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Abstract. We present a new multidomain spectral method for the treatment of non-
spherical stellar surfaces in iterative methods for binary neutron stars. A stellar surface
changes throughout the course of an iterative solution, potentially stalling the convergence.
Our method affords low-complexity updates of the relevant subdomain preconditioners,
thereby avoiding such stalling. Unlike current collocation (or nodal) approaches for treating
surfaces (which rely on coordinate transformations to ensure that stellar surfaces arise at
subdomain boundaries), our approach requires no regridding or nontrivial Jacobians. For
polytropes with an equation of state specified by an integer polytropic index, our method
delivers exponential accuracy with increased truncation, although for “stiff” equations of
state (e.g. fractional) it suffers from the same accuracy loss as current methods. We have
presented an outline of our approach before, but here present details with numerical tests.

1. Introduction

We present a strategy for the treatment of nonspherical stellar surfaces when numerically
constructing binary neutron stars (BNS). Our strategy, based on modal spectral methods, is
likely broadly applicable. For example, it could serve as a component in solving, via confor-
mal methods [1, 2, 3, 4], the constraint equations of general relativity for binary neutron star
initial data (and possibly blackhole initial data with apparent horizon boundary conditions).
Nonetheless, our own goal is the construction of helically symmetric BNS solutions (exact,
excluding numerical error) to the matter-Einstein equations; see further remarks in Subsec-
tion 1.2. This paper focuses on the construction of equilibrium configurations in Newtonian
theory, a benchmark problem [5, 6, 7, 8] which advances us towards our longer-term goal
and a stage for presenting our general strategy. While this paper only considers circular
orbits and polytropic equations of state, we do not believe our approach to stellar surfaces
is limited by either assumption. The central ideas of our approach have appeared before
[9]. However, this paper goes beyond that account both in addressing technical details and
performing numerical tests.

The key difference between our work and similar earlier approaches (described in the next
subsection) is that we adopt modal spectral methods, both to achieve sparse systems of
equations and because of preconditioning issues. As a second longer-term goal, we seek
to exploit the sparsity associated with our modal approach, thereby achieving quantifiably
fast solvers for gravitational initial data. Work towards this second goal is also incomplete.
Our modal approach has been spelled out in [10, 11, 12]. While we sketch some of the key
features, we do not repeat details here. Our focus is on the new development: low-rank
treatment of the stellar surfaces. Nonetheless, another novelty of this work is its further
development of modal spectral methods for BNS problems.
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The problem of constructing (and evolving) fluid stars is not dissimilar to other problems
involving fluid interfaces. Irregular interfaces and possible loss of smoothness thereon arise
in myriad fluid and solid mechanical applications, for example interfacial flows involving
drops and bubbles; see e.g. [13, 14]. Interest often lies with the interface dynamics, as
governed by the Navier Stokes equations subject to inclusion of (singular) surface-tension
forces. However, many problems in applied fluids are well-approximated by Stokes flow,
for which integral formulations are well-developed; see the discussions in [15, 16, 17]. A
Poisson-type problem describes Stokes flow (however interfaces are treated); likewise, the
Poisson equation features prominently in this work, although its origins are different. Here
it arises through inclusion of gravitational forces in the nonrelativistic Euler equations.

Numerical methods for addressing interface problems are likewise manifold, and an exhaus-
tive review is not possible. Nonetheless, our treatment of stellar surfaces is (in concept, if not
in details) reminscient of “domain embedding methods”; see, for example, [18, 19, 20, 21].
These methods focus on, for example, elliptic PDE problems posed on irregular shaped
domains. The idea is to embed the irregular domain within a simpler computational do-
main, such as a rectangular box or sphere. Such an embedding proves advantageous when
well-known solution methods (i.e. integral representations and/or fast numerical techniques)
are available for the simpler domain. The challenge is then to treat the physical boundary
which now arises as an irregular surface inside the computational domain. Similar issues
arise when the coefficients defining an elliptic PDE are discontinuous on irregular surfaces
within a computational domain. The Immersed Interface Method [22, 23] addresses both
kinds of problems. Ref. [24] presents recent work on such problems, and it gives a more
comprehensive literature review.

In what remains of this introduction, we (1) overview numerical methods for BNS initial
data, (2) more fully describe our own first goal, and (3) outline the sections of this paper.

1.1. Overview of numerical methods for BNS initial data. Recent BNS evolutions
start with initial data constructed via one of two approaches. The first approach stems from
methods introduced by J. W. York, both in its original form [1, 2] and in a 1999 reworking
partly with H. P. Pfeiffer known as the conformal thin sandwich (CTS) method [3, 4]. The
second approach yields Meudon data [25, 26, 27], named after its developing group. In
principle, it yields a complete solution to Einstein’s equations, rather than just initial data.

A number of codes are now capable of generating BNS initial data for the combined
matter-Einstein equations, a problem considerably more challenging than the test problems
considered here. These codes are reviewed in [28], and the following is based in part on
that review. The Princeton-group code described in [29] relies on AMR and the multigrid
technique. The BAM code [30] also has a multigrid solver, one relying on nested boxes and
Gauss-Seidel relaxation. The recent COCAL code [31] features coordinate patches on which
appropriate Green’s function expansions are exploited to solve relevant Poisson-type nonlin-
ear equations. The remaining codes, discussed now, are based on nodal spectral methods.

To our knowledge, the first work on spectral methods with GR applications in mind
appeared in the proceedings of ICOSAHOM 95 [32].1 Ultimately, the ideas presented in that
volume were developed [25, 26, 27] and incorporated into the LORENE code [34] for solving
BNS problems. LORENE is a multidomain collocation code based on two nested sets of
subdomains, each a family of (at least two) concentric spherical shells with a center-filling

1The fundamental reference [33] on “integration preconditioning”, the basis for our own work, appears in
the same volume.
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ball. One set of subdomains is associated with each star. Although this configuration involves
significant subdomain overlap, it is a strikingly simple solution to the nontrivial geometry
associated with BNS problems. Using a variant of the self-consistent field method described
below, the LORENE code solves the helically symmetric Einstein equations subject to a
conformal-flatness assumption.

The Simulating Extreme Spacetimes (SXS) project [35], with key groups at Cornell, Cal-
tech, CITA, and CSU Fullerton (and elsewhere), has also adopted spectral methods to model
binary inspiral and merger. Indeed, the Spectral Einstein Code (SpEC) [36] —developed
chiefly by L. Kidder, H. Pfeiffer, and M. Scheel— also makes use of multidomain collocation
methods. In particular, Pfeiffer’s EllipticSolver module [37] within SpEC involves cover-
ing the spacetime surrounding two neutron stars (say) with a complicated arrangement of
blocks, spherical shells, and cylindrical shells. Coupled elliptic systems of PDE posed on such
a domain are then solved using iterative methods (typically GMRES) with a finite-difference
preconditioning employed for efficiency and accuracy. For our own work we have made direct
use of the domain decomposition used by SpEC’s EllipticSolver. Descriptions of BNS initial
data generated with SpEC appear in [38, 39, 40].

The SGRID code [41, 42, 28] also relies on nodal spectral methods, along with a novel
approach for covering the computational domain developed in particular by Tichy [41]. The
approach features coordinate patches surrounding each compact object similar to those in-
troduced by Ansorg [43], rather than the spherical domains used in LORENE and SpEC.
The basis functions corresponding to these patches are tensor products of two Chebyshev
polynomials and one trigonometric polynomial, that is a double-Chebyshev/Fourier basis.

Insofar as the treatment of stellar surfaces is concerned, the LORENE, SpEC, and SGRID
projects employ coordinate mappings to distort (spherical, spherical shell, or patch) sub-
domains in order that the stellar surface arises precisely as a subdomain interface. Such
mapping ameliorates the Gibb’s phenomena, although achieving “spectral convergence” for
“stiff” equations of state is (in our understanding) still an open problem. Moreover, distor-
tion of the subdomain necessitates regridding, thereby introducing non-trivial Jacobians and
changing the bulk operators. As a result, preconditioner recomputation at each iteration
stage may be necessary to prevent stalling of the adopted iterative method.

1.2. Helically symmetric BNS spacetimes. Our own goal is numerical construction of
helically symmetric spacetimes describing binary neutron stars, a goal nearly identical to
the one already carried out in the Meudon program. The essential theoretical differences are
that we (i) adopt a field decomposition in terms of “helical scalars” (essentially the Laudau-
Lifshitz formalism [44]) rather than the standard 3+1 formalism [1], and (ii) we intend to
make no use of the Ansatz of conformal flatness. Even still, since they are devoid of inspiral,
the solutions that we seek are ultimately unphysical. While helically symmetric solutions
of the non-vacuum Einstein equations would be of interest in their own right (for example,
from the standpoint of their asymptotic structure), our interest lies with using them to define
improved trial data for the conformal thin sandwich equations.

1.3. Outline. This paper is organized as follows. Section 2 considers the model problem of
a spherically symmetric single star, that is a Lane Emden star. This simple model showcases
the key ideas behind both our modal spectral methods and how they are used to treat stellar
surfaces. Section 3 describes the Newtonian BNS problem, and our numerical methods for
solving it. While summarizing some material from [11], it mostly focuses on the technical
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issues associated with our treatment of stellar surfaces, in particular how a surface is realized
within the overall system of equations defining our approximation of the Newtonian problem.
In Section 3 we also discuss to role of preconditioning as it pertains to stellar surfaces which
evolve during iterative solution of the problem. We address complexity issues associated with
updating the preconditioner as the surface evolves. Finally, Section 3 also briefly reviews
the self-consistent-field (SCF) method, and the particular way we have used it to solve the
Newtonian problem. Section 4 documents the results of numerical experiments testing our
approach. Finally, appendices present further details left out of the main text. In particular,
Appendix C presents the full details of how we treat stellar surfaces through “tau-conditions”,
a defining feature of modal spectral methods based on “integration preconditioning”. These
details also appeared in [9].

2. Model problem

This section describes our model problem: construction of a spherically symmetric New-
tonian star, a Lane-Emden polytrope. Our aim here is to fix ideas and describe in a simple
context the key aspects of our numerical approach to binary stars. We view the following as
fixed constants: G, strength of gravity; n, polytropic index in the equation of state (EOS);
K, constant in the EOS. The polytropic EOS p = Kρ1+1/n (for now with n > 0) relates the
pressure p to the density ρ. These constants fix the “theory” of gravity and matter. With
this viewpoint, a stellar model is determined by a single piece of data: ρc, the central density
of the star.

