Parametric continuous distributions

Li Li

Department of Mathematics and Statistics

Continuous uniform distribution

A continuous uniform random variable X has probability density function (PDF)

$$
f(x)=\frac{1}{b-a}, a \leq x \leq b,
$$

and 0 elsewhere. Here a and b are two real numbers. We refer the distribution as uniform (a, b).

- For example, a continuous uniform distribution over $[0,1]$ (often referred as uniform $(0,1)$) has density $f(x)=1$ for $0<x<1$ and 0 elsewhere.
- Interesting fact: given any continuous random variable Y and its cumulative distribution function $F(y)$, a CDF transformation of Y, i.e $F(Y)$ has a uniform $(0,1)$ distribution.
- For example, if Y has a density $f(y)=\lambda e^{-\lambda y}$ for $y \geq 0$, then its CDF is $F(y)=1-e^{-\lambda y}$ for $y \geq 0$. We have

$$
1-e^{\lambda Y} \sim \operatorname{Uniform}(0,1) .
$$

Where is continuous uniform distribution used?

- Simulations are used to model complicated processes, estimate distributions of estimators (using methods such as bootstrap), and have dramatically increased the use of an entire field of statistics.
- In simulations, we often generate random numbers from a desired distribution.
- Uniform $(0,1)$ is the where random number generation start.
- To generate a random variable that has CDF $F(y)=1-e^{-\lambda y}$ for $y \geq 0$, we can use the following steps
(a) generate a random number u from $\operatorname{Uniform}(0,1)$.
(b) transform the random number u by the inverse of the CDF for the density we desire, i.e. $-\log (1-u) / \lambda$.

CDF

CDF of Uniform (a, b)

Mean and variance of uniform (a, b)
Mean and variance of uniform (a, b) :

Normal distributions

Given parameters μ and σ, PDF of the Normal distribution is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<+\infty .
$$

Figure: Normal distribution density functions. Density function is denoted as $\phi_{\mu, \sigma^{2}}(x)$.
μ - location parameter or mean of the distribution and σ-scale parameter or standard deviation of the distribution.

- A Normal distribution with $\mu=0$ and $\sigma=1$ is referred as "standard Normal distribution".
- Normal distributions are also called "Gaussian distributions".
- Normal distribution is sometimes informally called the "bell curve".
- A random variable with a Gaussian distribution is said to be normally distributed, denoted by $X \sim N\left(\mu, \sigma^{2}\right)$. For example, $X \sim N\left(3,2^{2}\right)$.

Important facts about Normal distributions

- All Normal curves have the same overall shape: symmetric, single-peaked, bell-shaped.
- Any specific Normal curve is completely described by giving its mean μ and its standard deviation σ.
- The mean is located at the center of the symmetric curve and is the same as the median. Changing μ without changing σ moves the Normal curve along the horizontal axis without changing its spread.
- The standard deviation σ controls the spread of a Normal curve. Curves with larger standard deviations are more spread out or wider.

Important facts about Normal distributions

- The average of many independent processes (such as measurement errors) often have distributions that are nearly normal.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli random variables with the same success rate p, \bar{X} (average of $\left.X_{1}, \ldots, X_{n}\right)$ follows a Normal distribution $N\left(p, \frac{p(1-p)}{n}\right)$ approximately.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Poisson random variables with the same rate of event λ and time interval T, \bar{X} follows a Normal distribution $N\left(\lambda T, \frac{\lambda T}{n}\right)$ approximately.

For a Normal distribution with mean μ and standard deviation σ :

- Approximately 68% of the observations fall within σ of the mean μ.
- Approximately 95% of the observations fall within 2σ of the mean μ.
- Approximately 99.7% of the observations fall within 3σ of the mean μ.

The empirical rule

Figure: The 68-95-99.7 rule.

How do we find $P(a<X<b)$

For a Normal distribution with mean μ and variance σ^{2} and $X \sim N\left(\mu, \sigma^{2}\right)$, probability

$$
P(a<X<b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

can be calculated by pnorm $((b-\mu) / \sigma)-\operatorname{pnorm}((a-\mu) / \sigma)$ in R.

How do we find the p-th percentile?

