
Get Zipfy With It
Abigail Jacoby

Dept. of Computer Engineering
University of New Mexico

Albuquerque, NM
jacobya@unm.edu

Vanessa Job
Dept. of Computer Science
University of New Mexico

Albuquerque, NM
vjob@unm.edu

Justin Don Thomas
Dept. of Computer Science
University of New Mexico

Albuquerque, NM
jthomas105@unm.edu

Kellin Rumsey
Dept. of Mathematics and Statistics

University of New Mexico
Albuquerque NM, USA

knrumsey@unm.edu

Index Terms—zipfian distribution, zipfs law, power law, senti-
ment, social media, big data, metropolis hastings

I. INTRODUCTION

Social media data is massive in size, and rich in informa-
tion. Unfortunately, this wealth of information goes largely
unharnessed due to many kinds of bias found in this kind of
data. One of the more troublesome forms of bias in social
media data is that of voluntary response. When performing
sentiment analysis on a specific topic, we can only have data
from people who have chosen themselves for the sample.

As a motivating example, consider the case where we
attempt to use social media data to help predict the outcome
of an election. There can be no truly random sample of social
media users, since we can only examine those users who have
offered their opinion on the subject. Compare two users Alf
and Betty, and suppose Alf has specified his opinion once
through social media while Betty has specified her opinion
10 times. Under certain sampling conditions, we my be 10
times more likely to include Betty’s opinion in our analysis
compared to Alf, but we would like to represent them equally
in our sample.

II. PRIOR RESEARCH

Several researchers have examined Twitter data with the
goal of predicting election outcomes. For instance, in [1],
DiGrazia, McKelvey, Bollen and Rojas show that the number
of Republican candidate name mentions correlates with the
Republican vote margin in 406 U.S. congressional elections
from 2010. Another example is the paper of Tusmajan,
Sprenger, Sandner, and Welp [4] that finds the number of
tweets that mention a political party correlates to the results
of the 2009 federal elections in Germany.

Gaurav, Srivastava, Kumar, and Miller [2] develop a model
that moves beyond merely counting mentions in tweets. They
successfully predict the outcomes of three Latin American
presidential elections in 2013 by counting the number of
times a candidate’s name is mentioned but also include tweets
mentioning candidates’ common nicknames. They also do
some additional filtering to exclude irrelevant tweets.

But as Gayo-Avello, Mextaxas, and Mustafaraj point out in
[3], if would be very surprising if Twitter activity predicted
the outcome of elections ”given the difference between the
demographics of likely voters and social media users.” They

analyze data from several elections and conclude that election
predictions based on the Twitter metrics described in prior
papers are no better than random chance.

Although there has been considerable research on this topic,
we believe that we are the first to focus on the problem of
voluntary response bias.

III. THE STATISTICAL MODEL

Readers may wish to consult the appendix for details on the
distributions discussed in this section.

Consider an arbitrarily large population of users, where each
user Ui has sentiment on a topic. We denote the sentiment Si
and assume the following.

Si ∼ Bernoulli(γ) (1)

We are restricting Si to be binary, but the ideas presented in
this paper can be easily extended to handle multiple categories.
In essence, γ is the true proportion of users with positive
sentiment for the topic. In a political election for example, this
could represent the proportion of users that support Candidate
A, and it is usually our goal to predict this value. At first
glance, the maximum likelihood estimator given in equation
(2) is a reasonable choice, and this is the classical estimator
used in previous research for this topic.

Γ̂c =
1

n

n∑
i=1

Si (2)

We will show that this estimator can be badly biased if we
attempt to model the Voluntary Response Bias. If we look at
a users most recent M tokens1, we realize that some number
of these tokens will be topic-related. We denote this number
Ki and refer to it as a users passion. For the majority of
topics, users with low passion will be far more frequent than
users with high passion. Thus in a random variable sense,
Ki can be modeled with some sort of decay distribution. We
have found that for this type of data, the decay is usually of
the form P (K = k) ∝ (k + 1)−θ2. If this is the case, then
we say the data behaves according to Zipf’s Law, and model
the Ki with a Zipfian Distribution. For other problems, other
decay distributions such as exponential decay may be more

1We use token in place of platform specific terms such as ”post” or ”tweet”
2We use a slightly modified version of the Zipfian Distribution which has

support on the set {0, 1, 2, ...M} rather than the traditional {1, 2, ...M}

appropriate, in which case a truncated geometric distribution
can be used to model passion.