Our domain is the interval [0, rout], where rout is the outer radius. On this interval we con-
sider the following unknown quantities (to be solved for): (i) the stellar enthalpy function
h(r) = K(1 + n)ρ1/n(r) and (ii) a scalar κ. Here the situation is analogous to the binary
problem considered later, where the unknowns will again be the enthalpy plus auxiliary “con-
stants”. The location R < rout of the stellar surface is also unknown a priori. Nonetheless,
h(r) = 0 = ρ(r) for r ≥ R; whence we view R as determined by h. These unknowns are
subject to the following problem:

LΦ = 4πGρ(r) for 0 < r < rout, Φ′(0) = 0, Φ′(rout) = −Φ(rout)/rout(1a)

κ = h(r) + Φ(r) for 0 ≤ r ≤ R(1b)

h(0) = K(1 + n)ρ1/nc .(1c)

Here LΦ ≡ r−2(r2Φ′)′, with a prime denoting differentiation in r, is the radial Laplacian,
and the constancy of κ = h(r) + Φ(r) balances the chemical and gravitational potentials.
The solution

h(r) =

{
2Kρc(πr/R)−1 sin(πr/R) for 0 ≤ r ≤ R
0 for r ≥ R

(2a)

κ = −2Kρc,(2b)
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where R =
√
Kπ/(2G), solves (1) for the choice n = 1. Here we view the gravitational

potential and density,

Φ(r) =

{
−2Kρc

[
1 + (πr/R)−1 sin(πr/R)

]
for 0 ≤ r ≤ R

−2KρcR/r for r ≥ R
(3a)

ρ(r) =

{
ρc(πr/R)−1 sin(πr/R) for 0 ≤ r ≤ R
0 for r ≥ R,

(3b)

as quantities determined by the enthalpy h. The density ρ is recovered trivially, and the
gravitational potential Φ through solution of the Poisson problem from (1).

2.1. Formulas for Chebyshev polynomials on a generic interval. This subsection col-
lects various formulas involving Chebyshev polynomials on a generic interval D ≡ [rmin, rmax].
With these formulas in hand, the next subsection describes our numerical method for solving
the problem (1). Let T(ξ) = [T0(ξ), T1(ξ), T2(ξ), . . . ] represent an infinite row of Chebyshev
values. Then we have the following identities

ξT(ξ) = T(ξ)A(4a)

ξ2T(ξ) = T(ξ)A2(4b)

T(ξ) = T′(ξ)B[1](4c)

T(ξ) = T′′(ξ)B2
[2],(4d)

where the banded matrices [33, 45] A (tridiagonal), A2 (pentadiagonal), B[1] (tridiagonal),
and B

2
[2] (pentadiagonal) are of infinite size; see Appendix A. San serif font will be used

for infinite-sized matrices, and regular font for their finite truncations. Here the subscripts
[1] and [2] indicate the number of leading rows with all zeros as entries. Suppose that

f̃ = (f̃0, f̃1, f̃2, · · · )T are the Chebyshev coefficients for a function f , that is formally f(ξ) =∑∞
k=0 f̃kTk(ξ). Then, for example, the third relationship in (4) implies that B[1]f̃ are the

Chebyshev coefficients for an antiderivative F of f such that F̃0 = 0.
To collect formulas for the generic interval D rather than the standard interval [−1, 1],

define the mapping

(5) ξ(r) ≡ λ−1(r − r̄), λ−1 ≡ 2

rmax − rmin
, r̄ ≡ 1

2
(rmin + rmax).

Then we set Br[1] ≡ λB[1], B
2
r[2] ≡ λ2

B
2
[2], Ar ≡ λA + r̄I, and A

2
r ≡ λ2

A
2 + 2λr̄A + r̄2I, where

I is the infinite-size identity matrix and the subscript r serves to distinguish these matrices
from those associated with the standard interval [−1, 1]. For D the formulas corresponding
to (4) are

rT(ξ(r)) = T(ξ(r))Ar(6a)

r2T(ξ(r)) = T(ξ(r))A2
r(6b)

T(ξ(r)) =
d

dr
T(ξ(r))Br[1](6c)

T(ξ(r)) =
d2

dr2
T(ξ(r))B2

r[2].(6d)
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These formulas yield interpretations for the actions of the matrices Ar, A
2
r , Br[1], and B

2
r[2]

when acting on coefficient vectors f̃ . Now f̃ is associated with modal expansions of a

function f(r) =
∑∞

k=0 f̃kTk(ξ(r)) defined on D.

2.2. Poisson problem on a single interval D. Our interest lies with approximation of
the model problem, for which we will adopt two overlapping subintervals. To set the stage
for that approximation, here we consider the (spherical) Poisson problem on a single interval.
We first define Dirichlet and Neumann vectors:

δ(r) =[T0(ξ(r)), T1(ξ(r)), T2(ξ(r)), . . . , TN(ξ(r))](7a)

ν(r) =[0, T ′
1(ξ(r)), T

′
2(ξ(r)), . . . , T

′
N(ξ(r))]λ

−1,(7b)

where primes indicate differentiation in argument. Note that here we consider finite-length
row vectors based on a truncation N . These vectors will be used to enforce boundary
conditions. Next, we write the Poisson equation above as

(8)
d2

dr2

(
r2Φ

)
− 2

d

dr

(
rΦ

)
= 4πGr2ρ(r).

We then introduce (finite-size) modal-coefficient vectors Φ̃ and ρ̃, such that

(9) PNΦ(r) =
N∑

k=0

Φ̃kTk(ξ(r)), PNρ(r) =
N∑

k=0

ρ̃kTk(ξ(r))

respectively approximate the potential and density. These vectors obey

(10)
(
I[2]A

2
r − 2Br[2]Ar

)
Φ̃ = 4πGB2

r[2]A
2
rρ̃,

our spectral approximation of the Poisson equation which, thus far, ignores boundary con-
ditions. Notice that (10) corresponds to two integrations of (8). In terms of colon notation,
the matrices in (10) are the truncations

A2
r = A

2
r(0:N ,0:N)

Br[2]Ar = Br[2](0:N ,:)Ar(:,0:N)

B2
r[2]A

2
r = B

2
r[2](0:N ,:)A2

r(:,0:N).

(11)

Note (i) our use of Roman and san serif fonts to distinguish between finite-size and infinite-
size matrices and (ii) that there is no issue with implied infinite summations here, since each
infinite-size matrix is banded. For future use we further define

(12) BL ≡
(
I[2]A

2
r − 2Br[2]Ar

)
(2:N).

Here BL has dimensions (N − 1)× (N +1), and results from stripping off the first two rows
of zeros from I[2]A

2
r − 2Br[2]Ar. Then, for example, an approximation of (10) with Dirichlet

boundary conditions (not the correct boundary conditions for our problem) would be

(13)




δ(rmin)
δ(rmax)
BL


 Φ̃ = 4πGB2

r[2]A
2
rρ̃ + Φ(rmin)e0 + Φ(rmax)e1,

where e0, e1 ∈ R
(N+1)×1 are the first two canonical basis vectors.

6



0 10 20 30 40
-50

-40

-30

-20

-10

Φ on subinterval 1
Φ on subinterval 2

r
0 10 20 30 40

0

5

10
ρ on subinterval 1
ρ on subinterval 2

Figure 1. Lane-Emden star solution. The blue dotted curves depict
the solution on D

2, while the green solid line the solution on D
1. The black

asterisk corresponds the stellar surface r = R; this point lies in D
1
⋂
D

2.

2.3. Numerical approximation of the model problem. We partition the domain into
two overlapping subintervals:2 D

1 = [0, rmax] and D
2 = [rmin, rout], where we assume that

we have been lucky enough to ensure rmin < R < rmax. Whilst comparing with the last
subsection’s formulas, please notice that “rmin” and “rmax” for D1 are 0 and rmax, whereas
the “rmin” and “rmax” for D2 are rmin and rout. Respectively, the mappings between [−1, 1]
and the subintervals D1 and D

2 are

ξ1(r) =
2r − rmax

rmax

ξ2(r) =
2r − rout − rmin

rout − rmin
.

(14)

2.3.1. Approximation of the Poisson problem. Our approximation on the coupled subinter-
vals involves the system matrix

M(R) =

[
M(R)11 M(R)12

M(R)21 M(R)22

]
≡




ν1(0) 0

δ1(R) −δ2(R)
BL1 0

−ν1(R) ν2(R)
0 ν2(rout) + r−1

outδ
2(rout)

0 BL2




(15)

2Throughout, superscript indices refer to the subintervals; in particular a superscript 2 most always refers to
the second subdomain D

2 and not squaring. However, on both intervals we continue to use A2
r and A2

rB
2
r[2]

for the matrices considered earlier.
7



and the corresponding right-hand side

g ≡




0
0

4πGBρ̃1

0
0
0



,(16)

where Bρ̃1 ≡ (B2
r[2]A

2
rρ̃

1)(2:N1). Provided that we know the value of R in advance, the

solution Φ̃ ≡ (Φ̃1; Φ̃2) to the Poisson problem then obeys M(R)Φ̃ = g. Finally, we remark
the while the matrix M(R) has many rows, visually it has six rows (of course some of these
rows are in fact matrices). In this view, the first, second, fourth, and fifth rows express the
tau-conditions, reflecting both boundary and matching conditions. The matching conditions
are enforced by the second and fourth rows.

2.3.2. Iterative method. We adopt the self-consistent field (SCF) method for solving our spec-
tral approximation of the problem. In our view, the SCF method is a fixed-point procedure

for the enthalpy, represented by its spectral expansion coefficients h̃1 on D
1, and the scalar

κ. Algorithm 1 presents a single fixed-point iteration.

Algorithm 1 SCF iteration. Input is (h̃1, κ), which includes the modal coefficient vector

h̃1 for the enthalpy on D
1. Output is the new (h̃1, κ).

1: Find the root R of PN1h(r) =
∑N1

k=0 h̃
1
kTk(ξ

1(r)), say with bisection.
2: Perform a rank-2 update of the coefficient matrix M(R), ensuring that the matching

tau-conditions correspond to the current R.

3: From h̃1 form the density ρ̃1, simply ρ̃1 = 1
2
K−1h̃1 for n = 1.

4: Solve the described discrete Poisson problem M(R)Φ̃ = g.

5: Evaluate Φ0 ≡
∑N1

k=0 Φ̃
1
kδ

−
k , and with it update κ = K(n+ 1)ρ

1/n
c + Φ0.

