Problem 1
a)

$$
\text { Likelihood is } \begin{aligned}
L(\lambda) & =\prod_{i=1}^{n}\left(\frac{1}{\lambda} e^{-\frac{x_{i}}{\lambda}}\right) \\
& =\left(\frac{1}{\lambda}\right)^{n} e^{-\frac{1}{\lambda} \sum_{i=1}^{n} x_{i}}
\end{aligned}
$$

The Log of the likelihood is

$$
\log (L(\lambda))=-n \log (\lambda)-\frac{1}{\lambda} \sum_{i=1}^{n} x_{i}
$$

The Maximum like lihood estimator maximizes $\log L(\lambda))$. To obtain it, we solve $\frac{d \log L(\lambda)}{d \lambda}=0$ and check if $\left.\frac{d^{2} \log L(\lambda)}{d^{2} \lambda}\right|_{\lambda=\hat{\lambda}_{\text {PIE }}}<0$.
$\frac{d \log L(\lambda)}{d \lambda}=-\frac{n}{\lambda}+\frac{1}{\lambda^{2}} \sum_{i=1}^{n} x_{i}$; setting it to zero
we solve $\hat{\lambda}_{\text {MME }}=\frac{\sum_{i=1}^{n} x_{i}}{n}$

$$
\begin{aligned}
& \frac{d^{2} \log L(\lambda)}{d \lambda^{2}}=\frac{n}{\lambda^{2}}-\frac{2}{\lambda^{3}} \sum_{i=1}^{n} x_{i}=\frac{1}{\lambda^{2}}\left(n-\frac{2}{\lambda} \sum_{i=1}^{n} x_{i}\right) \\
& \left.\frac{d^{2} \log L(\lambda)}{d \lambda^{2}}\right|_{\hat{\lambda}_{M I E}}=\frac{1}{\hat{\lambda}_{m \mid E}^{2}}\left(n-\frac{2 n}{\sum_{i=1}^{n} x_{i}} \cdot \sum_{i=1}^{n} x_{i}\right)=\frac{1}{\hat{\lambda}_{M \mid E}^{2}} \cdot(-n)<0
\end{aligned}
$$

Hence $\frac{\sum_{i=1}^{n} x_{i}}{n}$ is indeed the maximum likelihood estimate
b) $\quad E\left(\hat{\lambda}_{\text {mlLE }}\right)=E\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)$

$$
\begin{aligned}
E\left(x_{i}\right) & =M^{\prime}(0) \\
M(t) & =\int_{0}^{\infty} e^{t x} \cdot \frac{1}{\lambda} e^{-\frac{x}{\lambda}} d x \\
& =\frac{1}{\lambda} \int_{0}^{\infty} e^{x\left(t-\frac{1}{\lambda}\right)} d x \text { for } t<\frac{1}{\lambda} \\
& =\left.\frac{1}{\lambda} \cdot \frac{1}{t-\frac{1}{\lambda}} e^{x\left(t-\frac{1}{\lambda}\right)}\right|_{x=0} ^{\infty} \\
& =-\frac{1}{\lambda} \cdot \frac{1}{t-\frac{1}{\lambda}}=\frac{-1}{\lambda t-1}=\frac{1}{1-\lambda t} \\
M^{\prime}(t) & =-\frac{1}{(1-\lambda t)^{2}} \cdot(-\lambda)=\frac{\lambda}{(1-\lambda t)^{2}}
\end{aligned}
$$

Hence $M^{\prime}(0)=\lambda$
Hence $E\left(x_{i}\right)=\lambda$ and $E\left(\hat{\lambda}_{m \mid E}\right)=\lambda$. Therefore $\lambda_{\text {mile }}$ is unbiased.
C)

$$
\begin{aligned}
M S E=E\left(\hat{\lambda}_{M I E}-\lambda\right)^{2}=\operatorname{Var}\left(\hat{\lambda}_{m I E}\right) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\operatorname{Var}\left(x_{i}\right) & =M^{\prime \prime}(0)-M^{\prime}(0) \\
M^{\prime \prime}(t) & =\left(\frac{\lambda}{(1-\lambda t)^{2}}\right)^{\prime}
\end{array}\right)=-2 \lambda \cdot \frac{1}{(1-\lambda t)^{3}} \cdot(-\lambda)\right] \text { 2 } \quad \begin{aligned}
(1-\lambda+)^{3}
\end{aligned}
$$

Hence $M^{\prime \prime}(0)=2 \lambda^{2}, \operatorname{Var}\left(x_{i}\right)=2 \lambda^{2}-\lambda^{2}=\lambda^{2}$
Hence $M S E=\operatorname{Var}\left(\hat{\lambda}_{\text {IE }}\right)=\frac{1}{n^{2}}(\overbrace{\lambda^{2}+\lambda^{2}+\cdots}^{n}$ of them

$$
=\frac{\lambda^{2}}{n}
$$

Problem 2. $100\left(1-\frac{\alpha}{2}\right)$ percentile of Standard Normal distribution
a) $\left[\bar{x}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right]$

Sample mean
standard deviation of the population sample size
b) The 95% CI is $\left[\bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}}\right]$

$$
=\left[98-1.96 \cdot \frac{2}{\sqrt{9}}, 98+1.96 \cdot \frac{2}{\sqrt{9}}\right]
$$

$$
=[96.69,99.31]
$$

Interpretation: with 95% confidence, the mean breaking strength of the yarn is between 96.69 and 99.31 psi.
c) The 99% CI is $\left[\bar{x}-2.58 \cdot \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+2.58 \cdot \frac{\sigma}{\sqrt{n}}\right]$

$$
=[96.28,99.72]
$$

d) $n \geqslant\left(\frac{2_{\frac{\alpha}{2}} \cdot 6}{E}\right)^{2}=\left(\frac{Z_{0.025} .2}{1}\right)^{2}=(1.96 .2)^{2}=15.37$

Hence the smallest sample size is 16 .
problem 3.
a) CI formula for proportion is $100\left(1-\frac{\alpha}{2}\right)$ percentile of

$$
\left[\begin{array}{c}
\left.\hat{p}-Z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+Z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \begin{array}{l}
\text { standard } \\
\text { Normal } \\
\text { distribution }
\end{array} \\
\text { Sample proportion } \\
\text { sample size }
\end{array}\right.
$$

b) 95% CI is

$$
\begin{aligned}
& {\left[0.823-1.96 \sqrt{\frac{0.823 \cdot 0.177}{1000}}, 0.823+1.96 \sqrt{\frac{0.823 \cdot 0.17}{1000}}\right] } \\
= & {[0.499,0.547] }
\end{aligned}
$$

c) P from this sample is 0.823

$$
\begin{aligned}
n \geqslant\left(\frac{2_{2}}{E}\right)^{2} p(1-p) & =\left(\frac{1.96}{0.03}\right)^{2} \cdot 0.823 \cdot 0.177 \\
& =621.8
\end{aligned}
$$

Hence the smallest sample size is 622
d) using $\quad \rho=0.5$

$$
n \geqslant\left(\frac{1.96}{0.03}\right)^{2} \cdot 0 \cdot 5 \cdot 0.5=1067.11
$$

Hence the smallest sample size is 1068.

