
Classification of Non-Invasive Fetal ECGs with
Dynamic Time Warping

Kellin Rumsey
Department of Mathematics and Statistics

University of New Mexico
Data Mining - Final Project

I. INTRODUCTION

With modern medical technology, heart rhythm can be
easily, safely and accurately read using an electrocardiogram
(ECG). Medical professionals can detect problems and
irregularities, both big and small, effectively, sometimes with
the help of computer aided pattern recognition. The difficulty
of the problem however drastically increases when the patient
of interest is not a fully grown adult, but an unborn human
child. While accurate invasive ECGs exist, they are seldom
used (except perhaps at the time of pregnancy) due to the
health risks and high cost. Thus a popular technique known
as Non-invasive Fetal ECG (NI-FECG) is commonly used.

In NI-FECG, a series of sensors are placed on the mothers
abdomen, and are used to detect the fetal heartbeat. The
drawback of this safe and easy alternative is a noisy signal,
due to the muscles in the abdomen and the unavoidable fact
that the maternal heartbeat is dominant. Data mining problems
such as event classification, abnormality detection and FECG
extraction are clearly important. Data mining researches have
had some successes in recent years with these problems, but
limited data forms a bottleneck. The Fetal ECG Synthetic
Database was created to address this data bottleneck, using the
FECGSYN simulator to construct a wide variety of scenarios.
Specifically, the data is composed of 1750 five minute ECG
samples each with 5100 hours of data and 1.1 million fetal
ECG peaks.

In this paper, we examined 15 simulated pregnancies, using
2 minutes of FECG data in each pregnancy. The pregnancies
were divided into 3 classes.
• Class 1: Normal pregnancy
• Class 2: Ectopic heartbeats
• Class 3: Twin pregnancy

Normal pregnancy is chosen as a baseline case, and twin
pregnancy was chosen for interpretability of ECG data. Ec-
topic heartbeats refer to a disturbance in cardiac rhythm
and is a type of arrhythmia. While it can be common and
un-alarming in adults, the presence of ectopic beats in a
baby can be an indicator of potentially serious heart disease.
Thus classification of these ectopic beats is an important and
challenging problem. Figure 2 gives a deconstructed view of
the signals in discussion. Specifically, these signals represent a

two second snippet of the ECG for a twin-pregnancy. The top
three panels show (from left to right) the ECG corresponding
to the mother and each fetus. It is worth noting that the
magnitude of the Fetal ECGs is comparable to that of the
Noise signals and much smaller than the magnitude of the
healthy MECG. Additionally, the noise level varies for each
pregnancy, and the pregnancy shown in Figure 2 is relatively
well-behaved comparatively. These facts combine to make this
a challenging problem.

Data Collection and Processing

The FECGSYNDB Database is hosted at
https://physionet.org/physiobank/database/fecgsyndb/.
Databases on Physionet require a special tool which
must be downloaded, and a terminal window is used to
convert these files to lengthy text files. Although the data
is too large to be held in memory (on my laptop at least),
I extracted the majority of the dataset for purposes of
visualization and to help hone in on a reasonable problem.
Once the classification task was laid out, the following steps
were taken one pregnancy at a time.

1) Convert the data to a text file.
2) Read the text file and extract 2 minutes of ECG data

from the first channel.
3) Extract as many maternal heart beats as possible.
4) Regularize the data. This included applying low and high

pass Butterworth filters, z-normalizing each subsequence

Fig. 1. Primary peak extraction process. Left panel shows filtered data with
all identified peaks. Right panel demonstrates clustering to select only the
primary peaks.

Fig. 2. Decomposition of signals. The observed signal (bottom right) is the sum of the 5 source signals. These signals represent a twin pregnancy. Normal
and ectopic classes have only 1 FECG signal.

and scaling/interpolating so that each beat is takes place
over a standardized time between 0 and 1.

