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1. Introduction

Millions of people living in the United States are affected every year by the influenza virus, an infectious
pathogen which causes respiratory illness resulting in hundreds of thousands of hospitalized individuals and
significant economic impact. The Centers for Disease Control and Prevention (CDC), with the help of
government and private healthcare professionals, closely monitors and reports influenza statistics. This data
is critical for the adoption of flu prevention strategies such as vaccination campaigns, education programs
and geographic allocation of PSA resources. Another important use area for this data is in forecasting,
the prediction of illness into the (usually) near future. To a decision maker, this information is invaluable
to improve the effectiveness of healthcare systems and to understand and prepare for potential economic
burdens.

The benefits of forecasting are amplified if accurate forecasts can be provided with some local level of
spatial resolution. Accurate forecasts at the city or state level, compared to a national scale, allow for policy
makers to tailor prevention strategies, and evaluate public safety and economic risks in a more meaningful
way. It is believed that spatial dynamics, especially at the city level, play an essential role in the transmission
of infectious diseases, but these mechanics remain poorly understood in part due to the lack of fine-grain
spatial data for infectious diseases. Geographic information for this type of data is usually collected at a
higher levels, such as State or regional, and the spatial dynamics are largely hidden (Charu et al., 2017).

To understand how one might account for these dependencies, we first examine the wide variety of modeling
choices which we can make. Agent based models are based on examining the dynamics at the level of the
individual by simulating a population that mimics a real population. Often these are simple models based on
elementary stochastic processes but they also include ultra-massive and computer intensive models such as
the Chicago Social Interaction Model (chiSIM) which attempts to model dozens of daily interactions between
millions of simulated Chicago residents. Agent based models have proven to be useful in certain situations,
such as the evaluation of prevention and crisis recovery strategies (Macal et al., 2018). These models are
often plagued by a large number of parameters leading to computational challenges, large uncertainty in
the output and "unknown unknowns". Other models are based on machine learning algorithms which are
capable of providing excellent predictions. The primary drawback of these models, is that they often ignore
the obviously useful physics or biology of the problem. In some instances they also suffer from a lack of
interpretability and computational burdens of their own (Osthus et al., 2017).

Mechanistic models, on the other hand, are driven by simple mathematical relationships usually specified
as a system of differential equations. This class of models can also get arbitrarily complex, but many of the
more popular models are both simple and intuitive. The SIR model, for instance, is a simple and effective
tool which places biological constraints on the way in which individuals transfer from susceptible to infectious
to recovered. These biologically inspired methods are often have low dimensional parameter-spaces and are
easy to fit with modern computational methods. Although these models provide useful insight, they can be
too simple to capture real-world dynamics and uncertainty in forecasts can be hard to quantify.

Finally, there are dynamic modeling approaches which are based on Time Series analysis in the field of
statistics. Dynamic models are the gold standard of forecasting in fields such as finance, and are rarely beaten
when the data is highly volatile. Parameter inference and forecast uncertainty are natural and flexible with
this type of model, although it may come at a significant computational cost.
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Figure 1. US Department of Health & Human Services Regions

Recent work at Los Alamos National Laboratories focuses on harnessing and combining the strengths of the
latter two approaches for forecasting the CDCs influenza data (Osthus et al., 2019). A simple deterministic
SIR model is used as a "first pass". Once the SIR dynamics have been accounted for, the remaining
variability is referred to as model discrepancy (Kennedy & O’Hagan, 2001). Taking a Bayesian model
calibration approach, this discrepancy is itself modeled using a reverse time random walk dynamic model.
In aggregate, this model was shown to be extremely successful for influenza forecasting, outperforming all
competition from the 2015-16 and 2016-17 CDC flu forecasting challenges.

A unique feature of this work, was the effortless inclusion of seasonal structure into the model via the
dynamic process. The model discrepancy was separated into three components:

• discrepancy common to all flu seasons,
• season specific discrepancy
• and unexplainable uncertainty between the latent and observable process.

This structure is important because it allows for a particular flu-season to give information about every
season, while still maintaining a flexible model which can accounts for annual differences between seasons.