6: Update the enthalpy via the potential equation: h̃1
k = κδ0k − Φ̃1

k for k = 0, 1, . . . , N1.

2.4. Numerical experiment. This subsection describes an n = 1 computational experi-
ment relying on the SCF method. Fix the physical parameters K = 1.25, G = 0.0134 and
the model choice ρc = 10.32, along with the domain choices

(17) D
1 = [r1min, r

1
max] = [0, 3

2
R], D

2 = [r2min, r
2
max] = [1

2
R, rout],

where rout = 4R. With these choices R ≃ 12.105, r2min ≃ 6.0525, r1max ≃ 18.157, and
rout ≃ 48.420. Figure 1 depicts the associated Lane-Emden solution (3). Notice that on
the overlap region r2min ≤ r ≤ r1max the solution is double-valued. To make the plot, we
have chosen the inner solution from (3) on D

1 (even beyond its validity interval), and the
outer solution on D

2. In particular then, ρ(r) takes negative values on D
1 for r ∈ (R, r1max].

This Lane-Emden solution (h = 2Kρ, κ) defines the “exact” solution (h̃1,exact, κexact) to our

numerical problem, with h̃1,exact the truncated Chebyshev spectrum of h(r) on D
1.

Our SCF method requires an initial iterate (h̃1,init, κinit). We generate this as follows. First,
we define a different Lane-Emden solution through the following reassignments: Gdiff = 0.7G
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Figure 2. Gravitational potential determined by the SCF solution.

and ρdiffc = 0.9ρc. We then define

(18) κinit = −2Kρdiffc , hinit(r) = hdiff(r) + γ sin
(
r(Rdiff − r)

)
, γ = 0.01.

With N1 = 50 and N2 = 55, the results of performing the SCF algorithm are then as follows.

q err(h) err(kappa) kappa

-------------------------------------------------

1 2.27e-01 5.72e-01 -4.0562695289539420e+01

2 5.17e-02 3.40e-02 -2.6677307946172160e+01

3 3.04e-02 5.68e-02 -2.4334522967735790e+01

4 1.71e-02 1.55e-02 -2.6201028968939813e+01

5 4.30e-03 1.90e-03 -2.5750988449003717e+01

6 6.78e-04 1.56e-04 -2.5804024988506537e+01

7 7.55e-05 8.89e-06 -2.5799770544260443e+01

8 6.32e-06 3.78e-07 -2.5800009755457243e+01

9 4.15e-07 1.25e-08 -2.5799999678170114e+01

10 2.20e-08 3.29e-10 -2.5800000008491114e+01

11 9.64e-10 7.11e-12 -2.5799999999816460e+01

12 3.55e-11 1.30e-13 -2.5800000000003354e+01

13 1.12e-12 2.78e-14 -2.5799999999999283e+01

14 4.43e-14 6.33e-15 -2.5800000000000164e+01

The table lists the iteration number q, along with the relative errors ‖h̃1−h̃1,exact‖2/‖h̃1,exact‖2
and |κ−κexact|/|κexact|. The bisection step to find R from h̃1 inAlgorithm 1 used a 1.0e-14
tolerance. Figure 2 depicts the corresponding numerical solution and error for the gravita-
tional potential. To generate this plot, we have used interpolation onto a fine reference grid
{rk : k = 1, . . . , N ref} with N ref = 1000 points. In carry out this interpolation, we of course
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use the inner solution Φ̃1 to obtain evaluations for points rk < R and the outer solution Φ̃2

to obtain evaluations for points rk > R.

3. Binary problem

This section considers the problem of constructing a co-moving neutron star binary. We
consider the Newtonian problem; Ref. [49] considers a generalization which includes waves
based on the helically reduced wave equation (HRWE). We label one star I and the other
II. More precisely, the stellar extents are determined by a stellar density ρ(x) which is
nonvanishing only on the interior U = {x : ρ(x) > 0} of a compact set closure(U). The
set U = UI ∪ UII is itself the union of two disjoint sets, one for each star. The boundaries
∂UI and ∂UII are the stellar surfaces and are a priori unknown, i.e. they are free surfaces
in the problem. The “theory” of gravity and matter is set by the following fixed constants:
G, strength of gravity; n, polytropic index; KI,II , constant appearing in the stellar equation
of state for star I, II. With this viewpoint, a Newtonian binary pair is determined by the
following four choices: ρmax,I,II , maximum value of the density in star I, II; xI,II = (0, 0, zI,II),
location where maximum value ρmax,I,II is realized. Here we have fixed the binary model with
“Meudon choices”; see Subsection 3.4.

On the ball D ≡ {x : |x| ≤ rout} we consider the following unknowns: (i) the stellar
enthalpy h(x) ≡ KI,II(n + 1)ρ1/n(x) and the scalars (ii,iii,iv,v) κI,II ,Ω

2, ℓz. The aforemen-
tioned generalization [49] also has a fifth scalar ℓx as an unknown. The stellar surfaces
are described by envelope functions rI,II(θθθI,II) for the free surfaces ∂UI,II . Here θθθI,II are
direction cosines relative to star I, II; i.e. θθθ = (sin θ cosφ, sin θ sinφ, cos θ). Similar to the
model problem, these surfaces are unknown a priori, but we view them as determined by the
enthalpy. Whence, technically, they are not solved for. The stellar surfaces are zero sets of
the enthalpy: h(rI,II(θθθI,II)θθθI,II) = 0. The unknowns are subject to the following equations:
[cf. (1) and Ref. [27], both Eqs. (41,95) and page 11, second paragraph]

∇2Φ = 4πGρ(x), B(Φ) = 0(19a)

κI,II = h(x) + Φ(x)− 1
2
Ω2̟2(x) for x ∈ UI , UII(19b)

h(xI,II) = KI,II(1 + n)ρ
1/n
max,I,II ,

∂hI,II

∂z

∣∣∣
x=xI,II

= 0.(19c)

Here, B(Φ) = 0 is a nonlocal boundary condition (see Remark 3.1 below), ̟2(x) :=
x2 + (z − ℓz)

2 is the squared distance of a stellar fluid element from the rotation axis, and
Ω is the rotation rate. The stars are assumed to lie on the z-axis, with the rotation axis
(parallel to the y-axis) passing through (0, ℓz). Similar to the model problem, the constancy
of κI,II reflects a balance of chemical, gravitational, and (now also) rotational potential.

3.1. Domain decomposition and binary Poisson problem. We adopt a multidomain
spectral element approach for solving the binary problem, one based on sparse modal-tau
methods [10, 11]. Here we concentrate on a Poisson problem, but our work also involves
similar problems based on the HRWE. The problem domain D is viewed as a “2-center do-
main” and split into a collection of (overlapping and conforming) subdomains. The minimal
configuration consists of the following 15 subdomains: blocks B1, B2, B3, B4, B5; cylin-
ders C1, C2, C3, C4, C5; inner shells S1

I , S
2
I around star I; inner shells S1

II , S
2
II around

star II; and an outer shell S1
out. Figure 3 depicts the decomposition. For binary problems

10



such domain decompositions were pioneered by Pfeiffer et al. [37] and play a key role in the
EllipticSolver module of the Spectral Einstein Code [36].

Reference [11] has described our use of such decompositions in conjunction with sparse
modal-tau methods. The details presented in that reference also pertain to the present work.
In particular, we rely on the following results from [11].

• Sparse spectral representation of the Laplacian operator on blocks, cylinders, and
shells. In this work we only give details for the Laplacian on shells. Refs. [11, 49]
also consider the corresponding representation of the HRWE on these subdomains.

• “Gluing” of conforming and overlapping subdomains. As seen in Fig. 3, adjacent
cylinders are conforming, whereas other subdomains, such as C5 and B5 overlap.
Reference [11] examines how the gluing of subdomains is reflected in the overall
linear system corresponding to a Poisson-type problem on D.

• Preconditioning of the overall global solve. For a Poisson-type problem over D ap-
proximated by sparse modal-tau methods, Ref. [11] has addressed both the precon-
ditioning of the bulk operator on each subdomain and the subdomain couplings. We
mostly omit these details here, except insofar as they pertain to stellar surfaces.

One key difference between Ref. [11] and the present work concerns the nature of the 2-
center domain. In [11] D was a “binary black-hole” (BBH) domain involving two inner
excised regions; whereas here D is a “binary neutron star” (BNS) domain. Relative to a
BBH domain, a BNS domain requires at least four extra subdomains both to fill in the
regions where the stars lie and to handle the stellar surfaces. More precisely, shell J from
[11] has been replaced by block B2 and shells S1

I , S
2
I . Likewise, shell H has been replaced

by block B4 and shells S1
II , S

2
II . We have also renamed as S1

out the outer shell O from [11].
Consider, for example, the B2, S1

I , S
2
I configuration surrounding the center (0, 0, zI). The

block B2 covers over the central “hole” of S1
I , and the stellar surface ∂UI will lie in the

overlap of the two inner spherical shells S1
I , S

2
I .

SI
1,2

SII
1,2

C 5

C 4

C 3

C 2

C 1 B

B

B

B

z

x
y

B

5

3

2

4

1

(a) inner domain decomposition (b) double cross section

Figure 3. 2-center domain decomposition for neutron star prob-

lem. The left panel depicts the y-cross section of the inner subdomains with
S1
out suppressed. The right panel depicts all subdomains, although for the sake

of visualization the outer radius for S1
out has been chosen atypically small.
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= +

shell 1 and blockshell 2

Figure 4. Subdomain configuration surrounding a stellar surface depicted as
an elliptical bold curve.

3.2. Modal-tau approximation of nonspherical stellar surfaces. At each stellar sur-
face regularity is lost both in the potential Φ and density ρ. Therefore, confinement of a
stellar surface within a single spherical subdomain spoils spectral convergence. We describe
a treatment of stellar surfaces which retains spectral convergence for n = 0, 1, 2, 3, 4.3 Sub-
section 4.1 considers convergence for non-integer n. Our method also affords a low-rank
treatment of the surfaces; see the text around Eqs. (23) and (24). The idea here is already
evident in the model problem. As the “surface” r = R changed in the model, the coefficient
matrix approximating the Poisson operator only required a rank-2 update. Our low-rank
treatment also pertains to the update of relevant preconditioners; see Subsection 3.3.