Most steps of the collection/processing stage are straight-
forward (although time consuming). The maternal hear beat
extraction was tricky, as the author was (and is) unaware of
a gold-standard which was within the scope of this class. So
a relatively simple and fairly effective method was employed.
By filtering the data, we are able to easily detect all spikes
above a certain threshold. This includes the MECG spikes,
as desired, but also contains a large number of undesirable
spikes due to fetal heartbeats and noise. The height of each
peak was then collected, and a efficient implementation of
the univariate k-means algorithm was employed. Assuming a
normal probability model, the number of classes was selected
using Bayesian information criteria (BIC). The group with
the largest mean was deemed to be the MECG spikes which
we were looking for. A summary of this process is shown in
Figure 1.

In some cases however, the noise level was so large that a high-
peak class couldn’t be accurately detected without several false
positives or false negatives. To handle this, we simply removed
all ”heartbeats” whose duration in seconds was deemed an
outlier according to the 1.5× IQR Rule. Specifically, given a
set of heartbeat durations x1, x2, · · ·xn, we respectively denote
Q1 and Q3 to be the first quartile and third quartile of the xi
and define the Interquartile range IQR = Q3−Q1. The upper
and lower fence are thus given by:

LF = Q1 − 1.5× IQR UF = Q3 + 1.5× IQR

Thus any heartbeat duration xi such that xi < LF or xi > UF
was denoted a ”false heartbeat” and was eliminated. In the end,
we collected 1600 subsequences of length 500. An illustrative
sample of these z-normalized heartbeats is shown in Figure
3. The dashed black line in each panel represents the DTW
Barycenter Average (DBA) of the set. The dotted red line

Fig. 3. Representative heartbeats by class. Dashed black line represents
DTW Barycenter Average (DBA). Dotted red line is Extremal Depth median
function.

corresponds to the median function according by Functional
Extremal Depth. 1

II. CLASSIFICATION ALGORITHMS

After normalizing the heartbeat data, the goal is to classify
the heart beats in one of three classes: (1) normal pregnancy,
(2) ectopic fetal heartbeats or (3) twin pregnancy. The data
was split into 5 approximately equal sized groups. The first
set of functions was held out as a validation set V . The
remaining 4 groups were then used in a simple 4-Fold Cross
Validation analysis.

For nearly any classification algorithm, we need a notion of
distance. Since interpolation was used to give each time series
equal length, the euclidean distance metric is the first possible
option. That is, for two series x = (x1, x2, · · ·xm) and y =
(y1, y2, · · · ym) we define

de(x, y) =

√√√√ m∑
i=1

(xi − yi)2

Another option is to use Dynamic Time Warping distance,
which is defined recursively. DTW distance is defined recur-
sively as follows. We start with the base cases:

γ(i, j) =

{
0 i = j = 0

∞ i = 0 xor j = 0

Then starting at cell γ(1, 1) we recursively compute

γ(i, j) = (xi − yj)2+
min[γ(i−1, j − 1), γ(i− 1, j), γ(i, j − 1)]

Finally, we define DTW (x, y) =
√
γ(nx, ny) where nx and

ny are the length of x and y respectively. DTW distance,
unlike it’s euclidean counterpart, has the ability to recognize
when two sequences are really very similar, while possibly
out of alignment. It also has the ability to provide a notion
of similarity when nx 6= ny . where euclidean distance fails.
There are two potential drawbacks to DTW distance however.
The first, is the complexity, which (assuming n = nx = ny) is
O(n2) compared to O(n) for the euclidean measure. Second,
DTW distance is sometimes too flexible, and can allow two
sequences which should be considered dissimilar to have small
distance. We can solve both of these by adding a warping
window parameter w ∈ {1, 2, · · ·min(nx, ny)}. The definition
of DTW distance can remain the same, with a small change.
The base case becomes

γw(i, j) =


0 i = j = 0

∞ i = 0 xor j = 0

∞ |i− j| > w

1Functional ED is a statistically rigorous framework for performing non-
parametric statistics on functional data. We originally intended to apply some
of the methods to this classification task, but the algorithms scale poorly
in both the number of functions and number of points, and the idea was
abandoned.

This puts a limit on how far a function is allowed to warp,
while simultaneously reducing the cost to O(wn). It is easy
to see that when nx = ny , setting w = 1 implies that
DTWw(x, y) = de(x, y).