Although the Dynamic Bayesian (DB) model discussed above is a state of the art forecasting model,
it is executed exclusively at the national level, ignoring the regional granularity of the CDCs data. One
straightforward extension of the DB model would be to partition the model discrepancy even further. This
approach not only suffers from major identifiability issues, but it is also unclear how to achieve valuable spatial
structure. In the remaining sections of this paper, we propose an extension to this model at the mechanistic
stage which allows information to flow from one region to another, while maintaining the usefulness of the
DB model. Section 2 introduces the ideas of directional information flow and a mathematical formalization
of this idea known as Transfer Entropy. In section 3, we present the proposed model, emphasizing how
transfer entropy can be incorporated directly into the mechanistic portion of the model. Section 4 discusses
choices of prior distributions for a Bayesian implementation of the model and Section 5 illustrates the model
behavior on the 2017 flu season.

2



KELLIN RUMSEY 3

2. Information Flow and Transfer Entropy

The CDC influenza data is collected through a surveillance network known as ILINet and is reported
at the level of the HHS regions shown in Figure 1. This type of spatial data is known as Areal data, for
which spatial structure is relayed through a neighborhood. For example, we might say that a region x is in
the neighborhood of a region y if the two regions share a border. This implies that x and y are first-order
spatial neighbors, but the general definition of a neighborhood can be far more flexible than this. It has been
suggested that the spatial transmission of influenza is dominated by local traffic between cities (Charu et al.,
2017). Unfortunately, the CDC data comes at a regional scale which is too coarse to capture the dynamics,
and modeling approaches relying on first order neighborhoods provides little or no additional information.

Although this essentially means that the large geographic size of the regions limits the usefulness of stan-
dard spatial neighborhoods, it seems reasonable to assume that an increase in influenza activity in region x
could provide information the upcoming influenza activity in region y. Thus we abandon the traditional no-
tion of spatial neighborhoods and focus on building neighborhoods based on information flow. The concept of
Transfer Entropy provides us with precisely the mathematical tool needed for this analysis (Schreiber, 2000).
We start by considering two dynamic processes X = (x1, x2, · · ·xn) and Y = (y1, y2, · · · yn). The transfer
entropy from X to Y is an asymmetric measure of the amount of information from X to Y . Let H(X|Y )

denote the conditional Shannon entropy and letXt,k be the lag k history ofX consisting of xt−1, xt−2, · · ·xt−1.

Definition: The transfer entropy from X to Y at time t with history length k is:

TX→Y (t) = H(Xt|Xt,k)−H(Xt|Xt,k, Yt,k)

The transfer entropy from X to Y is taken to be the maximum over all time and history lengths.
Transfer entropy (TE) can be calculated using a "Kraskov estimator", which works be rewriting TE as an

expansion of joint and conditional mutual information terms and applying a bias correction using aK-nearest
neighbor algorithm (Moon 1995). The R package RTransferEntropy offers an efficient implementation of
this estimator and a Bootstrap procedure which assesses the statistical significance of the resulting estimate.
This allows us to define a information flow neighborhood (IFN) of a region y. We say that region x is
inside the IFN of y if the hypothesis Tx→y ≤ 0 can be rejected for some predetermined significance level.
Mathematically, we write x ∈ Ny indicating that information flows from x to y.

For the 2017 CDC influenza data, we consider the time series yj representing percentage of (weighted)
influenza like illness for each region j. The transfer entropy between two regions is defined as Ti→j ≡ Tyi→yj

.
We find the information flow neighborhoods for each of the ten regions using 1, 000 bootstrap re-samples and
a 10% significance level. The information flow and first order spatial neighborhoods are reported in Table 1.