Consider the Poisson problem

(20) ∇2Φ = 4πGρ(x), x ∈ D and Φ(x) = f(x), x ∈ ∂D,

where D is a 3d spherical ball with a 2d spherical boundary ∂D. For simplicity we have
written down an isolated Dirichlet problem associated with D, but in practice D is a sub-
region of the BNS domain D: either B2 ∪ S1

I ∪ S2
I or B4 ∪ S1

II ∪ S2
II . Therefore, in practice

interface conditions with the external subdomains (blocks and cylinders) would actually be
specified on ∂D, i.e. the boundary values f(x) are determined by the solution on these ex-
ternal subdomains. For concreteness and without loss of generality, let us assume D is the
spherical region covered by B2∪S1

I ∪S2
I . Then D contains one component closure(UI) of the

set closure(U), where the surface ∂UI is nonspherical and a priori unknown. We view B2∪S1
I

as a single unit, the inner region of D. Likewise, we view S2
I as the outer region of D. Shells

S1
I and S2

I overlap, and by assumption this overlap contains the boundary component ∂UI ;
see Fig. 3.2. We will continue with the example of star I and block 2. Therefore, for the
rest of this subsection and the next one, we will suppress the I subscript and 2 superscript,
writing simply D = B ∪ S1 ∪ S2.

Let Φ̃a
ℓqn represent the triply-indexed modal expansion coefficients on Sa for a = 1, 2.

Here, the modal indices are ℓ = 0, . . . , Nθ dual to the polar angle, q = 0, · · · , Nφ dual to
the azimuthal angle, and n = 0, · · · , Na

r dual to the radial coordinate. Throughout, S1

and S2 share the same angular resolution, so that Nθ and Nφ need not carry a superscript

(subdomain index). We take Nφ = 2Nθ, although we enforce Φ̃a
ℓqn = 0 for q > 2ℓ. As

described in [11], we keep the nonphysical coefficients {Φ̃a
ℓqn : q > 2ℓ} to have the same

data structure for the modal and nodal representations (convenient when using the spherical
harmonic transform).

3However, for n = 3, 4 (which correspond to an unphysical neutron star EOS), one might expect numerical
ill-conditioning due to shallow osculation of the density at stellar surfaces.
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The representation of ∇2 on a shell (either S1 or S2) is block-diagonal. Precisely, for each
(ℓ, q) we have an (Nr + 1)-by-(Nr + 1) block. When q > 2ℓ, each such block is the identity;
however, the block corresponding to a physical mode 0 ≤ q ≤ 2ℓ has the form [cf. Eq. (12)]

(21)




0

0

BLℓq


 = Ir[2]A

2
r − 2Br[2]Ar − ℓ(ℓ+ 1)B2

r[2].

Here 0 represents a row of zeros, and BLℓq is a sparse (Nr−1)-by-(Nr+1) submatrix (we use
superscripts ℓ and q to label matrices). To address the issue of the coupling between the S1

and S2, first consider the case when C1 continuity (in the solution) is imposed across a round
sphere r = R, where the radial coordinate r is common to both spherical shells. Then the
relevant submatrix M1:2,1:2 = M1:2,1:2(R) of the full coefficient matrix M (approximating
the Laplacian over D) has the following structure [cf. Eq. (15)]:

M1:2,1:2(R) ≡




. . .

· · ·
δ1(r1min)
δ1(R)
BL1,ℓq

· · · · · ·
0

−δ2(R)
0

· · ·

...
. . .

...
...

. . .
...

· · · −ν1(R)
0

0

· · · · · · ν2(R)
δ2(r2max)
BL2,ℓq

· · ·

. . .




,(22)

here with generic (ℓ, q)-blocks (submatrices) of M1:2,1:2(R) showcased. The tau conditions
in the showcased off-diagonal blocks are responsible for the C1 matching of the (ℓ, q)-mode
across r = R. We stress that all other entries (indicated by horizontal dots) in these rows
are zeros. However, when this C1 matching is imposed across a nonspherical stellar surface
described by a nontrivial envelope function r = r(θθθ), the showcased matching rows are
replaced by full rows stretching across the whole of M1:2,1:2. More precisely, the following
replacements are made in the above matrix:

[· · · , δ1(R), · · · , · · · ,−δ2(R), · · · ] → βℓq ∈ R
1×N

[· · · ,−ν1(R), · · · , · · · ,ν2(R), · · · ] → γℓq ∈ R
1×N ,

(23)

where

(24) N = [(N1
r + 1) + (N2

r + 1)](Nθ + 1)(2Nθ + 1)

is the number of rows (or columns) in the square matrix M1:2,1:2. Appendix C describes how
these rows are filled; that is how the vectors βℓq and γℓq are chosen. Since there are (Nθ+1)2

physical modes corresponding to each shell, the system sector corresponding to either shell
1 or 2 also has (Nθ + 1)2 free rows of zeros in which to enforce matching conditions at the
stellar surface; whence surface distortion corresponds to a rank-2(Nθ+1)2 update of M1:2,1:2.

Remark 3.1. Representation of the Laplacian on the outer shell S1
out also has the form

(21). Now, exterior solutions of the Poisson equation (with a compactly supported source)
13



correspond to spherical harmonic modes of the form r−(ℓ+1)Yℓm(θ, φ). Therefore, for S
1
out we

fill the second zero row of (21) with the tau-vector

(25) ν1(rout) + r−1
out(ℓ+ 1)δ1(rout),

where rout, δ
1(rout), and ν1(rout) are respectively the outer radius, a Dirichlet vector, and

a Neumann vector belonging to S1
out. These tau-conditions define the nonlocal boundary

condition B(Φ) = 0 in (19).

3.3. Preconditioning. Solution of the problem (20) on the subregion D = B ∪ S1 ∪ S2 ⊂
D is one ingredient of the preconditioner for solving the 2-center Poisson problem on D.
Both the D- and D-problems are solved by preconditioned GMRES; here we discuss the
preconditioner for the D-problem (in a sense the preconditioner of the preconditioner). The
relevant preconditioner is a block-Jacobi preconditioner which features, in part, inversion
of the block-diagonal part G of M1:2,1:2. That is, G is comprised of the (Nθ + 1)2 diagonal
blocks of M1:2,1:2 which correspond to physical (ℓ, q)-modes, in addition to identity-matrix
blocks associated with the non-physical modes (q > 2ℓ). Since the diagonal blocks of G are
themselves sparse, we should perhaps take advantage of this fact in applying G−1. However,
thus far we have simply computed and used the LU -factorizations of each physical-mode
block. Now, if we view N ∼ N1

r ∼ N2
r ∼ Nθ, then the total number of physical modes

belonging to shell 1 and 2 is (N1
r + N2

r + 2)(Nθ + 1)2 ∼ 2N3 ∼ 1
2
N , where N is the total

number of modes (24). With this perspective, the LU -factorization of all nontrivial blocks
comprising G costs O

(
(Nθ+1)2[(N1

r +1)3+(N2
r +1)3]

)
= O(N 5/3) work. Likewise, with these

precomputed LU -factorizations, application of G−1 costs O
(
(Nθ+1)2[(N1

r +1)2+(N2
r+1)2]

)
=

O(N 4/3) work.
While G−1 serves as an excellent preconditioner when the stellar surface is spherical, its

effectiveness deteriorates as the surface distorts. We therefore consider correction based
on the Sherman-Morrison-Woodbury formula. Suppose now that M1:2,1:2 is (22) with the
replacements (23). We may then write

(26) M1:2,1:2 = G + UV,
with the matrix V ∈ R

2(Nθ+1)2×N built from the non-zero rows of M1:2,1:2 − G and U ∈
R

N×2(Nθ+1)2 a matrix of zeros, apart from a single 1 appearing in some if its rows. By the
Sherman-Morrison-Woodbury formula

(27) (G + UV)−1 = [I − G−1UC−1V]G−1, C ≡ I + VG−1U .
Here C is the capacitance matrix. The main cost in applying the inverse of M1:2,1:2 is then
the cost of inverting the capacitance matrix, here assuming a direct inversion. Subject to
the assumptions just made, this cost is O

(
[2(Nθ+1)2]3

)
= O(N6) = O(N 2). While this cost

might be reduced further via a different strategy for inversion of C, the chief walltime cost
(currently and empirically) stems from the computation of V; see Appendix C.

3.4. Solution procedure for co-moving binaries. Given inAlgorithm 2, our procedure
for construction of co-moving Newtonian binaries mirrors the procedure outlined for single
stars. We use the SCF method [46] of Ostriker and Mark with regularizations of a type first
consider by Hachisu [5]. The next two paragraphs address the need for regularization.

Assuming a fixed EOS and gravitational constant G, a Newtonian binary pair is deter-
mined by three physical fixations: the stellar masses MI , MII and the separation d. In
addition, five extra gauge fixations are required to locate the pair in R

3. Fixation of d and
14



the five gauge choices is equivalent to fixation of each star’s center-of-mass, here assuming
Cartesian coordinates which co-rotate with the binary. For the centers-of-mass we effectively
choose (0, 0, Cz,I) and (0, 0, Cz,II), with Cy,I = 0 = Cy,II and Cx,I = 0 = Cx,II respectively
enforced by the reflection symmetries across the y = 0 and x = 0 planes. Therefore, we
might view a Newtonian binary as determined by four fixations: MI , MII , Cz,I , Cz,II .

To ensure convergence to a unique solution (regularize the associated fixed-point itera-
tion), an SCF method for binaries must deal with the physical and gauge issues raised in the
last paragraph. The fixations of MI , MII , Cz,I , and Cz,II are integral conditions involving
the stellar density. While we have used these integral conditions [49], here we adopt regu-
larization approaches based on easier-to-implement pointwise conditions. These pointwise
conditions stem from (19b) itself, and they define κI , κII , Ω

2, ℓz. We refer to one regular-
ization approach as Hachisu [5, 6, 7], and the other as Meudon [27]. For example, the
Meudon approach amounts to fixation of ρmax,I , ρmax,II , xI = (0, 0, zI), xII = (0, 0, zII),
again with xI,II the maxima locations. The choice of regularization approach affects lines 3
and 6 in Algorithm 2. This subsection describes each line of Algorithm 2. We often deal
only with star I, with the understanding that our descriptions also pertain to star II.

Algorithm 2 Binary SCF iteration. Inputs are (i) modal coefficients for the enthalpy
h(x) on B2 and S1

I ; (ii) modal coefficients for h(x) on B4 and S1
II ; (iii) the scalars κI,II , Ω

2,
ℓz; and (iv) a preconditioner for the Poisson solve. Outputs are updates of the same objects.

1: Find the zero sets (stellar surfaces) rI,II(θθθI,II) of the enthalpy h(x).

