Get Zipfy With It
Using Zipf’s Law to Control for Voluntary Response in Twitter Data

Kellin Rumsey
Zipf’s Law

- Zipf’s Law states that the frequency of X is inversely proportional to its rank.
- Zipfian Decay: $P(X = x) \propto x^{-\theta}$
- Popularized in 1935 by George Zipf in Linguistics.
- Related to the 80-20 principle
- PMF for $x = 0,1,2,...,M$

$$P(X = x|M, \theta) = \frac{(x + 1)^{-\theta}}{H(M + 1, \theta)}$$ \hspace{1cm} (1)

- $H(n, \theta) = \sum_{k=1}^{n} k^{-\theta}$
Zipf’s Law

NBA Twitter 'Followers'

- Lakers
- Magic
- Heat
- Celtics
- Bulls
- Knicks
- Thunder
- Magic
- Spurs
- Clippers
- Nets
- 76ers
- Suns
- Rockets
- Cavaliers
- Warriors
- Nuggets
- Jazz
- Raptors
- Pacers
- Trail Blazers
- Grizzlies
- Pistons
- Wizards
- Hornets
- Hawks
- Kings
- Bucks
- Bobcats

Twitter Followers
Zipf’s Law
Problem Setting

- Setting: Using twitter data to predict the outcome of the election.
- Collect a bunch of topic-related tweets, and classify the "sentiment" of each one. We assume

\[S_i \sim Bernoulli(\gamma) \quad (2) \]

- Then the MLE is:

\[\hat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} S_i \quad (3) \]
Voluntary Response

- Social media data is plagued by Voluntary Response.
- What happens if the sentiment depends on a users ”passion”.

\[K_i \sim \text{Zipfian}(M, \theta) \] \hspace{1cm} (4)

\[S_i|K_i \sim \text{Bernoulli}(\gamma(K_i)) \] \hspace{1cm} (5)

\[S_i \sim \text{Bernoulli}(\Gamma) \] \hspace{1cm} (6)

- Our goal is to estimate \(\Gamma = E[\gamma(K)] \).
- In theory, just use MLE again... But we cannot obtain a random sample of users, only a random sample of tweets.
When we find topic-related tweets, we are sampling from an "Inflated-Zipfian Distribution".

\[P(X = x) \propto x(x + 1)^{-\theta} \] (7)
Voluntary Response

- What we are actually sampling.

\[K_i \sim \text{Inflated-Zipfian}(M, \theta) \] \hspace{1cm} (8)

\[S_i|K_i \sim \text{Bernoulli}(\gamma(K_i)) \] \hspace{1cm} (9)

\[S_i \sim \text{Bernoulli}(\Gamma_2) \] \hspace{1cm} (10)

- But we are trying to estimate Γ... not Γ_2, and they can be very different.

- Solution: Each time we find a topic-related tweet do two things.
 1. Classify the tweet and find its sentiment.
 2. Look at the users most recent M tweets, and see how many are also related to the topic.
Let's take a closer look at Γ.

\[
\Gamma = E[\gamma(K)] = \sum_{k=0}^{N} \gamma(k) \frac{(k + 1)^{-\theta}}{H(N + 1, \theta)}
\]

(11)

We can break Γ into two parts.

\[
\Gamma = \frac{1}{H} \gamma(0) + (1 - \frac{1}{H}) \Gamma^*
\]

(12)

We can construct an unbiased estimator for Γ^*.

\[
\hat{\Gamma}^* = \frac{\sum S_i K_i^{-1}}{\sum K_i^{-1}}
\]

(13)

We may be able to estimate $\gamma(0)$ with statistical learning (Regression).
Simulation Study

Estimating $\hat{\gamma}(0)$
Comparing Estimators
We assume that there is a relationship between passion and sentiment.

- If not, our estimator will still not work, but in this case the naive estimator might be okay.

We assume that Zipf’s Law applies to the data.

- The method is flexible, we can easily choose a different decay model.
- Zipfian Distribution has proven to be more reasonable for this kind of data.

We assume that we make no misclassification error.

- In practice, we estimate that our misclassification error was as high as 25%.
- It may be possible to model the misclassification errors. Point of possible future research.
Early on, we collected a random sample of \(\approx 7,000 \) tweets from NYC.

For each unique user in the sample, we pulled their last 20 tweets and counted how many were "political".

Using Metropolis-Hastings, we were able to estimate \(\theta \) under the Zipf’s Law Assumption.

\[
\text{Zipf: Raw data} \\
(s = 1.707) \\
(e = 0.486)
\]
Twitter Data

Compare to a Truncated Geometric Distribution.

TGeo: Raw data
(p = 0.392)
(e = 5.673)

Political Tweets
More recently, we collected $\approx 19,000$ political tweets. For each we classify sentiment and passion from last 20 tweets.

We assume these are drawn from an inflated decay distribution.
Twitter Data

- Inflated-Zipfian Distribution fit's this nicely. $\theta = 2.744$
Inflated-Zipfian Distribution fit’s this nicely. $\theta = 2.744$.

Inflated-Truncated-Geometric, not so much. $\theta = 1.534$.
We can consider \(\Gamma_{true} = 0.5158 \).

The Naive Estimator just ignores the VR bias, and takes the mean.

\[
\hat{\Gamma}_N = \frac{1}{19000} \sum_{i=1}^{19000} S_i = 0.4782
\] (14)

Recall our strategy.

\[
\Gamma = \frac{1}{H} \gamma(0) + (1 - \frac{1}{H}) \Gamma^*
\] (15)

We need to estimate \(\hat{\gamma}(0) \) and \(\hat{\Gamma}^* \).
Estimating Γ

- We can obtain an estimate for Γ^* by weighting each person’s contribution by the inverse passion. We call this the Inverse-Passion Adjustment (IPA).

\[
\hat{\Gamma}^* = \frac{\sum_{i=1}^{19000} S_i K_i^{-1}}{\sum_{i=1}^{19000} K_i^{-1}}
\]

(16)

- This estimator is actually unbiased for Γ^*.
 - Proof pending.
 - Only checked for Zipfian Decay.
Our ability to estimate $\hat{\gamma}(0)$ accurately depends heavily on the problem. We must be careful here.
Results

- Although heavily dependent on choice of weighted regression, our estimator is able to reduce some of this bias.
Results

- What’s actually happening?
Conclusions

- Simulation study shows that under certain conditions, the Classical (Naive) estimator can be heavily influenced by VR bias.
- Simulation study shows that our estimator can (in theory) eliminate this bias.
- The application to real data showed several limitations to the method.
 - Needs truly big data. Twitter’s limitations make this difficult.
 - Possibly hurt by large misclassification error. We should improve the classifiers, and consider including binomial errors into the model.
 - As expected, $\hat{\gamma}(0)$ may be impossible to fit reliably in many circumstances.