Table 1. Information Flow and First Order Spatial Neighborhoods

HHS Region IF-Neighborhood First-Order Spatial

Region 1 3, 4, 6 2
Region 2 4 1, 3
Region 3 1, 2 2, 4, 5
Region 4 1, 3, 5, 7, 9, 10 3, 5, 6, 7
Region 5 1, 2, 3, 6, 7, 9 3, 4, 7, 8
Region 6 5, 7, 10 4, 7, 8, 9
Region 7 1, 2, 3, 4, 6, 9 4, 5, 6, 8
Region 8 3, 6, 7, 9 5, 6, 7, 9, 10
Region 9 1, 3, 5, 7, 8, 10 6, 8, 10
Region 10 1, 3, 6, 9 8, 9
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3. The Model

We start by describing the mechanistic portion of the model. We first consider the standard SIR model,
consisting of three continuous-time processes S(t), I(t) and R(t). For simplicity, we ignore demography and
assume that S(t) + I(t) +R(t) = 1 for all t > 0. For modeling at the regional level, we assume that for each
region j = 1, 2, · · · J we have

Sj(t) = ωjS(t), Ij(t) = ωjI(t), Rj(t) = ωjR(t)

where ωj > 0 and
∑J

j=1 ωj = 1. The main idea of this approach is write down SIR models at the regional
level, allowing for regions to share information via the information flow neighborhoods discussed above. Let
Nj be the IFN of region j, the set of all regions i which provide information about j.

dSj

dt
= −Sjβj

Ij +
∑
i∈Nj

αijIi


dIj
dt

= Sjβj

Ij +
∑
i∈Nj

αijIi

− γjIj
dR

dt
=

J∑
j=1

γjIj

We refer to this system of 2J + 1 ODEs as a regional SIR with information flow (SIRwIF). As usual βj
represents a regional transmission rate and γj a regional recovery rate. A basic assumption of the SIR
model is that the rate at which new infections occur is proportional to the product of the infectious and
susceptible populations. The effective infectious population of region j is modeled as Ij plus the partial
contribution of the region i infectious population, where i ∈ Nj indicates that i gives valuable information
about j. The αij ∈ c(0, 1) are information contribution parameters, describing the contribution of region i
to the "effective" infectious population of region j.

To help motivate this model, imagine a country with two hypothetical regions x and y, such that informa-
tion flows from x to y (but not necessarily from y to x). When region x experiences a significant increase in
infections, there is a good chance that region y will soon exhibit similar dynamics. This model is particularly
useful if it can be shown that the IF-Neighborhood structure is roughly time-dependent. This would allow
us to estimate α parameters using past influenza seasons, without having to worry about time-evolution of
these parameters. If these parameters are assumed to be static, then the SIRwIF model can fit easily into
the BD framework of Osthus et al.

3.1. Specification of Full Model. In order to use this model for forecasting influenza data at the regional
level, we would like to specify a full probability model for the data. We borrow heavily from the DB
model framework, making altercations to handle regional data when necessary and a few simplifications for
convenience. We begin by making several modeling constraints. Without additional information, the initial
conditions S(0), I(0) and R(0) are inherently not jointly-identifiable, so we fix S(0) = 0.9 for all t > 0.
Next, we fix the regional population sizes at each time t by treating the weights ωj as fixed, known and
proportional to the population of the region. Alternatively, an informative Dirichlet prior could be assigned
the ω vector, but we do not explore this here.

The free-parameters of the mechanistic model are now

• the global-level initial condition I(0),
• the transmission parameters βj ,
• the recovery parameters γj
• and the information contribution parameters αij for all i ∈ Nj , j = 1, 2, · · · J .
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In the Bayesian framework, we must specify a prior distribution for each of these parameters. Specific
choices, often based on empirical Bayes, will be discussed in the application section. For now we make
comments for the general setting. One possible reduction of the parameter space involves fixing γj = γ

for all j. This assumption seems reasonable, but we find that this constraint removes too much flexibility
from the model. We also note that there can be as many as J(J − 1) information parameters, which can
be extremely challenging from a model fitting perspective. Fortunately, the matrix A of αij parameters is
often quite sparse, especially when the transfer entropy significance level is small. In our application, for
instance, 41 out of 90 entries of A are active at a 10% significance level, with active entries reducing to 33

and 14 for significance levels of 5% and 1% respectively. To account for false positives, we can regularize
these parameters further by using priors with high density near zero, although a heavy right tail will still be
desirable (Bhattacharya et al., 2015). Additionally, we normalize the maximum total contribution of region
j’s IF-neighbors by truncating αij above by the value c|Nj |−1 ≤ 1 where c controls the proportion of region
j’s effective infectious population coming from the IF-neighbors. We set c = 1 for the rest of this paper.

