Final test contents:

Problem 1: Confidence interval for an unknow population proportion; sample size calculation
problem 2: CI for population mean; sample size calculation

Problem 3: Bivariate discrete distribution

- Marginal distribution
- Marginal distribution mean
- Marginal distribution variance
- Covariance
- Correlation
- Independence

Problem 4: Expected value of $C_{1} x_{1}+C_{2} x_{2}$ Variance of $C_{1} X_{1}+C_{2} x_{2}$
problem 5: Distribution of \bar{x} (random sample mean) using central limit theorem

$$
\begin{aligned}
& E(\vec{x}) \\
& \operatorname{Var}(\bar{x})
\end{aligned}
$$

Percentiles of Normal distribution
problem 6: Maximum likelihood estimator derivation Bias, Mean squared error (Bonus)]
Central limit theorems.

Exercise set for chapter 5-8

1 Chapter 5
Problem 1. Two random variables have a joint probability mass function in Table 1. Show that the correlation between X and Y is zero but X and Y are not independent.
(1) Marginal distribution of x

Table 1: Joint probability mass function

(2)

$$
\begin{aligned}
& E(x)=(-1) \cdot \frac{1}{4}+0 \cdot \frac{1}{2}+1 \cdot \frac{1}{4}=0 \\
& E(y)=0 \\
& \operatorname{Var}(x)=E\left[x^{2}\right]-0^{2}=(-1)^{2} \cdot \frac{1}{4}+0^{2} \cdot \frac{1}{2}+1^{2} \cdot \frac{f}{4}=\frac{1}{2} \\
& \operatorname{Var}(y)=\frac{1}{2}
\end{aligned}
$$

x	-1	0	1
$f(x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Marginal distribution of Y

Problem 2. A random variable X has the probability distribution $f_{X}(x)=x / 18,0 \leq x \leq 6$. and \boldsymbol{y}.
Determine the following:
(a) The expected value of $X=\int_{0}^{6} x \cdot \frac{x}{18} d x=\left.\frac{x^{3}}{54}\right|_{0} ^{6}=\frac{36}{9}=4 \quad X$ and Y are
(b) The variance of $X=E\left[x^{2}\right]-(E[x])^{2}=\int_{0}^{6} x^{2} \cdot \frac{x}{18} d x-6^{2} \quad$ not inde pendent

$$
F(x)= \begin{cases}0 & x<0 \\ \int_{0}^{x} u / 8 d x=\left.\frac{u^{2}}{36}\right|_{0} ^{x}=\frac{x^{2}}{36} & 0 \leq\left.\frac{x^{4}}{72}\right|_{0} ^{6}-16=6 \\ 1 & x>6\end{cases}
$$

$$
\begin{aligned}
& \text { (1) } E\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} \cdot E\left(x_{1}\right)+c_{2} E\left(x_{2}\right) \\
& \text { (2) } \operatorname{Var}\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1}^{2} \cdot \operatorname{Var}\left(x_{1}\right)+c_{2}^{2} \operatorname{Var}\left(x_{2}\right)+2 \cdot c_{1} \cdot c_{2} \operatorname{Cov}\left(x_{1} x_{j}\right)
\end{aligned}
$$

Problem 3. X and Y are independent, normal random variables with $E(X)=2, \operatorname{Var}(X)=$ $5, E(Y)=6, \operatorname{Var}(Y)=8$.
(a) $E(3 X+2 Y)=3 \cdot E(X)+2 \cdot E(Y)=3 \cdot 2+2 \cdot 6=18$
(b) $\operatorname{Var}(3 X+2 Y)=3^{2} \cdot \operatorname{Var}(x)+\mathbf{2}^{2} \cdot \operatorname{Var}(\boldsymbol{Y})=\mathbf{3}^{\mathbf{2}} \cdot 5+\mathbf{2}^{\mathbf{2}} \cdot \mathbf{8}=45+32=77$
(c) Note that the sum of two normal random variables is still a normal random variable.

What is the distribution of $3 X+2 Y$? Please specify its mean and variance.

$$
3 X+2 Y \sim N(18,77)
$$

2 Chapter 6

range for sample: 4

Problem 4. Consider the following two samples: Sample 1: 10, 9, 8, 7, 8, 6, 10, 6; Sample 2: $10,6,10,6,8,10,8,6$.
range for sample 2 : 4

$$
\frac{s d_{1}: 1.6}{2 s d_{2}: 1.85}
$$

(a) Calculate the sample range for both samples. Would you conclude that both samples exhibit the same variability? Explain.
(b) Calculate the sample standard deviations for both samples. Do these quantities indicate that both samples have the same variability? Explain.