Intuitively, there may be situations where there is a relation-
ship between passion and sentiment. For example, a supporter
of a particular candidate may provide us with a handful
of positive tokens, but somebody who opposes the same
candidate may produce negative tokens far more frequently.
Hence we can generalize the model in (1), by allowing γ to
be an unknown function of Ki.

Ki ∼ Zipfian(M, θ) (3)

Si|Ki ∼ Bernoulli(γ(Ki) (4)

Si ∼ Bernoulli(Γ)) (5)

Marginally, the Si will still be Bernoulli random variables,
where the parameter of interest is now Γ.

Γ = E[γ(Ki)] =

M∑
k=0

γ(k)P (Ki = k) (6)

Hence the classical estimator given in (2) does not change, and
if we were able to sample from these Si then we would indeed
have an unbiased estimator. The problem lies in the fact that
we are unable to draw from this distribution. In general, we
stream tokens and process each one quickly, storing only those
tokens which are related to the topic. Under this sampling
scheme it is clear that we have introduced voluntary response
bias, since users with high passion are far more likely to be
sampled and users with Ki = 0 cannot be sampled at all.

We can show however, that the distribution of passion under
this scheme is now proportional to P (K = k) ∝ k(k + 1)−θ.
We will call this an Inflated-Zipfian Distribution, and note
that a similar distribution can be obtained for the Truncated
Geometric case. Following the sampling scheme described
above, the following model is far more appropriate.

Ki ∼ Inflated-Zipfian(M, θ) (7)

Si|Ki ∼ Bernoulli(γ(Ki)) (8)

Si ∼ Bernoulli(G) (9)

Unless γ(Ki) is a constant function, the desired proportion Γ
will not be the same as G, hence the classical estimator Γc will
be unbiased for the wrong parameter. To remedy this problem,
let us return to equation (6). We skip some details here, but Γ
can be split into two parts yielding a weighted average.

Γ = ωγ(0) + (1− ω)Γ∗ (10)

The weighting term ω depends exclusively on the decay
distribution and its parameters. If we assume Zipf’s law
holds, then ω = 1/H(M + 1, θ) where H(n, s) is the nth

generalized harmonic number.3. The parameter M is known,
and the parameter θ can be estimated using Bayesian Inference
with the Metropolis-Hastings algorithm. This implies that a
reasonable estimate for ω can be obtained.

3If we assume exponential decay, then ω = (1− θ)/(1− θM+1)

More importantly, by construction we have Γ∗ =
E[γ(Ki)|Ki > 0]. Hence Γ∗ depends only on information
which is attainable, and indeed we are able to provide an
unbiased estimator for this parameter.

Γ̂∗ =

∑n
i=1 SiK

−1
i∑n

i=1K
−1
i

(11)

The intuition behind 11, is that we are weighting each users
”vote” by it’s inverse passion. This enforces that a user who
has produced 20 tokens gets only a twentieth of the weight
as a user who has produced a single token which counteracts
the fact that we were 20 times more likely to include the first
user in the sample to begin with.

Finally we consider the appearance of γ(0) in equation (10).
This can be interpreted as the proportion of users with positive
sentiment given that they haven’t produced a single token on
the topic. It should be evident that this value will be difficult or
impossible to estimate. In a moment, we will offer a possible
approach if an estimate is desired, although we must realize
that in many situations we cannot hope to estimate this value
reliably. Fortunately, in application spaces such as product
sentiment, we may decide that users with Ki = 0 are irrelevant
and in these cases the goal is simply to estimate Γ∗. Therefore
equation (11) is sufficient to provide adequate analysis here.

If we deem it necessary to estimate γ(0), we can offer a
reasonable approach. First we estimate γ̂(k) for k = 1, 2, ...M
and then we can preform regression in an attempt to estimate
γ̂(0).4 Equations (12) and (13) describe a method for estimat-
ing these values.