As we discussed in the introduction, these simple mechanistic models are a useful starting point, but
require extra mechanics in order to capture the volatility of the data. The observed data, denoted yj(t)

at region j and time t, is interpreted as a proportion of the total population. Thus we must take care to
respect the constraint 0 < yj(t) < 1 for all t > 0. Not all persons with influenza see a doctor and there
are many illnesses with flu-like symptoms, therefore the true influenza statistics are an unobservable latent
process zj(t). We model this relationship for all j and t as follows:

yj(t)
iid∼ Be(λzj(t), λ(1− zj(t)))

so that E(yj(t)) = zj(t) and V (yj(t)) = zj(t)(1−zj(t))/(λ+1)−1, setting λ = 4500 as in previous work. The
next step accounts for model discrepancy, using a logit transformation to respect the proportion constraints
on yj(t).

log

[
zj(t)

1− zj(t)

]
= log

[
Ij(t)

1− Ij(t)

]
+ δj(t)

where δj(t) is a region specific discrepancy term. Primarily as a complexity simplification, we choose to
model the discrepancy using a Gaussian process with nugget τj as in Kennedy & O’Hagan, rather than the
reverse time random walk of Osthus et al. This choice is not particularly important for our method since
we do not propose using an additional discrepancy term within the DB framework. In particular, we specify
that δj(t) is a Guassian process with mean function µ(t) = 0 and covariance structure

Σj(∆t) = φjRj(∆t) + τI

where I is the identity and Rj(t) is a Gaussian correlation matrix with range parameter κj .

Rj(∆t) = exp(−∆t2/κj)

. Therefore, in addition to the SIRwIF parameters θ1 = (I(0),β,γ,α,ω), there is a high-dimensional set
of model hyper-parameters including θ2 = (λ, τ ,φ,κ). In the next section, we discuss specific choices and
strategies for prior specification of these parameters.

4. Application to Influenza Data

The use of information flow neighborhoods allows us to model and forecast at the regional level, while
borrowing strength from surrounding regions. The primary contribution is in the deterministic portion of
the model, so that this model can be used in conjunction with the Dynamic Bayesian (DB) model which
uses many influenza seasons to harness power from the data. Although this is the ideal, we focus on a single
season (2017) for simplicity. The observed data yj(t) represents weighted influenza like illness (wILI), which
is an estimate of the proportion of the population with influenza. The data is observed at the 10 HHS regions
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Figure 2. Weighted ILI for 10 regions throughout the 2017 season.

shown in Figure 1, for t = 1, 2, · · · 35 weeks corresponding to roughly the first week of October through the
last week of May. Figure 2 shows this data, using a large city in each region as a label.

4.1. Bayesian Inference and Model Calibration. To complete the specification of the full model, we
must assign prior distributions to the SIRwIF parameters θ1 = (I(0),β,γ,α,ω) and the probability hyper-
parameters θ2 = (λ, τ ,φ,κ). The full set of parameters is large compared to the number of observations
so we will use empirical Bayes, MAP estimation and other heuristics to improve the identifiability of the
problem (Brjynarsdottir & O’Hagan). We begin by fixing the values of ω and λ as we discussed in the
previous section.

