Homework 4

Please complete the problems on a separate sheet of paper with your name at the top. Make sure to show your work and/or provide an explanation for each problem. Please be clear in your work. Partial credit will be given when merited. The total credit is 8 points. The bonus problem worths 2 points.

Problem 1. Assume that X is a continuous random variable with the following $p d f$:

$$
f(x)= \begin{cases}x+1 & \text { if }-1<x<0 \\ 1-x & \text { if } 0 \leq x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Derive the CDF of X. (0.5 point)
(b) Derive the mean of X. (0.5 point)
(c) Derive the variance of X. (0.5 point)
(d) Derive the 50 th percentile of the distribution. (0.5 point)

Problem 2. Random variable X has the pdf $f(x)=\lambda e^{-\lambda x}$ for $x>0$.
(a) Derive the CDF of X. (0.5 point)
(b) Derive the moment generating function of X. (0.5 point)
(c) Derive the mean of X. (0.5 point)
(d) Derive the variance of X. (0.5 point)
(e) Find the 50 th percentile of the distribution (0.5 point)

Problem 3 The cumulative distribution function of random variable X is

$$
F(x)=\left\{\begin{array}{cc}
0 & x<-1 \\
(x+1) / 2 & -1 \leq x<1 \\
1 . & x \geq 1
\end{array}\right.
$$

(a) What is $P(|X| \leq 0.5)$? (0.5 point)
(b) What is the density (pdf) of the distribution? (0.5 point)

Problem 4 Let $X \sim N\left(\mu, \sigma^{2}\right)$. Find the following probabilities:
(a) $P(-2 \sigma+\mu<X<2 \sigma+\mu)$. (0.25 point)
(b) $P(-\sigma+\mu<X<3 \sigma+\mu)$. (0.25 point)
(c) $P(1<X<3)(0.25$ point)
(d) 50 th percentile of the distribution (0.25 point)

Problem 5 The time until recharge for a battery in a laptop computer under common conditions is normally distributed with mean of 275 minutes and a standard deviation of 50 minutes.
(a) What is the probability that a battery lasts more than four hours? (0.25 point)
(b) What are the quartiles (the 25% and 75% values) of battery life? (0.5 point)
(c) Given that a battery already lasts four hours, what is the probability that it lasts at least another two hours? (0.25 point) Hint: denote B as a battery already lasts four hours $B=\{X>240$ minutes $\}$ and A as a battery lasts at least 6 hours $A=\{X>360$ minutes $\}$. The question is then: what is $P(A \mid B)$ (A given B)?

Problem 6. Random variable X has the density function (pdf) $f(x)=\lambda e^{-\lambda x}$ for $x>0$. Find the pdf of $Y=\log (X)$. (1 point)

Bonus problem. Random variable X has the density function (pdf) $f(x)=\lambda e^{-\lambda x}$ for $x>0$. Denote event A as $X<3$.
(a) What is the probability of A ? (0.5 point)
(b) What is the conditional probability of $X<x$ given that A happens. Here assume $x<3$ (0.5 point)
(c) Denote the conditional probability in part (b) as $P(X<x \mid A)$. Find the derivative of $P(X<x \mid A)$, which is denoted by $f_{X \mid A}(x)$. Here, $f_{X \mid A}(x)$ is referred as a conditional density. (0.5 point)
(d) Find the expected value (i.e. the mean) of the conditional density in part (c). (0.5 point)