A. A Simple Partition Based Classifier

To start things off, we propose a simple partition based
classifier similar in spirit to LDA or K-means. To do this, we
need a measure of center. It is well known that arithmetic
averages of time-series can be misleading and a poor choice
of center in the presence of phase mis-alignment. Thus we
turn to the DTW Barycenter Average (DBA) which is found
iteratively and tries to minimize the distance from each
function in a set with respect to DTWw. An alternative
approach is to use the a median function based on the notion
of Extremal depth, which would allow for a partitioning
approach similar to that of PAM , but it is too currently too
expensive for this application. Thus our algorithm can be
written as follows:

ALGORITHM ONE:

S = training set
T = test set
Construct Sk = {x in S | x has class k}
Compute DBA(Sk)

For each y in T:
predicted class of y is argmin_k(DTW_w(y,
DBA(Sk))

B. Early Abandoning and Lower Bounding

This algorithm is fast because it requires at most Kny
distance calculations (where K is the number of classes)
once the DBA’s have been found. As we will shortly see,
early abandoning and a cascade of lower bounds can reduce
this number even further. While this can speed up the
partition-based method slightly, these methods will help
tremendously for our final classifier.

In Algorithm One, we are trying to find z in a small
set Z that minimizes DTWw(y, z). One way to produce a
small speedup is via early abandoning. There are some highly
sophisticated techniques, but a fairly simple implementation
was used here. We take advantage of the following simple
fact. For all i, minj (γw(i, j)) < DTWw. Thus if we keep
track of the current minimal distance between y and z, we
can abandon our calculation of DTW as soon as the smallest
element in a row of γ exceeds the best distance so far. In
some cases, this can happen very quickly leading to a drastic
reduction in computation time.

Lower bounding refers to any function such that LB(x, y) <
DTWw(x, y), where ideally LB(x, y) is much faster to com-
pute that DTW distance. Now if the current smallest distance

Fig. 4. DTW and 5 lower bounding functions for 100 randomly selected
pairs of heartbeats.

is δ, we can check LB(x, y) > δ. If this is true, then there is
no need to compute the distance between x and y. This can
lead to us calculating a very small portion of DTW distances.
There is typically a tradeoff in LB distances between tightness
of the bound and time to compute. The idea behind cascading
is to compute the cheapest bound first and check the condition.
If it fails, then compute a more expensive, but hopefully
tighter upper bound. Compare and repeat until we either find
LB(x, y) > δ and we skip the calculation, or until we run
out of of lower bounding functions and are forced to compute
DTW distance. In our implementation, we use the following
sequence of lower bounds.
• LBkim1

(x, y). Euclidean distance between the vectors
(x1, xn) and (y1, yn). Very cheap. Took 0.1 seconds to
compute 10,000 times.

• LBkim2(x, y). Euclidean distance between the vectors
(x1, xn, x(1), x(n)) and (y1, yn, y(1), y(n)). Where x(1)
and x(n) represent the min and max of x respectively. If
w < n, we need to also make sure than the min (and max)
of x and y are within w time points of each other or this
isn’t actually a lower bound. This is O(n) to compute.
Took 2 seconds to compute 10,000 times.

• LByi(x, y). Creates a horizontal band around x. Take
euclidean distance between this band and points of y
which lie outside the band. Repeat by swapping the roles
of x and y take the max. Also O(n) but with bigger
constants. Took 3 seconds to compute 10, 000 times.

• LBkeogh(x, y). A little bit more expensive, but effective.
Similar to LByi but uses a sliding window to construct
band rather than horizontal. Took 15 seconds to compute
10,000 times.

• LBsakoe(x, y). Similar to LBkeogh but with a different
band which produces a tighter bound. Took 16 seconds
to compute 10,000 times

• DTW distance. Tightest lower bound possible. (: Took 41
minutes to compute 100,000 times.

All of these LB functions were implemented manually in

R, except for the Sakoe-Chiba bound which I found in a
package. Figure 4 illustrates the tightness of the bounds for
100 randomly selected pairs of heartbeats.

