacy Integrated Queries (PINQ) system
has been around since 2009 and provides differential privacy
for counting queries using an augmented version of SQL.
This language supports many standard database operations
including a join operation which has some limitations for one-
to-many and many-to-many join operations. In 2014, a refined
version of the query language called weighted PINQ (wPINQ)
addressed this limitation by supporting a general equijoin
operation with a differential privacy guarantee. These earlier
systems were based on the idea of global query sensitivity
which leads to yet another implementation concern.

”a join has the ability to multiply input records, so
that a single input record can influence an arbitrarily
large number of output records.”

For this reason, it is ideal to work with local query sensitivity
which places tighter bounds on the sensitivity ∆g of a particu-
lar query instance. Determining the local sensitivity, especially
for large databases, is a computationally infeasible problem
possibly requiring billions of auxiliary queries for a single
query of interest. In 2018, the notion of elastic sensitivity
emerged as a computationally affordable upper bound for local
sensitivity. The authors use this method of elastic sensitivity
to build the query language FLEX, which they claim
• supports general equijoins and can be calculated effi-

ciently using only the query itself and a set of precom-
puted database metrics,

• is compatible with any existing database,
• can enforce differential privacy for the majority of real-

world SQL queries,
• and incurs negligible (0.03%) performance overhead [17].

In addition, the FLEX system takes a flexible approach to
the treatment of the privacy budget, allowing for database
managers to allocate resources as they see fit. The FLEX query
system was used to answer 9862 actual queries (all queries
to the real-world database during October 2016). The FLEX
language was able to answer the majority of these queries
with 0.0001% − 10% error while maintaining an impressive
global 0.1-differentially private requirement. When no join
operations were required to answer the query, nearly 75% of
the queries were answered with less than 10% error. The query
response accuracy improves even further when the query refers
to a large population - roughly 99% of queries had less than
10% error when the effective population was at least 10, 000.
Although differential privacy has a long way to go, these
are important steps towards practical and publicly available
differentially private frameworks.

B. Noise Injection Strategies and the 2020 Census

Differential privacy makes a promise to users that their
existence in a database will cause them no additional harm.



Addition of noise at the query level is known as output
noise injection and, done in the right way and magnitude,
is sufficient to guarantee that a query system is differentially
private. There are many strengths to this approach including
its robustness to database reconstruction attacks. A naive
approach based on straightforward application of a SAT solver
is almost certain to fail. More intelligent approaches may
be able to reconstruct a set of microdata which is mostly
consistent with the original data, but the reconstruction will
almost certainly differ from the original data.

A related approach involves the application of noise be-
fore the data is tabulated, a process known as input noise
injection.There are two immediate downsides to this approach.
The first, is that we lose flexibility in our privacy allowances.
All users are given access to exactly the same noisy data,
and all queries are subject to the same level of inaccuracy.
With the geometric privacy-budget-allowance approach, the
privacy budget resources can be spent sequentially so that
more ”important” queries (to the user) are asked first. Another
flaw is that input noise addition will not prevent an adversarial
database reconstruction attack, although it does limit the
reliability of such a reconstruction since the microdata will
be noisy.

Another form of input noise injection, known as swapping,
refers to the process of randomly exchanging row values
within each column. Although this method has some nice
features in practice, a large proportion of rows may need to
be swapped in order to protect the privacy of each individual.
This operation will have no effect on the query results when
conducted at a high level. For instance, if we swap two
rows in a database so that Alan Turing is now listed with
brown eyes and John Von Neumann with blue eyes, the
overall count of individuals in the database with blue eyes
will remain unchanged. Alternatively, the query ”how many
people in the database are from England and have blue eyes?”
will now be incorrect by 1. Thus swapping also experiences
a privacy/precision tradeoff. Swapping should be applied at
lower levels of geography (such as City or ZipCode) to ensure
precision but at high levels (such as Country or State) to ensure
privacy.

The United States government used swapping as one of
its primary methodologies for privacy protection in the 2010
census and plans to use it to some extent again in 2020
[1] [18]. In addition, the 2020 census is adopting a privacy-
protection system which is heavily based on differential
privacy. This methodology will protect census respondents
from database reconstruction attacks, while ensuring that the
resulting statistical inference is sufficiently accurate for its
intended purpose.