Ik = {i;Ki = k} (12)

γ̂(k) =

∑
i∈Ik Si
|Ik|

(13)

In summary, we have broken Γ into two terms yielding
three quantities to estimate. Both ω and Γ∗ can be estimated
reliably from data. Our ability to estimate γ(0) is heavily
restricted, limiting us to applications where Γ∗ is the parameter
of interest or cases where the relationship between γ(Ki) and
Ki is apparent.

In conclusion, we propose the following Inverse Passion
Adjusted (IPA) estimator for Γ, with ω̂, γ̂(0) and Γ̂∗ as they
are described above.

Γ̂ = ω̂γ̂(0) + (1− ω̂)Γ̂∗ (14)

IV. SIMULATION STUDY

To illustrate the method laid out in the previous section,
we simulated a population of 255,000 users, with passion
values following Zipf’s Law with M = 20 and θ = 1.7.
We also defined a linear relationship5 between passion and
sentiment according to (15) for k = 1, 2, ...20. In the end,
we obtained approximately 1 million topic related tokens with

4It is recommend that a wide range of regression techniques such as local,
weighted, non-linear or combinations of the aforementioned be considered.

5Piecewise and quadratic γ(k) functions were also simulated, providing
similar results

which to do the analysis. Using a process which is reminiscent
of Bootstrapping, we select a large subset of this data and
compute Γ̂c, Γ̂∗ and the IPA Γ̂. As in Monte Carlo simulation,
we repeat this process many times and construct sampling
distributions for each statistic.

γ(k) = 0.5 +
0.4

20
k (15)

Using Metropolis-Hastings algorithm based on the log-
posterior of the Inflated-Zipfian Distribution with a gamma
prior on θ, we are able to accurately infer the correct value of
θ. This implies that ω̂ will also be a reasonable estimate.

As discussed in the previous section, we can also be
confident that we are correctly estimating Γ∗. The difficulty
arises when we attempt to estimate γ(0). For the purposes
of our simulation study, we were able to estimate this value
reasonably well with simple linear regression. Figure 1 demon-
strates the process of estimating γ for a single Monte Carlo
sample. Figure 1 shows that we are estimating well if we

Fig. 1: Estimating γ̂(0)

recall the true value γ(0) = 0.50 according to (15).

Fig. 2: Sampling Distributions

The sampling distributions in Figure 2 are enlightening.
The bold dashed line represents Γ, and the light dotted line
represents Γ∗. Indeed, the classical estimator Γ̂c shown in
black is badly biased for both parameters of interest. The
estimator Γ̂∗ shown in blue is unbiased for it’s target, and in
this particular case the IPA shown in red is unbiased for the
primary parameter of interest Γ. We must remember however
that this estimator is sensitive to our estimate γ̂(0) which may
be hard to obtain in practice.

Finally, we note that our estimators do appear to have a
larger variance than the classical estimator, but the elimination
of the voluntary response bias heavily outweighs this disad-
vantage.

Before demonstrating this method on a real data set, we
will devote two sections to the technical details behind data
collection, and sentiment classification of tweets.

V. DATA COLLECTION

The goal of our data collection was to collect timelines
from a sampling of Twitter users. We were looking for the
the last 20 tweets in the timelines of these users from inside
our target data collection range. The range we were interested
in was between August 1st 2016 and November 7th 2016.
There were two phases of timeline collection. In the first, we
collected timelines of random users to analyze the frequency
of political tweets, and in the second we collected the timelines
of people with political tweets, hoping to weight the relevance
of their tweets with information derived from the first phase.
This section will explain how the data was collected and stored
for processing as well as the problems we ran into collecting
timeline data from twitter.

A. Collection Process

The data collection was performed in five steps:
1) Collect User IDs.
2) Collect User Timelines.
3) Trim Timelines.
4) Collect More Timelines.
5) Collection Output.