C. The 1 Nearest-Neighbor DTW Classifier

This algorithm can be considered Hierarchical (especially if
we were clustering), but is similar in flavor to the partitioning
method described above. Rather than finding the nearest
centroid however, we need to search through the entire
training set to find the nearest neighbor of x and we predict
that x has the same class as its nearest neighbor. This
runtime will clearly have complexity O(ntestntrain) instead
of O(Kntest), but the early abandoning and lower bounding
can be far more effective here leading to an algorithm with a
linear amortized cost.

ALGORITHM TWO:

S = training set
T = test set

for each x in T
find y in S such that DTW_w(x, y) <
DTW_w(x, z) for all z in S
predicted class of x is class of y

Here it is very important that we utilize early abandoning
and lower bounding. As we will see, it can drastically reduce
the number of DTW calculations. As a final speed up, we
suggest the following. Lower bounding works best if the
best distance so far is small. If we have already run the
much cheaper partitioning based method, we can order the
appearance of the y ∈ S so that we are likely to find the
nearest neighbor earlier. This doesn’t change the complexity of
the algorithm, but over many runs it can reduce the constants.

III. RESULTS

One of the first problems we must consider is the selection
of w in the DTW distance function. Figure 5 shows the
DTWw(x, y) as a function of w for a randomly selected pair x
and y. Although there is variability based on the pair selected,

Fig. 5. DTW distance as a function of w. Dotted orange line is DTW for
w = n

Fig. 6. Average distance to barycenters for subsequences in different classes.

this was fairly representative of the effect. It is clear that for
this heartbeat data, setting w = n is overkill. In fact based
on Figure ?? a value of w ≈ 25 seems to achieve close
to the same value as the full DTW. In addition, we used a
small subsample to approximate within-cluster distances and
between-cluster distances using class DBA’s as a proxy. These
results can be seen in Figure 6. We might hypothesize from
Figure 6 that the first class will be the easiest to predict, and
the third class the hardest.
Using 4-fold Cross validation, we consider four values of w.
The partition based classifier illustrates mediocre performance
with a maximum accuracy of about 60%. The algorithm is fast
though, as promised, and we have leveraged its speed to give
a boost to the 1-NN DTW algorithm as well.

TABLE I
CROSS VALIDATION RESULTS FOR PARTITIONING METHOD

w Accuracy Avg Prec. Avg Recall Avg F1-score Runtime (s)
10 57.26 57.73 62.69 57.73 22
25 57.76 57.82 60.47 57.82 35
50 59.23 61.1 62.55 61.1 47
75 58.31 59.14 65.96 59.14 60

The single nearest neighbor classifier with DTW performs
significantly better, obtaining accuracies over 97%. The algo-
rithm doesn’t scale particularly well as w increases however,
and the marginal gains from increasing w seem to be lost
beyond w = 50. Thus a value of w between 25 and 50 seems
like a reasonable choice here. The final column in Table 2
gives the fraction of DTW calculations which were required.
When w is small, only a small fraction of the calculations are
needed, but the lower bounding becomes less effective when
w is increased.

Figure 7 shows the runtimes as a function of n for randomly
selected subsets S and T of size n. We can see that the
early abandoning and lower bounding makes the amortized
complexity linear as promised. The re-ordering also helps, but
just by a little bit. Although it is possible that the benefit of
reordering grows with the number of functions.

TABLE II
CROSS VALIDATION RESULTS FOR 1-NN DTW METHOD

w Accuracy Avg Prec. Avg Recall Avg F1-score Runtime DTW %
10 92.66 92.9 92.83 92.86 144 2.5
25 96.91 96.94 96.91 96.93 402 4.4
50 97.1 96.84 96.92 96.88 1302 7.2
75 96.88 96.88 96.87 96.87 2400 11.3

Fig. 7. Runtime of 3 implementations of 1-NN DTW classifier and the par-
tition based method. Partition based is fast, but less accurate (see CV tables).
Nearest neighbor classifier is approximately linear when lower bounding is
used.

Finally, we comment on how Precision and Recall are
computed for this data with three classes. We simply take the
average over the three 1 vs all classifiers.

Pavg =
1

3

3∑
k=1

M(k, k)∑3
k′=1M(k′, k)

Ravg =
1

3

3∑
k=1

M(k, k)∑3
k′=1M(k, k′)

and then in the usual way we obtain F1,avg =
2PavgRavg

Pavg+Ravg
.