Our empirical Bayes strategy begins by obtaining ordinary least squares estimates to the SIRwIF param-
eters by minimizing the equation∑

j

∑
t

(
logit (yj(t))− logit

(
Îj(t, θ1)

))2
,

where Îj(t) is the solution to the SIRwIF system of differential equations. This constrained optimization
problem involves searching a 62 dimensional space rendering it infeasible. Our solution is to fix αij =

0.2|Nj |−1, indicating that j’s contribution to its effective infectious population is 5 times that of its IF-
neighbors, and optimize over the remaining 21 parameters. The 10 estimated pairs (β̂j , γ̂j) are used to fit a
truncated bivariate Normal distribution, which we use as a joint prior for (βj , γj). The truncation constraint
is given by 0 < γ < 0.9β ensuring that the parameters are positive and the dynamics likely represent an
epidemic. The constraint γ < 0.9β, which ensures an epidemic (r0 > 1) for the SIR model, is not sufficient
to guarantee an epidemic for the SIRwIF model for reasons we will illustrate shortly. The estimated (β̂j , γ̂j)

pairs (black) and draws from the fitted prior (gray) are shown in the left panel of Figure 3. To construct
an empirical Bayes prior for the initial condition I(0), we perform leave-one-out Jackknifing of the data to
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Figure 3. Left: Least squares fits to (β̂j , γ̂j) (black) and draws from the fitted prior (gray).
Right: The truncated half-Cauchy prior for the information contribution parameter αij when
|Nj | = 3. Vertical line is upper truncation boundary for c = 1.

obtain a Normal approximation estimate of the I(0) posterior under a flat prior. This approximation was
chosen for the prior of I(0) after doubling the estimated standard deviation and truncating at zero.

The information contribution parameters αij are constrained to a compact region, but the high dimension-
ality makes good prior specification important. Since the transfer entropy significance level was 10%, this is
a large set with lots of potential for false positives suggesting the use of a sparsity-inducing prior. As shown
in the right panel of Figure 3, we suggest the use of independent half-Cauchy priors with upper truncation
at c1|Nj |−1 and a scale parameter of c2|Nj |−1. We choose c1 = 1 and c2 = 0.2 indicating maximum total
contribution ratio of 1 : 1 and a (pre-truncation) prior median contribution ratio of 5 : 1 (section 3.1 for
details). A simple alternative is a Beta(ε−1, ε) prior with truncation.

Next we consider the hyper-parameters θ2 = (τ ,φ,κ). To inform our prior distributions, we examine
the logit scale residuals ej(t) =

(
logit (yj(t))− logit

(
Îj(t, θ̂1)

))
which can be treated as the "observed

discrepancy". Gaussian processes are fit to these residuals using maximum likelihood giving estimates of θ̂2.
In the left panel of Figure 4, we see the observed discrepancy for each of the 10 regions using the same color
scheme as in Figure 2. The peak at week 13 is not being captured almost systematically, indicating that a
global discrepancy function (as in DB) could be useful until at least week 16 when the discrepancy becomes
more volatile.

Gaussian processes are poorly identifiable when a nugget is involved, so a manual tuning process was used
to select τj = 0.02 for all regions j. The Gaussian process fits under this constraint led to estimates φ̂j
ranging from 0.024 to 0.290 and estimates of κ̃j ranging from 2.6 to 4.7 with an outlier at 10.2 for region
3. The range estimates κ̃j estimates were shrunk towards the median (κ̂m) by setting κ̂j = (κ̃j + κ̂m)/2

and fixed for the remainder of the analysis. Finally, the φ̂j parameters were treated with empirical Bayes,
specifying

φ̂j ∼ Gamma(2, 2/φ̂j − 2)
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Figure 4. Left: Least squares fits to (β̂j , γ̂j) (black) and draws from the fitted prior (gray).
Right: The truncated half-Cauchy prior for the information contribution parameter αij when
|Nj | = 3. Vertical line is upper truncation boundary for c = 1.

for each j, leading to prior expectation φ̂j and prior standard deviations between 0.0003 and 0.08. The right
panel of Figure 4 shows the observed and estimated discrepancy functions for region 10. Notice that the
second order residuals (i.e. ej(t)− δ̂j(t)) are mostly uncorrelated with a variance of τ = 0.02.

The parameters were estimated using a 5, 000 iterations of a Gibbs sampling scheme with Metropolis-
Hastings steps. Proposal distributions were based around a 2D random walk for (βj , γj), log-random walk
for I(0) and φ parameters and a Beta proposal for the α parameters.