The p-th percentile c where

$$
P(X<c)=\int_{\infty}^{c} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=p / 100
$$

can be calculated by $\operatorname{qnorm}(p / 100) * \sigma+\mu$.

CDF

The cumulative distribution function (CDF) of a Normal distribution function is denoted as

$$
\Phi_{\mu, \sigma^{2}}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} d u .
$$

Figure: Normal distribution CDF functions. CDF functions are denoted as $\Phi_{\mu, \sigma^{2}}(x)$.

Standard Normal distribution and z-score

Standard Normal distribution:

- If a variable X has any Normal distribution $N\left(\mu, \sigma^{2}\right)$, then the standardized variable

$$
Z=\frac{X-\mu}{\sigma}
$$

has the standard Normal distribution $N(0,1)$. For example, if X follows a Normal distribution with mean 3 and variance 4, i.e. $X \sim N\left(3,2^{2}\right)$, then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.

- For a real number a, the standardized value of a is

$$
z=\frac{a-\mu}{\sigma}
$$

is called the z-score of a.

Use of z-score

- When the z-score of an observation has an absolute value greater than 3, this observation can be viewed roughly as an outlier or unusual.
- z-score can be used to compare two observations from two populations that have different Normal distributions.

Example

Consider for two high school senior students,

- student A scored 670 on the Mathematics part of the SAT. 4 The distribution of SAT Math scores in 2010 was Normal with mean 516 and standard deviation 116.
- student B took the ACT and scored 46 on the Mathematics portion. ACT Math scores for 2010 were Normally distributed with mean 21.0 and standard deviation of 5.3.
(a) Find the z-scores for both students.
(b) Assuming that both tests measure the same kind of ability, who had a higher score? Are any of these two test scores outlying?

Normal table

- Only used in test situation these days.
- It is a one to one mapping of z to $\Phi_{0,1}(z)$ (Standard Normal CDF) for z goes from -3.99 to 3.99.
- Given z, use the table we can find $\Phi_{0,1}(z)$. Given p such that $\Phi_{0,1}(z)=p$, we can also find z. This gives us the $p * 100$-th percentile of the Standard Normal distribution.

Normal table

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 00008	. 00008
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 00012	. 00011
-3.5	.00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.4	. 00034	. 00032	. 00031	. 00030	. 00029	. 00028	. 00027	. 00026	. 00025	. 00024
-3.3	. 00048	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 00038	. 00036	. 00035
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 00054	. 00052	. 00050
-3.1	.00097	. 000094	. 00090	. 000087	. 00084	. 00082	. 00079	. 00076	. 00074	. 00071
-3.0	.00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.5	. 00621	. 00604	. 00587	. 00570	. 00554	. 00539	. 00523	. 00508	. 00494	. 00480
-2.4	. 00820	. 00798	. 00776	. 00755	. 00734	. 00714	. 00695	. 00676	. 00657	. 00639
-2.3	. 01072	. 01044	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	. 00866	. 00842
-2.2	. 01390	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.0	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	. 20897	20611	-20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	23576	23270	. 22965	. 22663	. 22363	. 22065	. 21770	21476
-0.6	. 27425	. 27093	. 26763	26435	. 26109	. 25785	25463	. 25143	. 24825	. 24510
-0.5	. 30854	. 30503	. 30153	29806	. 29460	29116	28774	. 28434	. 28096	27760
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.2	. 42074	. 41683	. 41294	40905	. 40517	40129	. 39743	. 39358	. 38974	. 38591
-0.1	. 46017	. 45620	. 45224	. 44828	. 44433	. 44038	. 43644	. 43251	. 42858	. 42465
-0.0	. 50000	.49601	. 49202	48803	. 48405	48006	. 47608	. 47210	. 46812	. 46414

Figure: One to one mapping of z to $\Phi_{0,1}(z)$ for z from -3.99 to 0 .