3 Chapter 7

Problem 5. Describe the population/distribution parameter that the following numerical summaries trying to estimate.
(a) Sample mean $\xrightarrow{\text { Estimate }}$ Population mean
(b) Sample variance Estimate population variance
(c) Sample proportion Ettimcte paprlation proportion

$$
\hat{\lambda}=\bar{x} \xrightarrow{\text { Estimal }} \lambda
$$

Problem 6. A random sample of size $n_{1}=16$ is selected from a normal population with a mean of 75 and a standard deviation of 8 . A second random sample of size $n_{2}=\overline{9}$ is taken from another normal population with mean 70 and standard deviation 12. Let \bar{X}_{1} and \bar{X}_{2} be the two sample means. Note the difference of two normal random variables is still a normal random variable. Find:
(a) The probability that $\bar{X}_{1}-\bar{X}_{2}$ exceeds 4 .
(b) The 95 th percentile of the distribution for $\bar{X}_{1}-\bar{X}_{2}$.
\bar{X}_{1} follows a Normal distribution $N\left(75, \frac{8^{2}}{16}\right)$
\bar{x}_{2} follows a Normal distribution $N\left(70, \frac{12^{2}}{9}\right)$

$$
E\left(\bar{x}_{1}-\bar{x}_{2}\right)=E\left(\bar{x}_{1}\right)-E\left(\bar{x}_{2}\right)=5
$$

(Assume the

$$
\text { two samples } \operatorname{Var}\left(\bar{x}_{1}-\bar{x}_{2}\right)=4+16=20
$$

are drawn
indepenarity) $\quad \bar{x}_{1}-\bar{x}_{2} \sim N(5,20)$
a) $P\left(\bar{x}_{1}-\bar{x}_{2}>4\right)=1-P\left(\bar{x}_{1}-\bar{x}_{2} \leqslant 4\right)=1-\Phi_{01}\left(\frac{4-5}{\sqrt{20}}\right)$
b) $\mu+Z_{0.95 \cdot \sigma} \Phi^{-1}(0.95)$

$$
\begin{array}{ll}
=5+1.64 \cdot \sqrt{20} & =1-\underbrace{}_{\text {Normal distribution }} 9.412 \\
=12.37 & =0.588
\end{array}
$$

Problem 7. Suppose we have a random sample of size $2 n$ from a population denoted by X, and $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$. Let $\bar{X}_{1}=\frac{1}{2 n} \sum_{i=1}^{2 n} X_{i}$ and $\bar{X}_{2}=\frac{1}{\boldsymbol{n}} \sum_{i=1}^{n} X_{i}$ be two estimators of μ. Which is the better estimator of μ ? Hint, compare the dias and the MSE of the two estimators.

$$
\text { Bias for } \bar{x}_{1}: \quad E\left(\bar{X}_{1}\right)-\mu=\mu-\mu=0
$$

Bios for \bar{x}_{L} : $E\left(\bar{x}_{L}\right)-\mu=\mu-\mu=0$

$$
E\left(\frac{1}{2 n} \sum_{i=1}^{2 n} x_{i}\right)=\frac{1}{2 n} \cdot \sum_{i=1}^{2 n} E\left(x_{i}\right)=\frac{1}{2 n} \cdot E\left(x_{1}\right)+\frac{1}{2 n} E\left(x_{2}\right)+\cdots \frac{1}{2 n} E\left(x_{2 n}\right)
$$

$$
=\frac{1}{2 n} \cdot 2 n \cdot \mu=\mu
$$

MSE for $\bar{x}_{1}: E\left(\bar{x}_{1}-\mu\right)^{2}=\operatorname{Var}\left(\bar{x}_{1}\right)=\frac{\sigma^{2}}{2 n} \quad \begin{aligned} & \overline{x_{1}} \text { is better } \\ & \text { than } \overline{x_{3}} \text { in }\end{aligned}$
MSE for $\bar{x}_{2}: E\left(\bar{x}_{2}-\mu_{2}\right)^{2}=\operatorname{Var}\left(\overline{x_{2}}\right)=\frac{\sigma^{2}}{n}$ terns of MSE.

4 Chapter 8
An article in the Journal of the American Statistical Association ["Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling" (1990, Vol. 85, pp. 9723985)] measured the weight of 30 rats under experiment controls. Suppose that 12 were underweight rats.
(a) Calculate a 95% two-sided confidence interval on the true proportion of rats that would

$$
\left(\hat{p}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) \quad{ }^{\text {show underweight from the experiment. }} \quad \rightarrow .4 \pm\left(.96 \sqrt{\frac{0.4 \cdot 0.6}{30}}\right.
$$

$$
\hat{p}=\frac{12}{30}=0.4, \quad n=30
$$

(b) Using the point estimate of p obtained from the preliminary sample, what sample size is needed to be 95% confident that the error in estimating the true value of p is less than 0.02 ?
(c) How large must the sample be if you wish to be at least 95% confident that the error in estimating p is less than 0.02 , regardless of the true value of p ?

$$
\begin{aligned}
n \geqslant\left(\begin{array}{ll}
Z_{\alpha / 2} \\
\underset{\downarrow}{E}) \cdot \Phi_{0,1}^{+1}\left(1-\frac{\alpha}{2}\right) & \text { b) } \\
& \hat{p}=0.4 \\
\text { Margin of error } &
\end{array}\right. & \geqslant\left(\frac{1.96}{0.02}\right)^{2} \cdot 0.4 \cdot 0.6 \\
& \geqslant 2304.96 \\
p(1-p) \text { reaches maxionman } & \text { c) } n \geqslant\left(\frac{1.96}{0.02}\right)^{2} \cdot 0.5 \cdot 0.5 \\
\text { at } p=0.5 & \geqslant 2401
\end{aligned}
$$