2: By Algorithm 3 compute matrices ẼI,II
1,1:2 and F̃ I,II

2,1:2 determining matching conditions.

3: Obtain new density ρ(x) from h(x) as modal coefficients on the subdomains B2,4, S1
I,II .

4: Update the preconditioner for the Poisson solve.
5: Solve the (numerical approximation to the) problem ∇2Φ = 4πGρ(x), B(Φ) = 0.
6: Get updated scalars κI,II , Ω

2, ℓz.
7: Update enthalpy via the generalized potential equation.
8: Enforce symmetries on the enthalpy.

3.4.1. Surface location and update of matching conditions (lines 1 and 2). For each angular

direction θθθjk on shell S1 the modal coefficients h̃1
ℓqn of the enthalpy define a radial function

(28) PN1
r ,Nθ

h(rθθθjk) =

Nθ∑

ℓ=0

2Nθ∑

q=0

N1
r∑

n=0

h̃1
ℓqnE1

ℓqn(r, θj , φk),

where the basis functions E1
ℓqn(r, θj , φk) appear in (53). Using the bisection method, we

find the root rjk of PN1
r ,Nθ

h(rθθθjk), typically with a tolerance near machine precision. Via
the discrete spherical harmonic transform, the grid function rjk may be converted to the
coefficients r̃ℓq of its corresponding spherical harmonic expansion. For line 2 the tau-vectors
introduced abstractly in (23) are given by

βℓq = Ẽ1,1:2(ℓ(2Nθ + 1) + q, :)

γℓq = F̃2,1:2(ℓ(2Nθ + 1) + q, :),
(29)

where Appendix C describes precisely how to compute the matrices Ẽ1,1:2 and F̃2,1:2. These
matrices define the low-rank update described near the end of Subsection 3.2.
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3.4.2. Obtainment of density from enthalpy (line 3). Let h̃B
ijk and h̃1

ℓqn denote the modal

coefficients for the enthalpy on the subdomains B2 and S1
I . From these coefficients the goal

is to obtain modal coefficients ρ̃Bijk and ρ̃1ℓqn for the density via the EOS. The Hachisu and
Meudon approaches achieve this goal differently, although for both ρmax,I remains fixed
throughout the algorithm (even outside of line 3).

• The Hachisu approach begins with a search for the maximum value hmax,I of the
enthalpy and the point xI = (0, 0, zI) where it occurs; here, we assume xI ∈ B2.
Note that hmax,I and xI change when the enthalpy does (in line 7).

• The Meudon approach involves no search, and both hmax,I ≡ KI(n + 1)ρ
1/n
max,I and

xI remain fixed (even outside of line 3). We have not tried the Meudon approach
for n = 0.

With hmax,I in hand (whether computed through a search, or fixed throughout), we are ready
to compute the density. First, define the ratio C = ρmax,I/h

n
max,I which is [KI(n + 1)]−n for

the Meudon case. Next, based on the polytropic index n, proceed as follows.

• For n = 1 set ρ̃Bijk = Ch̃B
ijk and ρ̃1ℓqn = Ch̃1

ℓqn for all indices.

• For n 6= 1 first use the inverse spectral transforms associated with B2 and S1
I (respec-

tively, a triple-Chebyshev transform and a Chebyshev-spherical-harmonic transform)
to compute collocation values for the enthalpy. On B2 these collocation values are
assumed positive; therefore, restrict attention to the collocation values h1

ℓqn on S1
I .

Some values h1
ℓqn will be positive, and others negative. Provided h1

ℓqn ≥ 0, the corre-

sponding density value is simply ρ1ℓqn = C(h1
ℓqn)

n. Now consider the case h1
ℓqn < 0.

– For n = 0, 2, 3, 4 we again set ρ1ℓqn = C(h1
ℓqn)

n.

– For n not integer, we may set ρ1ℓqn = ±C|h1
ℓqn|n or 0. In practice, these choices

all yield similar performance.
Once all collocation values (on both B2 and S1

I ) for the density have been computed,
we obtain the corresponding modal coefficients via the spectral transforms.

Regardless of n, the described steps yield the modal coefficients for the density on B2 and
S1
I . However, unless n is an integer, the modal coefficents ρ̃1ℓqn will not exhibit rapid decay.

Remark 3.2. The support of the true physical density ρ defines the stellar extents, as dis-
cussed in the first paragraph of Section 3. Whence by definition the physical ρ vanishes
on the region exterior to both stars. Nonetheless, a feature of our numerical method is the
double-valuedness of ρ’s numerical representation on the overlap S1

I

⋃
S2
I which contains the

current stellar surface at each SCF step. On S1
I and exterior to the current surface, ρ’s

numerical representation may be nonzero, as seen in the prescription just given. Therefore,
on the overlap and exterior to the surface, our approximation to the physical density must
be ρ’s numerical representation on S2

I which always vanishes.

3.4.3. Preconditioner update and Poisson solve (lines 4 and 5). With the new stellar surface,
the preconditioner is updated via the Sherman-Morrison-Woodbury identity as described in
Subsection 3.3. Reference [11] presents most of the details for the global Poisson solve listed
in line 5. The solve in line 5 incorporates the new surface matching conditions from line 2.

3.4.4. Parameter update (line 6). The Meudon approach corresponds to the choice of equa-
tions in (19c). These determine that the enthalpy (and so also the density) attains prescribed
maximum values at the points xI,II . Owing to enforcement of symmetry assumptions, only
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z-partial derivatives are necessary in the formulation of these conditions. Combination of
(19b,c) yields the following system of equations:

κI = KI(n + 1)ρ
1/n
max,I + Φ(xI)− 1

2
(zI − ℓz)

2Ω2(30a)

κII = KII(n + 1)ρ
1/n
max,II + Φ(xII)− 1

2
(zII − ℓz)

2Ω2(30b)

0 =
∂Φ

∂z

∣∣∣
x=xI

− (zI − ℓz)Ω
2(30c)

0 =
∂Φ

∂z

∣∣∣
x=xII

− (zII − ℓz)Ω
2.(30d)

Here the terms involving the gravitational potential are viewed as known; they are computed
with the solution to the Poisson problem in line 5. Equations (30) are then viewed as a
nonlinear system for the parameters κI , κII ,Ω

2, ℓz, and we solve it via Newton’s method.
For the simplifying case of an equal-mass binary, the Hachisu approach assumes that the

surface of star I, say, intersects the z-axis at prescribed points, here taken as zA and zB.
Then the system which determines the parameters is

κI = Φ(xA)− 1
2
z2AΩ

2(31a)

κI = Φ(xB)− 1
2
z2BΩ

2.(31b)

Again with the gravitational potential terms considered as known data, the system in (31)
is solved for κI and Ω2, along with the conditions κII = κI and ℓz = 0. A more complicated
system is necessary for the unequal-mass scenario. We consider the generic version of the
Hachisu approach in Appendix D.

3.4.5. Enthaply update (lines 7 and 8). For line 7 use of the solved-for parameters (described
in the last two paragraphs) ensures that, when it is computed from (19b) and the solution
Φ obtained in line 5, the new enthalpy respects the required constraints (19c), or similar
constraints defined in the Hachisu approach. The enthalpy configuration for a Newtonian
binary is symmetric with respect to reflection across both the x = 0 or y = 0 planes. We
perform line 8 by setting to zero (by hand) certain modes on B2, B4,S1

I , and S1
II .

4. Numerical results for binaries

This section presents the results of our 3d numerical experiments. Its first subsection
considers a single 3d Poisson solve involving a binary star density distribution with mock
nonspherical surfaces ∂UI,II . Next, using regularized versions of the SCF method, its second
subsection considers construction of binaries. Throughout, this section uses the BNS domain
D specified in Table 1, or an overall scaling of it. To document convergence, we associate with
D a sequence of resolutions listed in Table 2. In the table and throughout this Section 4, we
assume Chebyshev indexing from 1; whence, for example, now NB1

x = 14 means 14 modes not

15. NC1

φ = 5 means 5 Fourier modes. As before, ℓ
S1

out

max = 10 means 121 spherical harmonic
modes. Our GMRES tolerance choices (stopping criteria on the relative residual) for the
sequence levels have been 1.0e-09, 1.0e-10, 1.0e-11, and 9.0e-12. These tolerances are
overly stringent. Nevertheless, for our multilevel preconditioner (see [11]) we have chosen
tolerances which are 10 times smaller for the GMRES solves associated with subregions of
D. For all documented experiments, we have performed 3 sweeps of the additive Schwarz
preconditioner described in [11].

17



Spherical shells

S1

I : 0.01 ≤ r ≤ rmax,I ; S2

I : rmin,I ≤ r ≤ 1.0; S1

II : 0.01 ≤ r ≤ rmax,II ; S2

II : rmin,II ≤ r ≤ 1.0; S1

out
: 2.04 ≤ r ≤ 10.0

Cylindrical shells (all with rmax,I + 0.01 ≤ ρ ≤ 2.24 and 0 ≤ φ ≤ 2π)
C1: −2.24 ≤ z ≤ −1.57; C2: −1.57 ≤ z ≤ −0.43; C3: −0.43 ≤ z ≤ 0.43; C4: 0.43 ≤ z ≤ 1.57; C5: 1.57 ≤ z ≤ 2.24

Blocks (B2, B4 with −0.0105 ≤ x, y ≤ 0.0105; B1, B2, B3 with −0.57 ≤ x, y ≤ 0.57)
B1: −2.24 ≤ z ≤ −1.57; B2: −1.0105 ≤ z ≤ −0.9895; B3: −0.43 ≤ z ≤ 0.43; B4: 0.9895 ≤ z ≤ 1.0105; B5: 1.57 ≤ z ≤ 2.24

Table 1. 2-center BNS domain. The center of B2, S1
I , and S2

I is (0, 0, zI)
with zI = −1.0. The center of B4, S1

II , and S2
II is (0, 0, zII) with zII = 1.0.

We set rmax,I = 1.1RI , rmin,I = 0.9RI , rmax,II = 1.1RII , rmin,II = 0.9RII , and
subsequently chopped each of these values to two digits. RI,II values are given
below.

Figure 5. Densities for two Lane-Emden stars. The center of each
star has been placed off-center relative to the nearest coordinate center in the
2-center global domain. Here this off-centering is exaggerated.