These tasks were completed using Python 2.7 with Twitter
interactions handled using Twython [10], a Python wrapper
for the Twitter API [9]. Collection was handled through a
Python module that was loaded in interactive mode. Our
’twythonInterface.py’ contained methods that the user could
call to perform the steps of the data collection and formatting
with parameters to be set by the user as required. This interface
was used to call the both the Twython function implemen-
tations and serve as a front end for the file manipulation
on the scraped data. The interface modules can be found
at the Github repository, https://github.com/cannoness/CS567-
Big-Data-Project, under the folder ’twythonInterface’. The
individual steps are described in detail below.

1) Collect User IDs: The process for the two phases of
data collection differed in how we collected user ids.

1) For the first phase, we streamed all tweets from a region
without filter to get a collection of ids from the general
twitter population. We used a bare bones extension of
the TwythonStreamer running on its own thread to listen
to twitter and dump user ids into a deque. Another
thread was used to collect those ids from the other end
of the deque and write them to an output file. This
was handled through our interface with the streamIDsTo
method, which allows the user to define an output file
name and path as well as a bounding box string in the
format defined by the Twitter API.

2) We got user ids for the second phase from a database of
political tweets. Since the database of tweets was from
within our target range, we also logged the tweet id with
the user id to have a starting point for grabbing from
their timeline.

In both cases, this collection of user ids was reduced to a list
of unique users.

2) Collect User Timelines: From our list of ids we pro-
ceeded to use the API’s get_user_timeline() query to
get each user?s last 100 tweets. The Twitter API sends each
timeline in JSON format, as a list of individual tweets. From
these tweets we saved fields that we would need for further
processing as a significantly smaller JSON file. These fields
were:

1) User ID string.
2) Text, stripped of non alphanumeric characters.
3) Date as an integer.
4) Tweet id number.

From each timeline returned from the Twitter API we would
wind up with a list of these truncated tweets. Each file would
contain a list of approximately 300 user timeline lists. This was
all handled through the interface’s runTimelineGrabber
method. This method takes a user ID file name, a starting point
in file and then calls Twitter’s get_user_timeline every
15 minutes. It then logs the results.

3) Trim Timelines: From the collected timelines we would
try to reduce each timeline to twenty tweets inside our target
time frame. Each tweet was checked to see if it fell within
our target time frame, from the newest to the oldest. If it was
too new, it would be dropped from the list. Tweets with a
valid date would be retained in the list until we had collected
twenty valid tweets, or until a tweet that was too old was
found. If a tweet was too old, it would be ignored and not
be logged for follow up. If the total number of tweets saved
for each timeline was smaller than 20, and an old tweet was
not discovered, the user id and id of the oldest tweet would
be logged for follow up in the next step. This is handled with
our trim tweets method, which generates a list of filenames to
trim based on a user supplied range and generates a follow up
list as well as the output timeline files.

4) Collect More Timelines: The log of user ids and oldest
tweets would be used to step back through the timeline of
each user that came up short, searching for 20 that were within
our target timeframe. The ’Collect User Timeline’ and ’Trim
Timeline’ steps would be repeated using the logged user ids
and tweet ids. It is necessary to step back through the timeline
to search for valid tweets because the API does not provide a
way to search a timeline based on date. These steps would be
repeated as long as we had users that had too few tweets in
the target time frame.

5) Collection Output: Once the target number was found,
the files would be output as a .csv consisting of the fields
’user id’, ’date’, and ’text’. The .csv would be
constructed user by user, tweet by tweet from newest to oldest,
so that each user’s timeline would appear as consecutive lines

in the file. This is done with our timelinesToCsv method
which uses the Python csv module to create the output. Once in
.csv format, the tweets were then sent on for semantic analysis.

B. Problems Encountered With Collection

We encountered three main problems collecting data with
the Twitter API:

1) The Twitter API limit of 300 queries of 100 tweets every
15 minutes artificially slowed down our ability to collect
timeline information from thousands of users. ?

2) The Twitter API does not provide a convenient way to
collect tweets from a timeline in a certain date range.
This means we would have to spend queries trying to
find where in the timeline our target range of dates began
and ended.?

3) The JSON format is not very useful for big data because
json libraries require that the entire file is loaded into
memory to parse, access, and manipulate it.?