VII. CONCLUDING REMARKS

Modern database owners face the unique and challenging
problem of publishing and maintaining datasets which can be
accurately mined for the betterment of society while simulta-
neously upholding an ethical obligation to protect the privacy
of the individual. Differential privacy offers a realistic promise

to protect the privacy of the individual while preserving the
intended usefulness of the dataset. This framework offers a
mathematically rigorous definition of privacy by requiring that
the results of a statistical analysis be ”essentially indistinguish-
able” with the omission or addition of a single person. Al-
though the differential privacy framework has shown promise,
there are several important limitations both in theory and in
practice. With the introduction of a formal framework for
privacy protection, future research in the field of data-privacy
now has a standard benchmark. The 2020 US census has
already adopted a differential-privacy policy acknowledging
its usefulness, despite the limitations. With continued and
dedicated research to such an important field, the 2030 census
may experience higher levels of data-privacy and statistical
precision than ever before.

REFERENCES

[1] Garfinkel, Simson L., John M. Abowd, and Christian Martindale. ”Un-
derstanding database reconstruction attacks on public data.” (2018).

[2] Marques-Silva, Joao, Inłs Lynce, and Sharad Malik. ”Conflict-driven
clause learning SAT solvers.” Handbook of satisfiability 185 (2009):
131-153.

[3] Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith.
”Calibrating noise to sensitivity in private data analysis.” In Theory
of cryptography conference, pp. 265-284. Springer, Berlin, Heidelberg,
2006.

[4] M. Isaac and S. Frenkel, ”Facebook Security Breach Exposes Accounts
of 50 Million Users”, The New York Times, 2008.

[5] Dwork, Cynthia, and Aaron Roth. ”The algorithmic foundations of
differential privacy.” Foundations and Trends in Theoretical Computer
Science 9, no. 3?4 (2014): 211-407.

[6] Dalenius, Tore. ”Towards a methodology for statistical disclosure con-
trol.” statistik Tidskrift 15, no. 429-444, 1977

[7] Dwork, Cynthia. ”A firm foundation for private data analysis.” Commu-
nications of the ACM 54, no. 1 (2011): 86-95.

[8] Van Erven, Tim, and Peter Harremos. ”Rnyi divergence and Kullback-
Leibler divergence.” IEEE Transactions on Information Theory 60, no.
7 (2014): 3797-3820.

[9] Warner, Stanley L. ”Randomized response: A survey technique for
eliminating evasive answer bias.” Journal of the American Statistical
Association 60, no. 309 (1965): 63-69.

[10] Plya, G. ”On the central limit theorem of calculus of probability and
the problem of moments.” Math. J., German 8, no. 3 (1920): e4.

[11] Zhu, Tianqing, Ping Xiong, Gang Li, and Wanlei Zhou. ”Correlated
differential privacy: Hiding information in non-iid data set.” IEEE
Transactions on Information Forensics and Security 10, no. 2 (2015):
229-242.

[12] Blum, Avrim, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
”Practical privacy: the SuLQ framework.” In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp. 128-138. ACM, 2005.

[13] Barthe, Gilles, Gian Pietro Farina, Marco Gaboardi, Emilio Jesus
Gallego Arias, Andy Gordon, Justin Hsu, and Pierre-Yves Strub. ”Dif-
ferentially private bayesian programming.” In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS 16, pp. 6879. ACM, 2016.

[14] Garfinkel, Simson L. ”De-identification of personal information.” NIS-
TIR 8053 (2015): 1-46.

[15] Haeberlen, Andreas, Benjamin C. Pierce, and Arjun Narayan. ”Differ-
ential Privacy Under Fire.” In USENIX Security Symposium. 2011.

[16] F. D. McSherry. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages
19?30. ACM, 2009.

[17] Johnson, Noah, Joseph P. Near, and Dawn Song. ”Towards practical
differential privacy for SQL queries.” Proceedings of the VLDB En-
dowment 11, no. 5 (2018): 526-539.

[18] United States Census Bereau, ”Data Portection and Privacy Program”,
http://www.census.gov, 2014.