4.2. Model Prediction. Once the model has been fit, we can move on to different forms of inference using
the full joint posterior distribution of the model parameters (θ0, θ1). The model can now be used to make
predictions, obtain forecasts or explore general hypotheses at the regional level. For instance, we may want to
estimate the basic reproductive number (r0) for the influenza season in each region. We find r0 analytically
by examining the behavior of dIj

dt .

dIj
dt
|t=0 = Sj(0)βj

(
Ij +

∑
i

αijIi

)
− γjIj

= ωjS(0)βj

(
wj + I(0)

∑
i

αijωi

)
− γjωjI(0)

= S(0)βj

(
wj +

∑
i

αijωi

)
− γj

The dynamics of the system will be epidemic as long as this quantity is positive. Defining the term in the
parentheses as Wj , we see that the basic reproductive number for the SIRwIF model is

r0 =
S(0)βjWj

γj
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Table 2. Basic reproductive numbers by region

Est.(r0) 95% LB 95% UB

Boston 2.354 1.869 3.044
NYC 3.219 3.047 3.454
DC 3.033 2.566 3.289
Atlanta 3.426 3.215 3.597
Chicago 1.545 1.102 1.925
Dallas 3.688 3.497 3.885
Kansas City 5.464 4.975 5.943
Denver 4.553 3.629 4.982
San Francisco 1.688 1.233 1.969
Seattle 4.272 3.937 4.606

We note that this looks very much like the basic regional SIR model with Sj(0) getting replaced by S̃j(0) =

WjS(0), which can be interpreted as the effective susceptible population. Based on a sample of 1, 000

posterior draws, Table 2 gives estimated (posterior median) regional r0 values along with a 95% credible
interval. We see that regions 7, 8, and 10 showed the highest reproductive numbers for the 2017 season,
while regions 5 and 9 showed the lowest with lower credible bounds just slightly above 1.

Next, we compare the dynamics of the SIR and SIRwIF models evaluated at their respective posterior
means. Figure 5 shows the model fits at for two carefully selected regions. The flu season in region 6
(Dallas) got off to a fast start, with a peak season which was 1 to 2 weeks earlier than the other seasons.
Region 1 (Boston) had a slow start to the flu season with a later peak wILI time. Notice how the SIRwIF
model prevents over-correction, using information from other regions to pull the estimate back towards
the mean. This leads to a 7% improvement in the sum of squares error in the first plot (left) and 18%

improvement in the second (right). In many cases, estimates of the prediction uncertainty may be desired.
Figure 6 gives 95% posterior prediction intervals for four regions with a variety of estimated reproductive
numbers. These predictive intervals are comprehensive in their characterization of uncertainty, including

Figure 5. Comparison of SIR and SIRwIF mechanistic models evaluated at the posterior
mean (θ̂1) for regions with a fast (left) and slow (right) start to the flu season.
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Figure 6. Posterior predictive distributions including 95% pointwise credible regions.

parameters, discrepancy and observation error. The black curve represents the pointwise posterior median
of the prediction distribution, and gives an improved fit over the point-estimate procedure of Figure 5.

5. Conclusion

When modeling at the regional level, it can be useful to incorporate structural dependence between regions.
When data is collected and reported with sufficient local resolution, the spatial structure can be harnessed.
When the areal regions are coarse, such as with the CDCs regional influenza data, spatial analysis may be
unable to uncover meaningful patterns. In such cases, we can generalize the idea of a neighborhood set to
account for the flow of information between regions. Transfer entropy provides the mathematical framework
necessary for the development of these neighborhoods. We propose the SIR model with information flow
as a simple and efficient mechanistic procedure. which fits seamlessly with more comprehensive procedures
such as the Dynamic Bayesian model of Osthus et al.

Future work would involve using the model in a forecast setting, conducting a thorough comparison with
other existing models. A complete extension of the DB model to the regional level is also an interesting and
worthwhile venture. Finally, we suggest further exploration of the prior specification and posterior sampling
procedure as there is substantial room for improvement.
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