Problem 3 can be worked around by using a database to store
individual tweets, rather than storing groups of timelines as
large files, allowing access to individual tweets without loading
an entire file into memory. This workaround would have the
added benefit of not having to convert the JSON format into
.csv for use with the hdfs. Instead, a .csv could be constructed
from the database entries, or the semantic analysis could be
run off of the database itself. The artificial limitations from
problems 1 and 2 suggest the Twitter API is not suited to
analyzing large numbers of individual user?s behavior over
time. Problem 1 slows down the collection and makes it the
single largest bottleneck in the process. Problem 2 prevents us
from efficiently collecting tweets from inside the selected time
frame, because time is wasted trying to find a starting point
to collect valid tweets. If we could specify a time period of a
user’s timeline to grab, we could simply collect 20 tweets
that we could use and forgo grabbing large numbers and
backtracking through the timeline. The Twitter API limits put
the data collection for this project well within the capabilities
of even a modest computer, and would make it very difficult
to perform real time analysis of the data. The 15 minute delay
between grabbing sets of 300 timelines quickly adds up when
we are trying to get data from more than a few thousand users.
This type of analysis could still be a valid big data problem
with access to large archives of user timelines.

VI. TWEET CONTEXT ANALYSIS

To accurately apply the Zipfian distribution to Twitter feed
data, the data we gathered through the Twitter API has to be
fed through a combination of classifiers and combiners. Our
classifiers are divided into categories two categories Classifier
C1 calculates each user’s ”passion” for politics. Classifier C2
calculates the sentiment of the user’s political tweets.

A. Classifier C1

Classifier C1 involves calculation of a user’s ”passion” for
politics, i.e., how often they mention something political in
their tweets. A portion of their political tweets are fed to a

classification algorithm algorithm implemented in PySpark.
These results are saved by userid (UID) and combined with a
simple Python script.

C1 separates tweets by political and non-political context.
The classification of political content is a simple string matcher
that identifies terms that are deemed to be political in 99% of
the tweets in which they appear. Those tweets which happen
to be about Hillary or Trump (via any of their matching
nicknames, scandals, or hashtags) all pulled out and saved
in a comma separated value (.csv) file along with their UIDs.

The algorithm follows the general pseudo-code below.

For each t w e e t :
I f same as p r e v i o u s u s e r :

For each word i n t w e e t :
I f word a p p e a r s i n c o n t e x t w o r d s ∗ :

p o l i t i c a l c o u n t +=1
o u t p u t u s e r and t w e e t
t w e e t c o u n t +=1

E l s e :
Save r a t i o , s t a r t new u s e r

This classifier produces two separate .csv files. In the first,
each line consists of a UID and the user’s passion ratio,
(political tweet count / total tweets). The second file consists
of each tweet that mentions Hillary or Trump, along with the
UID of the person who made the tweet.

B. Classifier C2

Context analysis of the tweets deemed political by classifier
C1 involves a multi-step process.

First, a selection of approximately 7000 tweets from New
York City were randomly selected for political content. Of
those, approximately 233 were read and then hand labeled as
being in favor of Hillary Clinton (1.0) or in favor of Donald
Trump (0.0). Each tweet and its classification were written to
a .csv file. This .csv was upload on to a Hortonworks Virtual
Machine [8] for the testing phase, along with the .csv listing
users and their individual tweets.

1) C2: Training Step: The next step is the training step.
The method for training, Term Frequency - Inverse Document
Frequency (TF-IDF) is similar to the method search engines
use to determine a web page’s relevancy to particular search
terms. The method applies the following algorithm:

TF =
fi,j∑
k fk,j

(16)

IDF = log
|D|

|(d : ti ∈ d)|

TF − IDF = log(f + 1)× log(D/df)

Here TF is term frequency, IDF is inverse document

frequency, TF − IDF is the Spark TF-IDF and

fi,j = frequency of the word j in the corpus i

D = the number of documents. (In our case,

documents are tweets.)

df = the number documents (tweets) containing

the word being looked at in the tweet.

