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Continuous random variables

A continuous random variable is a variable that can take
uncountable many values.
• Continuous random variables almost never take an exact

prescribed value c with a nonzero probability, but there is a
positive probability that its value will lie in particular
intervals which can be arbitrarily small.
• For example, a random variable measuring the time taken

for something to be done is continuous since there are an
infinite number of possible times that can be taken.
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Continuous random variables

A discrete random variable is a random variable that can take
up to a countable number of values.
• Discrete random variables can take an exact prescribed

value c in the sample space with nonzero probability.
• For example, the number of heads in 10 tosses of fair coins

can take 5 with a probability of 0.246.
Sometimes, we use continuous random variables to
approximately describe discrete random variables that has
many values. For example,
• A random variable measuring the level of cholesterol in

milligrams per deciliter can be considered as continuous
approximately since there are many possible values it can
take.
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Probability of an event

• For a continuous random variable X , an event is typically
written as {a < X < b}.
• The probability of an event is written as P(a < X < b).

Since there are uncountable number of possible values in the
interval, a probability density function (PDF) is used to
specify the probability of the random variable falling within a
particular range of values. A probability density function,
denoted by f (x), a is a function such that

• P(a < X < b) =
∫ b

a f (x)dx (the area underneath the curve
and between a and b).
• f (x) ≥ 0 and

∫ +∞
−∞ f (x)dx = 1. (the area is exactly 1

underneath it).
For example, if f (x) = 0.1 for 0 < x < 10 and 0 elsewhere, then
P(1 < X < 3) =

∫ 3
1 0.1dx = 0.2.
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Interpretation of the probability density function

• Over a very short interval, P(a < X < a +4) ≈ f (a)4. So
we can interpret the density f (a) as the “rate” of probability
for X taking value around a.
• A relative likelihood that the value of the random variable

would equal that sample. The value of the PDF at two
different samples can be used to infer how much more
likely it is that the random variable would equal one sample
compared to the other sample.
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Examples

Suppose a species of bacteria typically lives 4 to 6 hours and
the rate of dying over the two hours is constant. Denote X as
the time of death for a randomly selected bacteria.

(a) What is the probability that a bacterium lives exactly 5
hours?

(b) What is the probability that the bacterium dies between 5
hours and 5.01 hours?
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Examples
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Example

Let X be a continuous random variable with a probability
density function (PDF)

f (x) =

{
cx2, −1 ≤ x ≤ 2
0, otherwise

(a) What is the value of c?
(b) Find P(0.5 < X < 1.5).
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Example
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Exercise

Let a random variable X have a probability density function
(PDF)

f (x) =

{
λe−λx , x > 0

0, otherwise

(a) What values of λ would make the density function valid?
(b) Find P(X > 3).
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Exercise
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Cumulative distribution function

The cumulative distribution function (CDF) of a continuous
random variable X , denoted as F (x), is defined as

F (x) = P(X ≤ x) =

∫ x

−∞
f (u)du

for −∞ < x <∞.
For example, if f (x) = 1 for 0 < x < 1 and zero elsewhere.
Then
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Where do we use cumulative distribution
function?

• It is used to define percentiles (theoretical counterparts of
quantiles): u-th percentile of a distribution is defined as a
value c so that F (c) = u/100. For example, 25-th
percentile of the distribution F is c so that F (c) = 0.25.
• It is used in survival analysis where F (t) = P(T < t)

describes the probability of a subject lives up to t unit of
time.
• It is used in countless statistical theories for establishing

properties of statistical analysis.
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Examples

Let X be a continuous random variable with PDF

f (x) =

{ 1
16(x + 7), 0 ≤ x ≤ 2

0, otherwise

Find the cumulative distribution function (CDF) of X.
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Examples

Let the random variable X have PDF

f (x) =

{
λe−λx , x > 0

0, otherwise

Find the cumulative distribution function (CDF) of X .
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Examples

Let the number of hours for a randomly selected LED light bulb
have PDF

f (x) =

{
1

40,000e−
x

40,000 , x > 0
0, otherwise

Find the 25-th percentile and 99-th percentile of the distribution.
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Using CDF to obtain PDF

A logistic distribution is a continuous distribution that appears in
logistic regression and neural networks. A logistic distribution
has CDF as follows

F (x) =
1

1 + e−x ,−∞ < x < +∞.

Find its density function.

f (x) =
dF (x)

dx
=
−(e−x )′

(1 + e−x )2 =
e−x

(1 + e−x )2 ,−∞ < x < +∞.
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Interesting facts about CDF

• CDF of a continuous random variable is always continuous
while CDF of a discrete random variable is only
right-continuous.
• Transforming a continuous random variable X using its

own CDF function F (x) follows a continuous uniform
distribution, i.e. Y = F (X ) has density f (y) = 1 for
0 < y < 1 and f (y) = 0 elsewhere.
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Mean

The mean (or the expected value of X ), denoted as µ or
E(X ) for a continuous distributed is defined as

E(X ) =

∫ +∞

−∞
xf (x)dx .