A. Validation

Finally, we are able to return to the validation set which
we left out since the beginning. We fix w = 50. The partition
based classifier has accuracy of 60 percent and F1,avg = 61%.
The classifier based on nearest neighbor with DTW has an
accuracy of 94.4% and F1,avg = 94.4%. Confusion matrices
are given below.

Table III: Confusion Matrix (%) for partition based method

Pr
ed

C
la

ss

Actual Class

1 2 3

1 23 4 4

2 9 22 16

3 2 5 15

Table III: Confusion Matrix (%) for 1-NN DTW

Pr
ed

C
la

ss

Actual Class

1 2 3

1 34 1 0

2 0 29 3

3 0 1 31

IV. DISCUSSION AND CONCLUSION

This project has taught me a lot about data mining for time
series data. I was honestly taken aback by how difficult it
was. Applying DTW was not quite as straightforward as I had
hoped/thought it would be. There is a lot of normalization
required, and extracting heartbeats was a major challenge (and
not even my end goal). I was quite happy to struggle with it
though, and feel that I learned a lot along the way. While

expert is probably too strong a word, I feel like I have a solid
understanding of how to overcome the challenges with DTW
and time series mining. Although the algorithms employed
were fairly simple, applying them in this scope required a lot
of thought.

If I could do this again, the number one thing I would do
would be to try to scale it up more and apply this to a larger
dataset. I also chose this dataset so that it would meet the size
requirement (actually it was still a little shy at 9GB), and I
don’t think it was actually ideal for a classification task. The
dataset is meant more for FECG extraction. I will definitely
keep DTW in my toolbox though, and apply it if I get the
chance. I also wrote almost all the code from scratch, because
I think it’s a great way to learn, but I probably wouldn’t do it
again.

Finally, I wish I had the time to apply more statistical
methods to this problem. I wanted to try out regularization
methods such as LASSO and the Bayesian Horseshoe, but
never really had the time to see if it would work out. The
Extremal Depth stuff is also very interesting but needs a better
implementation before it is feasible to use on this scale. One
of the most interesting things I’ve learned this semester (and it
was reinforced by this project) is the magnitude of difference
between statistics and data-mining despite the massive overlap.
I love rigorous statistical methods and the quantification of
uncertainty that they can provide, but they could definitely
learn from and benefit from the people in the data mining
community, especially the ability to speed up algorithms in
creative ways.

All of the work (code, writeup) in this project is entirely my
own. The slides on DTW by Dr. Mueen and Dr. Keogh proved
incredibly useful. I tried to write algorithms myself whenever
possible, but I have cited all packages that were used.

REFERENCES

[1] Andreotti F., Behar J., Zaunseder S.,Oster J. and Clifford G D., An
Open-Source Framework for Stress-Testing Non-Invasive Foetal ECG
Extraction Algorithms. Physiol Meas 5, pp. 627-648, 2016.

[2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov
PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley
HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of
a New Research Resource for Complex Physiologic Signals.
Circulation 101(23):e215-e220 [Circulation Electronic Pages;
http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June
13).

[3] Abdullah Mueen, Eamonn J. Keogh: Extracting Optimal Performance
from Dynamic Time Warping. KDD 2016: 2129-2130

[4] Naveen N. Narisetty and Vijayan N. Nair (2016) Extremal Depth for
Functional Data and Applications, Journal of the American Statistical
Association, 111:516, 1705-1714, DOI: 10.1080/01621459.2015.1110033

[5] R Core Team (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

[6] Thomas Quinn (NA). eek: A Tool to Pre-Process Bulk EKG
Data and Detect Physiological Peaks. R package version 0.0.0.9000.
http://github.com/tpq/eek

[7] Alexis Sarda-Espinosa (2018). dtwclust: Time Series Clustering Along
with Optimizations for the Dynamic Time Warping Distance. R package
version 5.5.1. https://CRAN.R-project.org/package=dtwclust

[8] Wang, H. and Song, M. (2011) Ckmeans.1d.dp: optimal k-means clus-
tering in one dimension by dynamic programming. The R Journal 3(2),
29-33.