This is done simply in Python by first parallelizing on a
Spark context and then passing the labeled set to the TF-
IDF trainer [5]. Given the format of our labels and that we
wished to have our labels be the categorization, we split the
data up into a Labeled Point RDD and passed this to the
NaiveBayes modeler in Spark as a training set. We also
only allowed terms appearing more than twice to be considered
in classification. Naive Bayes classifies the term frequency
by applying Bayes Prediction. Naive Bayes is a probabilistic
model used in statistics that find the probably the word c will
appear in a document given that word x has already appeared
in the document. Note, this is not the best text classification
algorithm [6], but we used it for simplicity and times sake.
The equation for Naive Bayes is

P (c|x) =
P (x|c)P (c)

P (x)
(17)

where

P (c|x) = posterior probability

P (x|c) = likehood the term occurs

P (c) = prior probability of the term

P (x) = the term frequency prior probability

Applying this in Spark is as simple as passing the trans-
formed TF-IDF set to the naivebayes function as a training
set. The Spark versions of Naive Bayes is by default a
multinomial naive Bayes modeler. It is likely our classification
would be more accurate if we used a binomial rather than
multinomial model.

The next step was to check the accuracy of our prediction
model by running the same testing set through the model pre-
dictor and comparing the predicted sentiment to the sentiment
labels applied to the training data set. We received only 2
errors in our set of 233 tweets, which is roughly 99% accuracy.
Training sets generally do need to be much larger and we
understand that this was a limitation of our model. With a
larger training set, we expect to have more accuracy.

2) Testing Step: With the training model set up in Spark,
the testing data is uploaded into a Labeled Point RDD with
the labels now being the UIDs of the individual users. We zip
the function into the model predictor using the UIDs as the
’actual” label in this case. Zipping the labels using a lambda
function prior to passing the information through the modeller
is extremely important as there is no order in an RDD inside of
Spark. This is the only way to keep track of which sentiment
is being calculated.

Finally, this is published into a .csv file, which is done by
copying the entire collection using CSV reader and saving as
a file to Hadoop’s distributed file system, (dfs). This file will
be subjected to another step to prepare the cleaned data with
sentiment for the final analysis.

3) Final Document Cleansing: In order to do analysis on
the data, the sentiment files need to be combined with their
respective passions. A final pass through the data is done using
the Python data analysis library Pandas [7] to zip the two
.csv files together on the UIDs so that we get out the average
number of political tweets out of each users last N tweets,
along with the average sentiment of each tweet. We used two
methods here. First, we analyzed only the first tweet we saw
for its political sentiment. Then we looked at all of each user’s
tweets and analyzed the sentiment of each tweet they made,
took the average of the sentiments, and rounded to one digit.
So for example, if a user’s average sentiment was 0.63, it
was rounded to 1 and they were they were declared a Hillary
supporter. If their average sentiment was 0.32, this rounded to
0 they were declared a Trump supporter.

VII. APPLICATION

In this section, we repeat the method used in the simulation
study on the 2016 political election data set. Let us list the
following assumptions made by our statistical model in (7)-(9).

1) Each user has at least M tokens during time-frame T .
2) Sentiment is binary.
3) For a given user, sentiment remains constant over all of

their topic related tokens.
4) We make no classification error.

The first assumption is not particularly troublesome, since we
can choose M such that the majority of users have at least
that many tokens6

The second and third assumptions may be somewhat vio-
lated here, but we have discussed our solution in the previous
sections. The final assumption is the most troublesome, and the
assumption which is most heavily violated. The classification
error can be modeled through the use of Binomial random
variables, but this complicates things immensely and we
decided not to attempt this here.

The assumptions which were obviously met in the sim-
ulation study are possibly violated in our data set. So we
emphasize that this discussion focuses on how to apply the
method and find the IPA.

A. Preliminary Findings

Early on, we streamed tweets from New York City keeping
not just the tweets which were flagged as political, but all
tweets during our streaming window. The sample included
approximately 7,000 unique users and for each user we pulled
their timelines and classified each tweet as political or non-
political according to C1. In practice, this is a monumental

6Pull a small pilot sample of users, and let λ the average number of tokens
produced during T . Compute M such that Γλ(M + 1)/M ! ≤ α. Where
Γb(x) is the incomplete gamma function. This will ensure that approximately
(1− α)× 100% of the users will have at least M tokens during T .

waste of resources since over half of the data we collect is
completely unusable, but this allowed us to sample from the
original decay distribution rather than the inflated-distribution
in order to check our Zipf’s Las assumption. Figures 3 and
4 show histograms of the passion with fits based on the
posterior mean estimates for θ for Zipfian and exponential
decay respectively.