4.1. Poisson problem on 2-center domain.

4.1.1. Polytropic index n = 1. We consider the exact solution corresponding to the super-
position of two Newtonian Lane-Emden stars. Each star separately obeys ∇2Φ = 4πGρ,
with G = 1 and the solution given by ρ(η) and Φ(η) from (3) in terms of the radial dis-
tance η from the stellar center. Here we have used η rather than r, since the latter will
denote the radial coordinate within a spherical shell. We use the formulas in (3) to fix pairs
{ΦI , ρI} and {ΦII , ρII}, one for each of the centers. We choose ρc,I = 1.0, RI = 0.40625 and
ρc,II = 1.0, RII = 0.40625. Superposition Φ = ΦI + ΦII of the two potentials yields an exact
solution to the Poisson problem corresponding to the superposed non-overlapping densities.

We will numerically solve for Φ and compare the result with the exact solution. To make
the problem more challenging and reflective of the situation encountered with gravitationally
interacting stars, we do not choose the centers of the stars to coincide with the centers of the
global 2-center domain. Instead, we place the stellar centers at (0, 0, zI)+∆xI and (0, 0, zII)+
∆xII For the experiment documented here, ∆xI = (+2.64e-3,-1.01e-2,2.46e-2) and
∆xII = (-8.14e-3,+2.22e-3,-2.60e-2). With these choices for ∆xI ,∆xII , each stellar
surfaces is contained in the overlap between the relevant two inner spherical shells. The
qualitative nature of the resulting Lane-Emden densities ρI , ρII is depicted in Fig. 5. As
a result, with respect to the spherical polar coordinates on the inner spherical shells, each
stellar surface is a mock nonspherical surface, i.e. not a fixed coordinate radius locus. For
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B1

x N
B1

y N
B1

z N
B2

x N
B2

y N
B2

z N
S1

I
r ℓ

S1

I
max N

S2

I
r N

C1

r N
C1

φ N
C1

z N
C2

z N
S1

out
r ℓ

S1

out
max

Level 1 14 14 7 7 7 7 12 12 12 13 5 7 17 25 10

Level 2 19 19 9 9 9 9 15 16 15 19 9 9 23 85 18

Level 3 24 24 11 11 11 11 18 20 18 23 13 11 29 105 24

Level 4 27 27 15 15 15 15 22 24 22 26 15 15 32 117 30

Table 2. Truncations for the Poisson solve experiment. Each table
row lists enough information to recover the truncations used on each subdo-
main of D. The truncations for blocks B3 and B5 are the same as those for B1;

the truncations for block B4 are the same as those for B2; ℓ
S2

I
max = ℓ

S1

I
max; trun-

cations for star II are the same as for star I; all cylinders have the same radial
and azimuthal truncations, with NCj

z = NC1

z for j = 3, 5 and NC4

z = NC2

z .

MPSPD L2 err L2 norm L∞ err L∞ norm iters tol

Level 1 10.92 6.9464e-07 2.3520e-01 7.9417e-06 4.6382e-01 10 1.0000e-09

Level 2 16.85 8.5983e-08 1.7796e-01 4.4325e-07 4.6412e-01 7 1.0000e-10

Level 3 21.36 2.1830e-09 1.7009e-01 2.1837e-08 4.6400e-01 6 1.0000e-11

Level 4 25.53 6.8931e-12 1.7378e-01 1.5055e-10 4.6412e-01 4 9.0000e-12

Table 3. Errors and norms corresponding to the truncations

in Table 2. Listed quantities have been computed after suitable inverse
transformations on each subdomain to yield nodal values. The L∞ norms do
not settle down quickly as the spectral grids associated with nodal values are
relatively coarse.

each angular direction we find the radial value of the surface via Newton’s method. Upon
using the spherical harmonic transform, we then obtain a spherical harmonic expansion for
each surface (the expansion could be found analytically as well).

Our first test is to solve the n = 1 Poisson problem for the above sequence of truncations.
Table 3 lists the errors corresponding to the levels in Table 2. A numerical solution is a
collection of modal expansion coefficients; however, comparisons with the exact solution are
always computed in physical space on the nodal grid (or grids in this multidomain case) dual
to the modal expansion. These nodal grids are coarse, and the norms reported in Table 3
do not settle down quickly. To address the issue of whether or not the convergence apparent
in Table 3 is “spectral”, we have also included the column MPSPD or modes per subdomain
per dimension. This number gives a rough indication of the resolution, and the error decays
exponentially fast as it increases.

4.1.2. Polytropic index n 6= 1. We now consider the experiment just described, only now with
n = 1

2
and 3

2
. Appendix B describes how we generate sufficiently accurate one-dimensional

reference solutions to the Lane-Emden ODE when an exact solution is not available. Such
solutions are used to compute the errors reported in Fig. 6. For non-integer n the density
exhibits one-sided loss of regularity as the stellar surface is approached from the inside. As a
result, the spectral convergence documented above for n = 1 breaks down. We therefore stop
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Figure 6. Lane-Emden solution with fractional n. Here we consider
same experiment with Level 3 and n = 1/2, 3/2.

the sequence of resolutions at Level 3, subsequently increasing the radial resolution in the
shells S1

I and S1
II . One might think of these partially increased resolutions as Level 3b, Level

3c, etc. Now, Level 3 (or Level 3a) has Nr = N
S1

I
r = N

S1

II
r = 18, Level 3b has Nr = 36, and

we continue to Level 3e with Nr = 288. Figure 6 documents the convergence, in comparison
with linear (∝ 1/Nr) and quadratic (∝ 1/N2

r ) trends. For both n = 1
2
and 3

2
cases the

slow down in convergence seen near Nr = 288 can be ameliorated through increased angular
resolution in both of the shells surrounding the surface. For a nodal method, Ref. [47] has
described a method for alleviating the slow-down in convergence for “stiff equations of state”
(0 < n < 1). While we believe the strategy presented in that reference can be adapted to
our approach, we have yet to implement it.

4.2. Binary problems. Using the SCF method described above, this subsection constructs
Newtonian co-moving binaries. Since exact solutions are not available for such configurations,
in addition to the levels in Table 2, we consider another reference level, essentially Level 5,

obtained from Level 4 by adding 1 to all truncations, save for the resettings N
S1

out

r = 120

and ℓ
S1

out

max = 32. The GMRES tolerance 4.0e-12 has been chosen for this fifth level.

4.2.1. Convergence study for n = 1 case. This subsection documents a self-convergence study
for an unequal mass configuration. For Level 1 through Level 5 (the reference level) we
have chosen 30, 20, 20, 10, 10 for the number of SCF iterations. Moreover, the output solution
(enthaply) for each level has served as the initial guess for the SCF iteration at the next level.
Therefore, only Level 1 requires a starting configuration, and for it we have superposed two
spherically symmetric n = 1 Lane-Emden stars with ρc,I = 0.5, RI = 0.375 and ρc,II =
1.0, RII = 0.411432604093155. As described in Appendix B, these choices determine both
the constant KI,II in the EOS and the masses MI,II . Since we know the coordinate distance
between the star’s centers, we then use Kepler’s law to fix the initial Ω2.
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truncation shell error cube error surface error virial check

Level 1 29752 4.4393e-06 6.0939e-06 1.2841e-06 1.0515e-06

Level 2 117103 9.0547e-07 9.5293e-07 5.3233e-08 2.1960e-07

Level 3 239496 2.8059e-08 3.0330e-08 3.8459e-10 6.5556e-09

Level 4 411112 1.0389e-10 9.6746e-11 9.7438e-12 1.6059e-11

REFERENCE 474464 --- --- --- 5.0718e-12

Table 4. Convergence study errors. Here we list errors measured
against the reference solution for the unequal mass convergence study. These
errors correspond to the truncations in Table 2, and the main text describes
how they have been computed. The REFERENCE (essentially Level 5) results
from slight increase of the truncations for Level 4; see the text.

Table 4 list results. The truncation column lists the number of unknowns, including
unphysical spherical harmonic modes; see the text before (21). For example, the number of
physical modes for Level 4 is only 249502, corresponding to the reported 25.53 MPSPD.
All listed errors are relative 2-norm errors measured against the reference configuration.
More precisely, for the “cube error” and “shell error” we have, for each level, interpolated
the numerical solution for the gravitational potential Φ onto two fixed uniform grids: one
associated with B4 (N0

x = N0
y = N0

z = 11) and the other with S1
out (N0

r = 21, N0
θ = 41,

N0
φ = 41). The “surface error” listing also arises as the relative 2-norm errors against the

reference grid. Here, for each level, the numerical solution for the surface rII(θθθII) has been
interpolated onto a fixed uniform grid (N0

θ = 41, N0
φ = 41). The viral check [5, 48] constitutes

an independent check on the errors. The expression we have evaluated is

(32) V.C. = |2T +W + 3P |
/
|W |,

where the rotational energy T , gravitational energy W , and pressure volume integral P are

W =
[ ∫

star I

+

∫

star II

]
dx1

2
ρ(x)Φ(x)

T =
[ ∫

star I

+

∫

star II

]
dx1

2
ρ(x)Ω2̟2(x)

P =
[ ∫

star I

+

∫

star II

]
dx(n+ 1)−1h(x)ρ(x).

(33)

Numerical evaluation of these integrals is discussed in Appendix E. The virial check along
with the other listings in Table 4 suggest that the reference solution is accurate to about
11 digits. Furthermore, the table indicates spectral convergence; the results therein validate
our approach and its implementation.

4.2.2. Comparison with Hachisu results. This subsection demonstrates that our results agree
with much earlier results [6] of Hachisu for an equal-mass case. We adopt the described
Hachisu approach to regularized the SCF iteration, including the parameter conditions
(31). Moreover, in line 8 of Algorithm 2, we enforce symmetries across all three coordinate
planes. Throughout, our discussion makes use of the same 2-center domain D and levels
(truncation choices) described earlier.
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−zB Ω
2

Pmax virial check

Level 2 0.333 0.1124772008204 (0.112) 0.2059169485482 (0.207) 1.4337e-07

Level 3 0.1124770770717 0.2059169765393 9.4858e-10

Level 4 0.1124770783021 0.2059169766070 5.9824e-12

Level 4 0.417 0.0669516423484 (0.0695) 0.1661144339967 (0.166) 2.4793e-11

Level 4 0.500 0.0370452955356 (0.0387) 0.1261597690337 (0.128) 9.7199e-11

Table 5. Comparison to Hachisu’s results in [6]. The table entries
correspond to an equal-mass n = 0 configuration, and the negative values of
rB (our zB) listed in TABLE 1, page 466 of that reference. Numbers within
parenthesis are Hachisu’s values. In view of the virial-check errors, in some
cases (for the sake of consistency in the format) we have listed more digits
than are trustworthy.