Normal table

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 50000	. 50399	. 50798	. 51197	. 51595	. 51994	. 52392	. 52790	. 53188	. 53586
0.1	. 53983	. 54380	. 54776	. 55172	. 55567	. 55962	. 56356	. 56749	. 57142	. 57535
0.2	. 57926	. 58317	. 58706	. 59095	. 59483	. 59871	. 60257	. 60642	. 61026	. 61409
0.3	. 61791	. 62172	. 62552	. 62930	. 63307	. 63683	. 64058	. 64431	. 64803	. 65173
0.4	. 63542	. 65910	. 66276	. 66640	. 67003	. 67364	. 67724	. 68082	. 68439	. 68793
0.5	. 69146	. 69497	. 69847	. 70194	. 70540	. 70884	. 71226	. 71566	. 71904	. 72240
0.6	. 72575	. 72907	. 73237	. 73565	. 73891	. 74215	. 74537	. 74857	. 75175	. 75490
0.7	. 75804	. 76115	. 76424	. 76730	. 77035	. 77337	. 77637	. 77935	. 78230	. 78524
0.8	. 78814	. 79103	. 79389	. 79673	. 79955	. 80234	. 80511	. 80785	81057	. 81327
0.9	. 81594	. 81859	. 82121	. 82381	. 82639	. 82894	. 83147	83398	. 83646	. 83891
1.0	. 84134	. 84375	. 84614	. 84849	. 85083	. 85314	. 85543	. 85769	. 85993	. 86214
1.1	. 86433	. 86650	. 86864	. 87076	. 87286	. 87493	. 87698	. 87900	. 88100	. 88298
1.2	. 88493	. 88686	. 88877	. 89065	. 89251	. 89435	89617	. 89796	. 89973	. 90147
1.3	. 90320	. 90490	. 90658	. 90824	. 90988	91149	. 91309	91466	91621	. 91774
1.4	. 91924	. 92073	. 92220	. 92364	. 92507	. 92647	. 92785	. 92922	. 93056	. 93189
1.5	. 93319	. 93448	. 93574	. 93699	. 93822	. 93943	. 94062	. 94179	. 94295	. 94408
1.6	. 94520	. 94630	. 94738	. 94845	. 94950	. 95053	. 95154	. 95254	. 95352	. 95449
1.7	. 95543	. 95637	. 95728	. 95818	. 95907	. 95994	. 96080	. 96164	. 96246	. 96327
1.8	. 96407	. 96485	. 96562	. 96638	. 96712	96784	. 96856	. 96926	. 96995	. 97062
1.9	. 97128	. 97193	. 97257	. 97320	. 97381	. 97441	. 97500	. 97558	. 97615	. 97670
2.0	. 97725	. 97778	. 97831	. 97882	. 97932	. 97982	. 98030	. 98077	. 98124	. 98169
2.1	98214	. 98257	. 98300	. 98341	. 98382	. 98422	. 98461	. 98500	98537	. 98574
2.2	. 98610	. 98645	. 98679	. 98713	. 98745	. 98778	. 98809	. 98840	. 98870	. 98899
2.3	. 98928	. 98956	. 98983	. 99010	. 99036	. 99061	. 99086	. 99111	. 99134	. 99158
2.4	. 99180	. 99202	. 99224	. 99245	. 99266	. 99286	. 99305	. 99324	. 99343	. 99361
2.5	99379	. 99396	. 99413	. 99430	. 994446	99461	. 99477	. 99492	99506	. 99520
2.6	. 99534	. 99547	. 99560	. 99573	. 99585	. 99598	. 99609	. 99621	. 99632	. 99643
2.7	. 99653	. 99664	. 99674	. 99683	. 99693	. 99702	. 99711	. 99720	. 99728	. 99736
2.8	99744	. 99752	. 99760	. 99767	. 99774	99781	. 99788	. 99795	99801	. 99807
2.9	. 99813	. 99819	. 99825	. 99831	. 99836	. 99841	. 99846	. 99851	. 99856	. 99861
3.0	. 99865	. 99869	. 99874	. 99878	. 99882	. 99886	. 99889	. 99893	.99896	. 99900
3.1	. 99903	. 99906	. 99910	. 99913	. 99916	. 99918	. 99921	. 99924	99926	. 99929
3.2	. 99931	. 99934	. 99936	. 99938	. 99940	. 99942	. 99944	. 99946	. 99948	. 99950
3.3	99952	. 99953	. 99955	. 99957	. 99958	99960	. 99961	. 99962	99964	. 99965
3.4	. 99966	. 99968	. 99969	. 99970	. 99971	. 99972	. 99973	. 99974	. 99975	. 99976
3.5	. 99977	. 99978	. 99978	. 99979	. 99980	. 99981	. 99981	. 99982	. 99983	.99983
3.6	99984	. 99985	. 99985	. 99986	. 99986	. 99987	. 99987	. 99988	99988	. 99989
3.7	. 99989	. 99990	. 99990	. 99990	. 99991	. 99991	. 99992	. 99992	. 99992	. 99992
3.8	. 99993	. 99993	. 99993	. 99994	. 99994	. 99994	. 99994	. 99995	. 99995	. 99995
3.9	99995	. 99995	. 99996	. 99996	. 99996	. 99996	. 99996	. 99996	. 99997	. 99997

