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1. The Problem

In this short paper, we will consider the rather simple problem of estimating θ based on a random sample
from the U(0, θ) distribution.

(1) X1, X2, · · ·Xn
iid∼ U(0, θ)

(2) f(xi|θ) =
I(0 ≤ xi ≤ θ)

θ

We will begin by briefly presenting the Method of Moments and Maximum Likelihood estimators, and then
moving onto some possible improvements. We will present the well known Uniform Minimum Variance
Unbiased Estimator (UMVUE) correction, an estimator which minimizes the MSE, a jack-knife resampling
estimator to remove bias and finally a probability of error estimator which does not depend on n.

2. Classical Estimators

2.1. Method of Moments. In a single parameter model, the Method of Moments estimator simply sets
the sample mean X̄ equal to the first moment µ and solves algebraically for θ. In this case, we have

(3) µ = E(X1) =
θ

2

which implies

(4) X̄ =
θ

2
⇒ θ̂mom = 2X̄

The bias and variance calculations for this estimator are quite easy leading to a tractable formula for
MSE which we will show later in this section.

2.2. Maximum Likelihood. The Maximum Likelihood Estimator for this problem is also relatively simple
using a trick with the indicator function. We begin by writing the Likelihood function for this model where
x(1) and x(n) are the maximum and minimum order statistics of the sample respectively.

(5) L(θ|X1, · · ·Xn) =

n∏
i=1

f(xi|θ) =

∏n
i=1 I(0 ≤ xi ≤ θ)

θn
=
I(0 ≤ x(1))I(x(n) ≤ θ)

θn

As a function of θ we see that this function (ignoring indicator functions) is monotonically decreasing. Hence
we need to make θ as small as possible. However the likelihood becomes 0 when θ < x(n), hence to maximize
the likelihood we should choose

(6) θ̂mle = X(n)

Using the four-parameter beta distribution, we will be able to determine the MSE of this estimator as well.
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2.3. Mean Squared Error - Method of Moments. The bias of an estimator is given by B(θ̂) = E(θ̂)−θ).
It is easy to show that the Method of Moments estimator is unbiased.

(7) B(θ̂mom) = E(2X̄)− θ = 2E(X1)− θ = 2
θ

2
− θ = 0

The variance is also straightforward here.

(8) V ar(θ̂mom) = V ar

(
2
∑n
i=1 xi
n

)
=

4

n2

(
n∑
i=1

V ar(Xi)

)
=

4

n2
nθ2

12
=
θ2

3n

Putting these together, we get the MSE.

(9) MSE(θ̂mom) =
[
B(θ̂mom)

]2
+ V ar(θ̂mom) =

θ2

3n

2.4. Mean Squared Error - Maximum Likelihood. We will need to use the following well known fact.

Proposition:
If X1, X2, · · ·Xn is a random sample from the U(0, θ) distribution, then the maximum order statistic X(n)

follows the four parameter beta distribution Be[0,θ](n, 1).

A simple way of leveraging this is to notice that θ̂mle = X(n) ≈ θY where ≈ means "equal in distribution"
and Y ∼ Be(n, 1). Thus to calculate the bias and variance we can use the moments of the two-parameter
beta distribution.

(10) B(θ̂mle) = θE(Y )− θ = θ

(
n

n+ 1
− 1

)
=
−θ
n+ 1

(11) V ar(θ̂mle) = θ2V ar(Y ) =
θ2n

(n+ 1)2(n+ 2)

(12) MSE(θ̂mle) =

(
−θ
n+ 1

)2

+
θ2n

(n+ 1)2(n+ 2)
= θ2

(n+ 2) + n

(n+ 1)2(n+ 2)
=

2θ2

(n+ 1)(n+ 2)

We conclude this section with plots of the MSE as a function of n and histograms based on simulations with
n = 20.

Figure 1
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3. Bias Elimination

Although the Method of Moments produces an unbiased estimate, the variance (and thus the MSE)
tends to be large compared to the Maximum Likelihood estimate. In this section, we consider two methods
of bias elimination. First we give the UMVUE, which is well known and by definition the least variance
unbiased estimate. Secondly, we consider a re-sampling technique called Jack-knifing and demonstrate it’s
unbiasedness numerically.

3.1. The UMVUE. Without going into details, we give another proposition which ties the UMVUE to
completeness and sufficiency of a statistic.

Proposition: If T is a complete and sufficient statistic for a parameter θ and φ(T ) is an estimator based
on the data only through T , then φ(T ) is the (unique) minimum variance estimator of its expected value

Without justification, we note that X(n) is complete and sufficient for θ. In the previous section, we found
that E(X(n)) = θn

n+1 . Through a simple bias correction, we obtain the estimator

(13) θ̂umvue =
n+ 1

n
X(n)

which is clearly unbiased for θ. Since θ̂umvue depends on the data only through X(n) we use the proposition
to conclude that it is in fact the UMVUE. The MSE calculation is simple given the work done in the previous
section.

(14) MSE(θ̂umvue) = 02 + θ2
(
n+ 1

n

)
V ar(X(n)) = θ2

(n+ 1)2

n2
n

(n+ 1)2(n+ 2)
=

θ2

n(n+ 2)

3.2. Jackknife Estimator. Jackknifing is a resampling method which provides a way to estimate the bias.
In this case, Jackknifing really isn’t necessary because the exact bias can be calculated. It’s inclusion in
this paper is for illustrative purposes, since the Jack-Knife can often be a useful tool when the bias can’t be
calculated. Given an estimator θ̂ (we will use the mle), let θ̂−i to be the same estimator calculated with the
ith observation eliminated from the sample.

(15) θ̂jack = nθ̂mle −
n− 1

n

n∑
i=1

θ̂−i

Calculating the MSE requires the joint distribution of 2 order statistics so we exclude it for simplicity.