We consider n = 0, resulting in a discontinuous stellar surface. To facilitate the compari-
son, we choose both R = RI = RII and scale the domain D in Table 1 in order to ensure that
the star-I extents obey the following along the z-axis: −1 = zA ≤ z ≤ zB = −(1−R)/(1+R).
Due to the auxiliary equations (31) enforced in the Hachisu prescription, the z-extents of
the stars remain fixed throughout the SCF iteration. Table 5 collects our results for several
choices of zB considered in [6]. Values listed in parenthesis come from [6]. More precisely,
they stem from “TABLE 1, Polytropes (two-body system)”, page 466 of that reference,
where they are associated with negative rB. The minus sign is Hachisu’s notation to distin-
guish detached binaries from disk-shaped structures; his rB is our zB which is negative since
star I lies on the negative z-axis. As in [6], we have listed only 3 digits for zB, but our table
choices have been determined by the following R values: 1

2
, 0.411432604093155, and 1

3
. In

all cases ρmax,I = 1 = ρmax,II .
Hachisu lists values for Ω2, M (mass), V (volume), J (angular momentum), T , −W ,

3Π (our 3P above), and Pmax (maximum pointwise pressure). Since we have found similar
agreement in all of these quantities, Table 5 only collects values for Ω2 and Pmax. As indicated
in the table, for zB = −0.333 we again consider several levels, increasing the truncation to
document convergence. Based on the virial check, Hachisu claimed values good to about
3-digit accuracy. Our results confirm this assertion.

5. Conclusions

We conclude with criticism of the present work and a summary of future work towards
construction of helically symmetric spacetimes.

We have presented a new spectral method for the treatment of stellar surfaces in binary
neutron star models. While the method has been tested only for co-moving Newtonian
binaries, in principle it is applicable to both counter-rotational Newtonian binaries and
relativistic binaries, say solution of the conformal thin-sandwich equations describing quasi-
equilibrium binary initial data. We have described the method as low-rank, since stellar
surfaces are reflected through tau-conditions in the bulk operator.

The low-rank description implies that our approach is more efficient than a nodal one
based on surface-adapted coordinate transformations. However, despite this intimation, the
reality of such an assertion has not been put to the test here. Ideally, we would compare
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our approach to either (or both) of the ones implemented in the LORENE or SpEC codes.
The details involved in the nodal approach (for example, the type of preconditioning) are
notably different. While such a comparison would be of interest, it would also be a significant
undertaking. Moreover, such comparison would ideally be made beyond the relatively simple
co-moving Newtonian scenario, as is possible with both LORENE or SpEC (we are currently
working to move beyond this scenario). We do note that some comparison of our modal
approach toward preconditioning with traditional nodal strategies appears in [12]. As a final
criticism, we note that our work has not made extensive use of parallelism. While for many
fields (see below) we have exploited parallelism, we should parallelize the application of our
preconditioner, with tasks determined by the subdomains or even the particular modes on
each subdomain. While we believe this issue holds promise, as the sole code developer the
author of this work has not yet been able to pursue it.

The next step in our goal of numerically constructing helically symmetric spaces is to
replace the Laplacian in the Newtonian problem with the helically reduced wave operator,
that is to move from the Poisson problem to the HRWE. This step is taken in the proceed-
ings [49]. They key technical challenges are (i) inclusion of the angular momentum term in
the bulk operator and (ii) in the HRWE-based problem the only symmetry corresponds to
reflection about the orbital plane y = 0. The challenge presented by (i) is formidable, but we
have already met it in [11]. With regard to (ii), our approach has been to introduce another
parameter (ℓx, always zero in this work). Moreover, rather than the pointwise conditions
adopted here to regularize the SCF algorithm, [49] has adopted integral regularization con-
ditions. Proper treatment of issue (ii) proves crucial in achieving numerical convergence for
the generalized SCF method.

On a different tack, future work will also describe use of the Broyden algorithm [50] to
accelerate the SCF method which is essentially a fixed-point iteration. Work [51] in progress
focuses on BNS approximations inspired by the post-Minkowski formalism. We hope that
this effort will result in (trial data for) binary initial data largely uncontaminated by junk
radiation. After these steps, we might consider our ultimate goal of solving the helically
reduced Einstein equations.
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Appendix A. Standard identities for Chebyshev polynomials

The following sets of equations are standard identities for Chebyshev polynomials.

ξT0(ξ) = T1(ξ)

2ξTn(ξ) = Tn−1(ξ) + Tn+1(ξ) for n ≥ 1
(34a)

2ξ2T0(ξ) = T0(ξ) + T2(ξ)

4ξ2T1(ξ) = 3T1(ξ) + T3(ξ)

4ξ2Tn(ξ) = Tn−2(ξ) + 2Tn(ξ) + Tn+2(ξ) for n ≥ 2

(34b)

T0(ξ) = T ′
1(ξ)

T1(ξ) =
1

4
T ′
2(ξ)

Tn(ξ) =
T ′
n+1(ξ)

2(n+ 1)
− T ′

n−1(ξ)

2(n− 1)
for n ≥ 2

(34c)

T0(ξ) =
1

4
T ′′
2 (ξ)

T1(ξ) =
1

24
T ′′
3 (ξ)

T2(ξ) =
1

48
T ′′
4 (ξ)−

1

6
T ′′
2 (ξ)

Tn(ξ) =
T ′′
n+2(ξ)

4(n+ 1)(n+ 2)
− T ′′

n (ξ)

2(n2 − 1)
+

T ′′
n−2(ξ)

4(n− 1)(n− 2)
for n ≥ 3

(34d)

These sets of identities define the matrices in (4). Explicit expressions for the matrices A,
B[1], and B

2
[2] are given in Eqs. (25), (31), and (34) of [10] (as well as many other references).

Equations (34a,34b) follow from Eqs. (A.8,A.9) in the appendix of [52], while Eqs. (34c,34d)
follow from Eq. (A.17) of [52].

Appendix B. Lane-Emden solution for non-integer polytropic indices

This appendix describes generation of spherically symmetric stellar models for non-integer
n. For the numerical experiments considered in Subsection 4.1.2, we have found it useful to
generate a double-valued solution on the overlap of the two spherical shells which surround
a star. Here we describe the means by which this has been achieved.

B.1. Dimensionless problem. Consider the Lane-Emden problem for 0 ≤ n ≤ 5,

(35)
d

dξ

(
ξ2
dθ

dξ

)
+ ξ2θn = 0, θ(0) = 1, θ′(0) = 0.

Exact solutions are the following:

(n = 0) θ(ξ) = 1− 1
6
ξ2; (n = 1) θ(ξ) = ξ−1 sin(ξ); (n = 5) θ(ξ) =

(
1 + 1

3
ξ2
)
−1/2.(36)
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We are most interested in the n-dependent root ξ⋆ at which θ(ξ⋆) = 0, as well as the n-
dependent number

(37) µ⋆ := −ξ⋆θ
′(ξ⋆) ≥ 0.

Exact cases are the following:

(n = 0) ξ⋆ =
√
6, µ⋆ = 2; (n = 1) ξ⋆ = π, µ⋆ = 1; (n = 5) ξ⋆ = ∞, µ⋆ = 0.(38)

B.2. Physical variables. Consider the polytropic equation of state

(39) h = (n+ 1)Kρ1/n, n > 0,

where both the enthalpy h = h(r) and the density ρ = ρ(r) are radial functions. The case
n = 0 is special, with ρ(r) = ρc (constant) and the enthalpy h not explicitly determined by
ρ. The relationships between the Lane-Emden solution θ and the density and enthalpy are

(40) ρ(r) = ρcθ
n(r/α), h(r) =

{
(n + 1)Kρ

1/n
c θ(r/α) for n > 0

Kθ(r/α) for n = 0,

where the positive factor α = α(n) is defined by

(41) α2 :=

{
(n+ 1)Kρ

−1+1/n
c /(4πG) for n > 0

Kρ−1
c /(4πG) for n = 0.

If the physical stellar radius r = R is viewed as chosen, then α = R/ξ⋆ and (41) determines
the constant K appearing in (39).

Write the Lane-Emden equation as

(42) − 1

r2
d

dr

[
r2

d

dr

(
4πGα2ρcθ

)]
= 4πGρcθ

n,

and view it as holding on [0, R] = α[0, ξ⋆]. The interior (r < R) and exterior (r > R)
gravitational potential Φ(r) are then

(43) Φint(r) = −4πGα2ρc
[
C1 + θ(r/α)

]
, Φext(r) = −4πGα2ρcC2/r,

where the constants [cf. (37) above]

(44) C1 = −ξ⋆θ
′(ξ⋆) = µ⋆, C2 = −αξ2⋆θ

′(ξ⋆) = Rµ⋆

are determined by the matching conditions

(45) Φint(R) = Φext(R), Φ′
int(R) = Φ′

ext(R).

With (40) and (41), the first equation in (43) may then be written as

(46) Φint(r) = −4πGα2ρcµ⋆ − h(r),

giving κ = −4πGα2ρcµ⋆. Whence κ = −(n + 1)Kρ
1/n
c µ⋆ for n > 0 and κ = −2K for n = 0.

The mass of the star is

(47) M = 4π

∫ R

0

drr2ρ(r) = 4πα3ρc

∫ ξ⋆

0

dξξ2θn(ξ) = α3ρcm⋆,

where the constant m⋆ may be computed via quadrature if θ is known. Exact cases are the
following:

(n = 0) m⋆ =
1
5
16π

√
6; (n = 1) m⋆ = 4π2; (n = 5) m⋆ = ∞.(48)
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B.3. Numerical solution. If an analytic solution is not available for a given n, we begin by
numerical computing the numbers ξ⋆ and µ⋆. To achieve numerical approximations to these
numbers which are accurate (in a relative sense) to machine double precision, we proceed
as follows. As an initial value problem, we integrate (35) using a quadruple precision imple-
mentation of the 13-stage Dormand-Prince scheme. This integration relies on the scheme’s
7th order embedded method to control the error through adaptive step size. The integration
continues while θ > 0 until θ = 0 is achieved (to a sufficient tolerance).

Next, we use ξ⋆ and µ⋆ to solve two problems via the modal-tau methods described in
Section 2; for both problems writing the Lane-Emden equation as

(49)
d2

dξ2
(
ξ2θ

)
− 2

d

dξ

(
ξθ
)
+ ξ2θn = 0.

