Homework 6

Please complete the problems on a separate sheet of paper with your name at the top. Make sure to show your work and/or provide an explanation for each problem. Please be clear in your work. Partial credit will be given when merited. The total credit is 7 points with one bonus point.

Problem 1. The female students in an undergraduate engineering core course at ASU selfreported their heights to the nearest inch. The data are $60,62,63,70,63,70,61,65,64$, $64,67,63,70$. Calculate the sample mean (0.5 point), sample standard deviation (0.5 point), and the sample median of height (0.5 point) Construct a Boxplot (0.5 point) and a histogram (0.5 point) for the height data. If you use R to draw the graphs or calculate the summaries, make sure to include the R codes in your solutions. (2.5 points total)

Problem 2. Let X_{1}, \ldots, X_{n} be a random sample from exponential distribution with rate parameter λ, i.e. $f_{X}(x)=f_{X}(x)=\frac{1}{\lambda} \exp (-x / \lambda), x>0$.
(a) Derive the maximum likelihood estimator of λ. Hint. The joint likelihood of observing a realization $x_{1}, x_{2}, \ldots, x_{n}$ is $L(\lambda)=\prod_{i=1}^{n}\left\{\frac{1}{\lambda} \exp \left(-x_{i} / \lambda\right)\right\}=\frac{1}{\lambda^{n}} \exp \left(-\sum_{i=1}^{n} x_{i} / \lambda\right)$. The log of the likelihood is $\log (L(\lambda))=-n \log (\lambda)-\sum_{i=1}^{n} x_{i} / \lambda$. Take the derivative of $\log (L(\lambda))$ with respect to λ and set that derivative to zero. Next solve for λ. The answer should be $\sum_{i=1}^{n} x_{i} / n$ and hence the estimator is $\sum_{i=1}^{n} X_{i} / n$. Check the second derivative of $\log (L(\lambda))$ to make sure it is less than zero or provide a condition so that the second derivative is less than zero. (0.5 point)
(b) Bonus question: Is the estimator biased? Derive the expected value of the estimator in part (a) using property $E\left(c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots+c_{n} E\left(X_{n}\right)$. Since X_{1}, \ldots, X_{n} all follow the same distribution, you just need to find out the mean of the distribution. If it equals λ, then the estimator is unbiased. Otherwise, it is biased. The answer should be that the estimator we derived in part (b) be unbiased. (0.5 point)
(c) Bonus question: Calculate the Mean squared error of the estimator. Mean squared error is defined as $E(\hat{\theta}-\theta)^{2}$ where in our case it becomes $E\left(\sum_{i=1}^{n} X_{i} / n-\lambda\right)^{2}$. Since we show the estimator $\sum_{i=1}^{n} X_{i} / n$ is unbiased in part (c), which means λ is the expected value of it, $E\left(\sum_{i=1}^{n} X_{i} / n-\lambda\right)^{2}$ becomes the variance of $\sum_{i=1}^{n} X_{i} / n$. Using the property that if X_{1}, \ldots, X_{n} are mutually independent, then $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i} / n\right)=\operatorname{Var}(X) / n$ where X follow the distribution $f_{X}(x)=f_{X}(x)=\frac{1}{\lambda} \exp (-x / \lambda), x>0$. (0.5 point)

Problem 3. Past experience has indicated that the breaking strength of yarn used in manufacturing drapery material is normally distributed and that $\sigma=2 \mathrm{psi}$. A random sample of 9 specimens is tested, and the average breaking strength is found to be 98 psi .
(a) Give the formula for finding a two-sided confidence interval for a population mean. Explain the notations. (0.5 point)
(b) Find a 95% confidence integral for the true mean breaking strength. Interpret the confidence interval. (0.5 point)
(c) What would be confidence interval if the level of confidence is 99% ? (0.5 point)
(d) What sample size is needed to be 95% confident that the error in estimating the true breaking strength is less than 1 psi? (0.5 point)

Problem 4. Of 1000 randomly selected cases of lung cancer, 823 resulted in death within 10 years.
(a) Give the formula for finding a two-sided confidence interval for a population proportion. Explain the notations. (0.5 point)
(b) Calculate a 95% confidence interval for the death rate (within 10 years) of lung cancer. (0.5 point)
(c) Using the point estimate of p obtained from this sample, what sample size is needed to be 95% confident that the error in estimating the true value of p is less than $0.03 ?(0.5$ point)
(d) Using 0.5 for p, what sample size is needed to be 95% confident that the error in estimating the true value of p is less than 0.03 ? (0.5 point)