Figure 2
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4. Further Extensions

In this section, we will use optimization to construct two more estimators. The first is similar to the
UMVUE with the objective being to minimize the MSE. The second minimizes the probability of estimation
error, which leads to an interesting estimator which (upon numerical analysis) does not depend on the sample
size n.

4.1. Minimizing MSE. In the UMVUE approach we saw earlier, the idea was straightforward. The MLE
provides a good starting place, but we know that X(n) must always be smaller than θ. Thus we multiply
by a constant (which is greater than 1) to eliminate the bias. In doing so, we add additional variance but
nonetheless we see an improvement in MSE.

We propose considering estimators of the form

(16) θ̂c = cX(n)

for c ≥ 1. Immediately, we see two special cases: θ̂mle = θ̂1 and θ̂umvue = θ̂n+1
n

. Our goal is to find c which

minimizes MSE(θ̂c). Recall that cX(n) ≈ cθY where ≈ means equal in distribution and Y ∼ Be(n, 1).

(17) B(θ̂c) = θ

(
cn

n+ 1
− 1

)

(18) V ar(θ̂c) = θ2
(

c2n

(n+ 1)2(n+ 2)

)

(19) MSE(θ̂c) = θ2

((
cn

n+ 1
− 1

)2

+
c2n

(n+ 1)2(n+ 2)

)
This becomes a straightforward one-dimensional optimization problem which can be done using Calculus.

It is easy to derive that the optimal c is given by

(20) copt =
(n+ 1)(n+ 2)

n(n+ 2) + 1

A simple algebraic argument shows that θ̂mle < θ̂copt < θ̂umvue. The improvement in MSE comes from the
bias variance trade off. The UMVUE eliminates the bias, where as θ̂copt only reduces it. We are allowing the
estimator to be slightly biased so long as the reduction in variance is worth it the MSE sense. In conclusion,
we have found that of all estimators of the form given in (16), the one with the minimal MSE is given by:

(21) θ̂copt =
(n+ 1)(n+ 2)

n(n+ 2) + 1
X(n)

4.2. Minimzing Probability of Error. For motivation, imagine an application where we are okay with a
certain amount of error, say ε. Supposing that any estimation error which is greater than ε is catastrophic,
it makes sense to find the estimator which minimizes the probability of catastrophe.

First, notice that ε should be fairly small. Otherwise the probability of catastrophe will converge to 0 for
all reasonable estimators. Secondly, we will see shortly that this formulation in terms of ε will cause some
issues, but we address that momentarily. Let us again look at estimators of the form given in (16), but this
time the goal is to minimize:

(22) f(c) = P (|θ̂c − θ| > ε)
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For the last time, we will leverage the distributional equivalence of cX(n) and cθY for Y ∼ Be(n, 1).

f(c) = P (|θ̂c − θ| > ε)

= P (θ̂c < θ − ε) + P (θ̂c > θ + ε)

= P

(
Y <

θ − ε
cθ

)
+ P

(
Y >

θ + ε

cθ

)
= P

(
Y <

1

c
(1− ε/θ)

)
+ 1− P

(
Y >

1

c
(1 + ε/θ)

)
= 1 + FY (L)− FY (R)

where L =
1

c
(1− ε/θ) and R =

1

c
(1 + ε/θ)

If there is a way to minimize this function directly, it is beyond the scope of this simple exploratory paper.
A simple numerical optimization at first produces troublesome results. The optimal c depends on θ which is
strictly violates the properties of an estimator. Therefore, at this point we substitute ε = δθ for δ < 1. This
yeilds:

f(c) = 1 + FY (L′)− FY (R′)

where L′ = (1− δ)/c and R′ = (1− δ)/c

Keeping in mind that δ should be small (otherwise there is no unique solution up to machine epsilon), we
optimize over a grid of n and δ values. Interestingly, we see that the optimal multiplier denoted cδ does not
depend on n and the relationship between cδ and δ is linear.

Figure 3

The red line in the left image gives the optimal relationship between cδ and δ.

(23) cδ = 1 + δ

(24) θ̂δ = (1 + δ)X(n)

If the sample size is unknown, we are unable to use any of the previously discussed bias reduction tech-
niques. This estimator provides us with a justifiable way to increase the MLE in absence of the sample size.
If n is unknown however, there is no way to compute the MSE and hence no way of knowing how to choose
δ in terms of the MSE.
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5. Concluding Remarks

To summarize, we have proposed 6 estimators of θ. We began with 2 classical estimation techniques, and
then discussed methods of bias reduction/elimination for the MLE approach. We concluded with estimators
which minimized the MSE and probability of error. In the following table, we give the equation for each
estimator, as well it’s Bias, Variance and MSE (if analytically computable). Finally, we give the estimated
MSE for each estimator using 100, 000 simulations setting θ = 1 and n = 20.

Table 1. Summary of Results

Method Equation Bias Variance 1000× ˆMSE

Method of Moments θ̂ = 2X̄ 0 θ2

3n 16.64

Maximum Likelihood θ̂ = X(n)
−θ
n+1

nθ2

(n+1)2(n+2) 4.32

UMVUE θ̂ = n+1
n X(n) 0 θ2

n(n+2) 2.27

Jackknife θ̂ = nX(n) − n−1
n

∑n
i=1 θ̂−i 0 − 4.15

Min MSE θ̂ = (n+1)(n+2)
n(n+2)+1 X(n)

−θ
n(n+2)+1

n(n+2)θ2

(n(n+2)+1)2 2.26

Min Probability of Catastrophe θ̂ = (1 + δ)X(n)
δn−1
n+1 θ

(1+δ)2n
(n+1)2(n+2)θ

2 4.76

Figure 4
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