Fig. 3: Zipfian Fit to Twitter Data

Fig. 4: Exponential Fit to Twitter Data

While neither fit is perfect, it is apparent that the Zipfian
distribution appears to fit the data better than the Truncated
Geometric distribution, a result that is backed by a simple χ2

test. Thus the Zipf’s Law assumption has been validated.

B. Constructing the IPA

To construct our final data set, we sampled tweets from the
state of Colorado in the usual way by streaming tweets and
keeping only those which were flagged by C1 as political.
Using the methods described in earlier sections, we obtain
passion and sentiment values for each user in the sample. The
model now dictates that the passion values have been drawn
from an inflated decay distribution. Figures 5 and 6 provide
histograms and the fits based on posterior mean estimates for
θ for the Inflated-Zipfian and Inflated-Truncated-Geometric
distributions respectively.

This time it is even more apparent that Zipfian decay is far
more appropriate than exponential. The Metropolis Hastings
algorithm provides a posterior mean of θ̂ = 2.744 here. The
fit provided in Figure 5 is very encouraging, and provides
evidence that the model is appropriate. Hence we estimate ω
according to equation (18)

Fig. 5: Inflated-Zipfian Fit

Fig. 6: Inflated-Truncated Geometric Fit

ω̂ =
1

H(M + 1, θ̂)
=

1

H(21, 2.744)
= 0.79 (18)

Computing Γ̂∗ as in (11) is straightforward. As previously
discussed, finding γ̂(0) will be much more difficult if not im-
possible. For one, the method proposed in section III is heavily
dependent on our chosen regression method. After plotting the
estimates in (13) vs k, no pattern was obvious. We decided
to use weighted linear regression. Figure 7 demonstrate the
sensitivity of γ̂(0) to the choice of weights. The left panel
uses inverse distance weights, and the right panel uses weights
based on the Zipfian probability mass function, and they yield
immensely different results.

In the end, we settled on using the square root of the inverse
distance as a weight vector, but this choice was somewhat
arbitrary. Now that we have estimated the three parts of the
IPA, we can construct it for the data. Figure 8 illustrates a
”true” Γ, and the classical estimator Γ̂c from (2) and the IPA
Γ̂ from (14).

From Figure 8, the results are encouraging. While the IPA
has not eliminated the voluntary response bias, it has reduced
it. However, we must acknowledge two very important caveats
to the success of this method. First, the ”true” value of Γ
is quite possibly not the same as the target value of the
parameter we have been discussing. The value is 0.5158, and
was calculated as Clinton votes over the sum of Clinton and
Trump votes. This metric is so that we ignore third party

Fig. 7: Comparison of Weights in Local Regression

Fig. 8: Comparison of Estimators

votes in accordance to assumption 2. Technically, our estimator
is just predicting the average sentiment of twitter users in
Colorado. This parameter may not correspond to the dashed
line in Figure 8.

Secondly, we must stress that this method is heavily depen-
dent on γ̂(0) which can be seen in part from the calculation
in (18). Using a different weight vector in the weighted
regression can provide different results for the IPA.

VIII. CONCLUSION

In summary, we have shown that the passion of twitter users
behave according to Zipf’s Law, and that sampling in the usual
way produces users with passion values that follow an Inflated-
Zipfian distribution. We have also shown that ignoring this
information can lead to a badly biased estimate if there is a
relationship between passion and sentiment.

We used a simulation study as a proof of concept, to show
that we can produce unbiased estimators of both Γ and Γ∗ if
certain, albeit strict, assumptions are met. The application to
real data showed that the model is applicable, although there
are several limitations that arise with applying the method.

Primarily, we need a bigger data set and more accurate
classifiers. In theory, the method should be easily scalable to
bigger data. The cost of applying our method is just the cost of
the usual method multiplied by M , and M need not be large
for the method to work. In practice however, we found that

limitations on Twitter prevented us from efficiently observing
a users passion.

