Exercise set 2 for Chapter 3 and Chapter 4

Problem 1. A multiple-choice test contains 25 questions, each with four answers. Assume that a student just guesses on each question.
(a) Let X denotes the number of questions the student answer correctly. What is the distribution of X ?
(b) What is the probability that for between three and ten questions (including three and ten), the student answer correctly?
(c) What is the expected number of questions the student answer correctly?

Problem 2. In a clinical study, volunteers are tested for a gene that has been found to increase the risk for a disease. The probability that a person carries the gene is 0.1 . People are assumed to be independent with respect to the gene.
(a) What is the probability that exactly four people need to be tested to detect one person with the gene?
(b) What is the probability that four or more people need to be tested to detect one person with the gene?
(c) What is the expected number of people to test to detect one person with the gene?

Problem 3. The number of telephone calls that arrive at a phone exchange is often modeled as a Poisson random variable. Assume that on the average there are 10 calls per hour. Determine the following probabilities:
(a) 3 or fewer calls in one hour
(b) 3 or fewer calls in half one hour

Problem 4. Patient response to a generic drug to control pain is scored on a 5 -point scale where a 5 indicates complete relief. The distribution of scores is displayed below. Two patients, assumed to be independent, are each scored. What is the probability mass function of the total score?

Table 1: Probability distribution

x	1	2	3	4	5
Probability	0.05	0.1	0.2	0.25	0.4

Problem 5. The probability density function of the net weight in pounds of a packaged chemical herbicide is $f(x)=2.0$ for $49.75<x<50.25$ pounds.
(a) Determine the probability that a package weighs more than 50 pounds.
(b) What is the cumulative distribution of the chemical net weight?
(c) What is the 90% percentile of the chemical net weight?
(d) What are the mean and variance for the distribution of the chemical net weight?

Problem 6. The weight of a running shoe is normally distributed with a mean of 12 ounces and a standard deviation of 0.5 ounce.
(a) What is the probability that a shoe weighs more than 13 ounces?
(b) Given that a shoe weighs more than 10 ounces, what is the probability that it weighs more than 13 ounces?
(c) What must the standard deviation of weight be in order for the company to state that 99.9% of its shoes weighs less than 13 ounces?
(d) If the standard deviation remains at 0.5 ounce, what must the mean weight be for the company to state that 99.9% of its shoes weighs less than 13 ounces?

Problem 7. If $X \sim N\left(\mu, \sigma^{2}\right)$, find the density for random variable $Y=e^{X}$. The distribution
of Y will be known as lognormal distribution.