For example, if

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

E(X ) =
∫ 1

0 x ∗ 1dx = 0.5.
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Example

If a PDF has the following form

f (x) =

{
x2/3, −1 ≤ x ≤ 2

0, otherwise

Find its mean.
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Mean vs sample mean

• Mean alone refers to the mean of a distribution or a
population.
• When only a sample from a population is available,

denoted by x1, x2, . . . xn, we calculate sample mean using

x̄ =

∑n
i=1 xi

n
.

Sample mean is a good way to estimate the distribution
mean/population mean (see Chapter 7).
• An interval estimate of mean is available (Chapter 8).
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Variance

The variance of X , denoted as Var(X ) or σ2 , is

Var(X ) = E [(X − µ)2] =

∫ +∞

−∞
(x − µ)2f (x)dx

where µ is the mean of X .
For example, if

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

σ2 =
∫ 1

0 (x − 0.5)2 ∗ 1dx =
∫ 1

0 x2 − 0.5x + 0.25dx = 0.083.
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Variance

The variance can be also be computed as

Var(X ) = E(X 2)− (E(X ))2 =

(∫ +∞

−∞
x2f (x)dx

)
− µ2

For example, if

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

σ2 =
∫ 1

0 x2 ∗ 1dx − 0.52 = 0.083.
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Example

If a PDF has the following form

f (x) =

{
x2/3, −1 ≤ x ≤ 2

0, otherwise

Find the variance of the distribution.
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Variance vs sample variance

• Variance alone refers to the variance of a distribution or a
population.
• When only a sample from a population is available,

denoted by x1, x2, . . . xn, we calculate sample variance
using

s2 =

∑n
i=1(xi − x̄)2

n − 1
.

Sample variance is a good way to estimate the distribution
variance/population variance (see Chapter 7).
• An interval estimate of variance is available when the

distribution is Normal (Chapter 4, Chapter 8).
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Standard deviation

The standard deviation of X is the square root of its variance,
denoted by σ or SD(X ) =

√
Var(X ).

• Standard deviation alone refers to standard deviation of a
distribution or a population.
• Standard deviation, unlike the variance, is expressed in the

same units as the data or the random variable.
• In science, many researchers report the standard deviation

of experimental data, and only effects that fall much farther
than two standard deviations away from what would have
been expected are considered statistically significant.
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Moments

The k th moment a continuous random variable X is denoted by
E(X k ) (same as the notation for moments when X is a discrete
variable).

E(X k ) =

∫ ∞
−∞

xk f (x)dx .

For example, if

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

• 1-st moment: E(X ) =
∫ 1

0 x ∗ 1dx = 0.5.

• 2-nd moment: E(X 2) =
∫ 1

0 x2 ∗ 1dx = 0.333.

• k-th moment: E(X k ) =
∫ 1

0 xk ∗ 1dx = 1
k+1 .
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Moment generating function

Moment generating function of X :

M(t) = E(etX ) =

∫
etx f (x)dx

as long as the integration is finite for some interval of t around
0. For example, if

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

M(t) =

∫ 1

0
etxdx =

et − 1
t

.
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Use of the moment generating function

If a moment-generating function exists for a random variable X ,
then:
(a) The mean of X can be found by evaluating the first

derivative of the moment-generating function at t = 0. That
is: µ = M ′(0).

(b) The variance of X can be found by evaluating the first and
second derivatives of the moment-generating function at
t = 0. That is: σ2 = M ′′(0)− (M ′(0))2.
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Example

For example, for the Normal distribution

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,−∞ < x < +∞.

Find the mean and variance using its moment generating
function:

M(t) = e
σ2t2+2µt

2
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• Let g(X ) be a function of a continuous random variable X
where X has density function f (x), then

E(g(X )) =

∫ ∞
−∞

g(x)f (x)dx .

• E(g1(X ) + g2(X ) + · · ·+ gk (X )) =
E(g1(X )) + E(g2(X )) + · · ·+ E(gk (X )) where k is an
integer. For example,

E(X − µ)2 = E(X 2 − 2µX + µ2) = E(X 2)− µ2.
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Variable transformation

• In data analysis variable transformation is the replacement
of a variable by a function of that variable. It is common to
perform variable transformation to recenter and rescale the
variable (standardization), make highly skewed
distributions less skewed (log or square root
transformation).
• The theoretical counterpart of data transformation is

random variable transformation. Given the distribution of a
continuous random variable X , it is of interest to ask

I what is the distribution of X−a
b (standardization)?

I what is the distribution of
√

X (square root transformation)?
I what is the distribution of log(X ) (log transformation)?
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Example

If

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

Let b be a positive number. What are the distributions of
(X − a)/b, log(X ), and

√
X? The distributions are determined if

you can find the PDF of both variables.
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Example
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