The first problem is posed on [0, ξ⋆], and its solution is a Chebyshev spectrum θ̃1 labelled
with a 1. Upon discretization, the first problem reads

I[2]A
2
ξθ̃

1 − 2Bξ[2]Aξθ̃
1 +B2

ξ[2]A
2
ξF

[(
F−1θ̃1

)
n
]
= 0; δ−θ̃1 = 1, δ+θ̃1 = 0,(50)

where F denotes the discrete Chebyshev transform and δ± are end-point Dirichlet vectors
(comprised entirely of either ±1 or 1). We solve this problem via Newton’s method. Despite
the potential loss of regularity in θn at the left endpoint, we are able to achieve a solution

θ̃1 with near double precision accuracy, provided a sufficiently large truncation. Accuracy

has been determined via comparison of −ξ⋆ν
+θ̃1 against the precomputed µ⋆.

Although not necessary, it has proved convenient to also extend the interior density and
gravitational potential beyond r > R, tantamount to extending θ(ξ) beyond ξ > ξ⋆. To
achieve the extension, we pick ξmax > ξ⋆, and consider a second problem posed on [ξ⋆, ξmax].

The solution θ̃2 to the second problem is a Chebyshev spectrum labelled with a 2, and the
second problem reads

I[2]A
2
ξ θ̃

2 − 2Bξ[2]Aξθ̃
2 +B2

ξ[2]A
2
ξF

[
q
∣∣F−1θ̃2

∣∣n] = 0; δ−θ̃2 = 0, ν−θ̃2 = −µ⋆/ξ⋆,(51)

where we may choose either q = ±1 or q = 0 (with q = 1 and no absolute value if n is integer).
This choice affects how the solution is extended, and for the experiments in Subsection 4.1.2
this choice must be consistent with how the density is recovered in Subsection 3.4.2. We take

ρint(r) = ρcθ
n(r/α) and Φint(r) as the first formula in (43). We then use θ̃1 for evaluations

of the interior solution when r < R, and θ̃2 for evaluations when r > R.

Appendix C. Matching conditions across a nonspherical stellar surface

Each step of our iterative approach (see below) involves update of the enthalpy h through
Eq. (19b). We perform this update only on the inner region (shell 1 + block), and it
yields (modal coefficients for) the updated density h1. This enthalpy is smooth and defined
everywhere on the inner region. Moreover, h1(x) < 0 outside of the current nonspherical
surface ∂U . On the external region (shell 2) we demand h2(x) = 0 for all points.
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Algorithm 3 Computation of matching conditions across a stellar surface.

Inputs are the modal coefficients {h̃1
ℓqn} determining enthalpy h1(x) on shell 1. Outputs are

the matrices Ẽ1,1:2 and F̃2,1:2 defining matching tau conditions.

1: Find surface ∂U on which h1 = 0. Precisely, for each angular collocation direction (θj , φk)
compute radius rjk = r(θj, φk) corresponding to h1(xjk) = 0.

2: Using the spherical harmonic transform, from the rjk obtain the modal coefficients r̃ℓm
which define the stellar surface ∂U as r(θ, φ) =

∑
ℓm r̃ℓmYℓm(θ, φ).

3: Obtain the components n = (n1, n2, n3) of the normal to ∂U . Here we use

(1− u2)
dPm

ℓ

du
= (ℓ+ 1)uPm

ℓ − (ℓ−m+ 1)Pm
ℓ+1,

where Pm
ℓ (u) is an associated Legendre function with u = cos θ. This identity determines

∂Yℓm/∂x
k for xk = (x, y, z). Then nk ∝ r−1xk −∑

ℓm r̃ℓm∂Yℓm/∂x
k.

4: For each shell a = 1, 2 compute and store the factors

Ea
ℓqn(xjk), Fa

ℓqn(xjk).

The angular factors defining these expressions may be computed once and stored. This
step and the previous one defines the matrices E1,1:2 and F2,1:2.

5: Compute column-by-column spherical harmonic transforms Ẽ1,1:2 and F̃2,1:2.

On shell a = 1, 2 the coefficients Φ̃a
ℓqn determine the function (cf. Eq. (15) of [11])

PNa
r ,Nθ

Φa(r, θ, φ) =

Nθ∑

ℓ=0

2Nθ∑

q=0

Na
r∑

n=0

Φ̃a
ℓqnEa

ℓqn(r, θ, φ).(52)

Here the P merely indicates that the function arises as a finite expansion. Moreover, the
basis functions Ea

ℓqn(r, θ, φ) are (with m = 1, . . . , Nθ)

Ea
ℓ0n(r, θ, φ) = P ℓ0(cos θ)Tn(ξ

a(r))

Ea
ℓ,2m−1,n(r, θ, φ) = P ℓm(cos θ) cos(mφ)Tn(ξ

a(r))

Ea
ℓ,2m,n(r, θ, φ) = P ℓm(cos θ) sin(mφ)Tn(ξ

a(r)),

(53)

where the P ℓm(u) are normalized associated Legendre functions (denoted by Pm
ℓ (u) in

Ref. [53]) and ξa(r) maps the shell-a radial domain [ramin, r
a
max] to [−1, 1].

Conditions which enforce continuity of the numerical solution and its normal derivative
across the stellar surface ∂U are then represented by

(54) PN1
r ,Nθ

Φ1(xjk) = PN2
r ,Nθ

Φ2(xjk), n ·
(
∇PN1

r ,Nθ
Φ1

)
(xjk) = n ·

(
∇PN2

r ,Nθ
Φ2

)
(xjk),

where xjk = x(rjk, θj, φk) are Cartesian points on and n is the normal to ∂U . In practice
the points xjk are determined by the angular collocation points (θj , φk) corresponding the
(discrete) spherical harmonic transform [54] and the corresponding radial values rjk. The
preceding equations determine 2(Nθ + 1)(2Nθ + 1) linear relationships between the modal

coefficients Φ̃1
ℓqn and Φ̃2

ℓqn. Indeed, there are (Nθ + 1)(2Nθ + 1) physical points xjk. Among
these relationships are, for example,

(55)

Nθ∑

ℓ=0

2Nθ∑

q=0

N1
r∑

n=0

Φ̃1
ℓqnF1

ℓqn(xjk) =

Nθ∑

ℓ=0

2Nθ∑

q=0

N2
r∑

n=0

Φ̃2
ℓqnF2

ℓqn(xjk),
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where Fa
ℓqn(x) ≡ (n · ∇Ea

ℓqn)(x). Evidently, this is a linear relationship expressible in terms

of the vector direct sum of the modal coefficients Φ̃1
ℓqn and Φ̃2

ℓqn as well as a matrix F2,1:2

which has F1
ℓqn(xjk) and F2

ℓqn(xjk) as entries. The lead index 2 on F2,1:2 indicates that these
relationships as intended for filling zero rows associated with the shell 2 row sector of the
linear system, and the trailing 1:2 (colon notation) that they will stretch across the shell
1 and shell 2 column sectors. The other set of matching conditions similarly determine a
matrix E1,1:2.

The matrices E1,1:2 and F2,1:2 have too many rows, since, as mentioned above, there are
only 2(Nθ+1)2 free rows of zeros, whereas both E1,1:2 and F2,1:2 have (Nθ+1)(2Nθ+1) rows.
We reduce the number of equations as follows. Using the spherical harmonic transform,

we compute the column-by-column transforms Ẽ1,1:2 and F̃2,1:2. The rows of these matrices
which correspond to physical index pairs then define the tau conditions. The procedure is
summarized in Algorithm I.

Appendix D. Hachisu regularization for non-equal masses

Reference [7] has described Hachisu regularization of the SCF method for non-equal
masses. However, that reference considers only a white-dwarf EOS, and not the polytropic
EOS considered in this paper. We extend the procedure of [7] to the polytropic EOS. For
the non-equal mass Hachisu regularization (as with Meudon regularization), in line 8 of
Algorithm 2 we enforce symmetry across the x = 0 and y = 0 coordinate planes. The
SCF update of the enthalpy is performed via the same Hachisu approach described in
Subsection 3.4. Therefore, what remains unspecified are the auxiliary equations determining
the parameters κI , κII , Ω

2, and ℓz.
The auxiliary equations are determined as follows. First, we fix the z-extents of star I

through zA ≤ z ≤ zB, as before. We also then fix the inner extent of star II through
0 < zC ≤ z. Through the generalized potential equation these three conditions yield the
first three equations. The fourth equation relates the maximum enthalpy value in each star.
The auxiliary equations are then the following:

κI = ΦA − 1
2
(zA − ℓz)

2Ω2(56a)

κI = ΦB − 1
2
(zB − ℓz)

2Ω2(56b)

κII = ΦC − 1
2
(zC − ℓz)

2Ω2(56c)

KI

KII

( ρmax,I

ρmax,II

)
1/n =

[
κI − Φ|

xI
+ 1

2
(zI − ℓz)

2Ω2
]

[
κII − Φ|

xII
+ 1

2
(zII − ℓz)2Ω2

](56d)

As mentioned before, the locations xI,II = (0, 0, zI,II) of the enthaply maxima are known to
lie on the z-axis by symmetry, although the values zI,II are determined by a numerical search
performed during each SCF step. Note that the expression on the left-hand side of (56d) is
viewed as a fixed constant throughout the SCF iteration.

Appendix E. Computation of stellar integrals

To evaluate integrals such as (33), we have adopted a straightforward procedure, albeit
one that leaves room for improvement. Consider star I for definiteness. A integral over this
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star is first expressed as
∫

star I

dxf(x) =

∫

|x|≤r1
min

dxf(x)

︸ ︷︷ ︸
B2 term

+

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ rI(θθθ)

r1max

drr2f(rθθθ)

︸ ︷︷ ︸
S1

I
term

.(57)

The “B2 term” must be computed from the modal expansion coefficients for the function f
on B2. We approximate this integral with Stroud’s fifth degree rule for a ball; see Formula

I for n = 3 on page 92 of [55]. The “S1
I term” must be computed from the modal expansion

coefficients for the function f on S1
I . We approximate this integral as follows. Let (θj , φk)

represent the angular collocation points corresponding to the (discrete) spherical harmonic
transform [54]. Then for each such point we evaluate gjk = g(θθθjk), with the integral

(58) g(θθθ) :=

∫ rI(θθθ)

r1max

drr2f(rθθθ)

computed via composite Gauss-Kronrod quadrature. Upon spherical harmonic transforma-

tion of g, we isolate the (ℓ = 0, q = 0) modal coefficient f̃00. The expression 2
√
2πf̃00 is then

the second integral in question.
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