On the classification side, the binary sentiment assumption
was too restrictive for this particular problem. Given time,
the classifiers may improve, but choosing a problem better
suited for the method may allow the classifiers to improve
considerably with little work.

We believe that there is plenty of room for future work. This
includes applying the problem to different application spaces,
improving the classifiers and accounting for the inevitable
error in the statistical model using Binomial distributions.

IX. APPENDIX

A. The Bernoulli Distribution

P (X = x) =

p x = 1

1− p x = 0

0 else

p ∈ (0, 1)

B. The Zipfian Distribution

P (X = x) =
(x+ 1)−θ

H(M + 1, θ)

θ > 0, x = 0, 1, 2, ...M

H(n, s) =

n∑
k=1

k−s

When s > 1, we also have the following,

lim
n→∞

H(n, s) = ζ(s)

where ζ(s) is the Riemann zeta function

C. The Truncated Geometric Distribution

P (X = x) =
θ−k

C(M, θ)

θ > 0, x = 0, 1, 2, ...M

C(n, s) =

n∑
k=1

s−k

When s > 1, we also have the following,

lim
n→∞

C(n, s) = θ/(θ − 1)

D. The Inflated-Zipfian Distribution

P (X = x) =
x(x+ 1)−θ

H∗(M, θ)

θ > 0, x = 1, 2, ...M

H∗(n, s) =

n∑
k=1

k(k + 1)−s

E. The Inflated-Truncated Geometric Distribution

P (X = x) =
xθ−x

C∗(M, θ)

θ > 0, x = 1, 2, ...M

C∗(n, s) =

n∑
k=1

ks−k

F. The Gamma Distribution

f(x) =
βα

Γ(α)
xα−1eβx

α, β > 0, x > 0

G. Metropolis Hastings

Fig. 9: Metropolis Hastings Results

ACKNOWLEDGMENT

Some of the data analyzed in this paper came from a
MongoDB database built by Rudy Martinez. The authors
would like to thank Rudy Martinez for the use of his database.

REFERENCES

[1] J. DiGrazia, K. McKelvey, J. Bollen and F. Rojas.
”More Tweets, More Votes: Social Media as a Quantita-
tive Indicator of Political Behavior,” [Online]. Available:
http://papers.ssrn.com/sol3/papers.cfm?abstract id=2235423, [Accessed:
18-Sep-2016].

[2] M. Gaurav, A. Srivastava, A. Kumar, S. Miller, August 2013, ”Leveraging
Candidate Popularity on Twitter to Predict Election Outcome”, Proc. of
the 7th Workshop on Social Network Mining and Analysis, August, 2013.

[3] D. Gayo-Avello, P. Metaxas, and E. Mustafaraj, ”Limits and Predictions
Using Social Media Data,” Proc. of the Fifth International AAAI Con-
ference on Weblogs and Social Media, AAAI Press, January 2011, pp.
490-493.

[4] A. Tumasjan, T. Sprenger, P. Sandner, I. Welpe, ”Predicting Elections with
Twitter: What 140 Characters Reveal about Political Sentiment,” Proc. of
the Fourth International AAAI Conference on Weblogs and Social Media,
Association for the Advancement of Artificial Intelligence, 2010, pp. 178-
185

[5] http://spark.apache.org/docs/latest/mllib-naive-bayes.html [Accessed:
Dec. 1, 2016]

[6] http://www.slideshare.net/lucasshen73/spark-application-on-ec2-cluster,
[Accessed: Dec. 1, 2016]

[7] ”Python Data Analysis Library ”, http://pandas.pydata.org/ , [Accessed:
Dec.1, 2016]

[8] ”Get Started Today with Hortonworks Sandbox”,
http://hortonworks.com/products/sandbox/, [Accessed: Dec.1, 2016]

[9] https://dev.twitter.com/docs, ”Twitter Developer Documentation”, [Ac-
cessed: Dec.1, 2016]

[10] ”Twython”, https://twython.readthedocs.io/en/latest/, [Accessed: Dec.1,
2016]