Figure: One to one mapping of z to $\Phi_{0,1}(z)$ for z from 0 to 3.99.

What is the probability for a standard Normal variable Z take values less than 1.47 ?

- Locate 1.4 in the left-hand column of the Normal table
- Then locate the remaining digit seven as .07 in the top row.
- The entry opposite 1.4 and under .07 is 0.9292 . This is the cumulative proportion we seek.
What is the 92.9-th percentile of a Standard Normal distribution?-It is 1.47.

For a Normal random variable follows a distribution that has a mean μ and variance σ^{2}, how to find the probability for the random variable to fall within an interval $[a, b]$?

- Note that $P(a<X<b)=P\left(\frac{a-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma}\right)$ and $\frac{X-\mu}{\sigma}$ follows a standard Normal distribution.
- Hence $P(a<X<b)=\Phi_{0,1}\left(\frac{b-\mu}{\sigma}\right)-\Phi_{0,1}\left(\frac{a-\mu}{\sigma}\right)$.
- Calculate $\frac{b-\mu}{\sigma}$ and $\frac{a-\mu}{\sigma}$. Then use the Normal table to find the corresponding probabilities $\Phi_{0,1}\left(\frac{b-\mu}{\sigma}\right)$ and $\Phi_{0,1}\left(\frac{a-\mu}{\sigma}\right)$ respectively.

Suppose $X \sim N\left(2,2^{2}\right)$, show that $P(1<X<3)=\Phi(0.5)-\Phi(-0.5)=0.383$.

Finding percentiles using the Normal table

For a Normal random variable follows a distribution that has a mean μ and standard deviation σ, how to find the the p-th percentile of the distribution?
(a) Note that our goal is to find c such that $P(X<c)=p / 100$. Since $P(X<c)=\Phi_{0,1}\left(\frac{c-\mu}{\sigma}\right)$, we are solving c from $\Phi_{0,1}\left(\frac{c-\mu}{\sigma}\right)=p / 100$.
(b) Use the table to find the p-th percentile of the standard Normal distribution. Denoted it by z_{p}.
(c) Then $c=z_{p} * \sigma+\mu$.

Suppose $X \sim N\left(2,2^{2}\right)$, show that the 92.9-th percentile of the distribution is $1.47 * 2+2=4.94$.

Normal probability plot

How to tell whether observations from a population follows a Normal distribution? (Chapter 7)

- Normal probability plot or QQ plot.
- Shapiro-Wilk test.

Normal approximation to Binomial distributions

Normal approximation to the Binomial distribution: If $X \mathrm{~s}$ a binomial random variable with parameters n and p,

$$
Z=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

follows a standard Normal distribution approximately. The approximation is close if $n p>5$ and $n(1-p)>5$.
https://newonlinecourses.science.psu.edu/
stat414/node/179/

Normal approximation to Binomial distributions

- To approximate a binomial probability with a normal distribution, a continuity correction is applied as follows:

$$
P(X \leq x)=P(X \leq x+0.5) \approx P\left(Z \leq \frac{x+0.5-n p}{\sqrt{n p(1-p)}}\right)
$$

and

$$
P(X \geq x)=P(X \geq x-0.5) \approx P\left(z \geq \frac{x-0.5-n p}{\sqrt{n p(1-p)}}\right)
$$

- For example, if $n=20$ and $p=0.3$, then
$P(X \leq 7) \approx \Phi_{0,1}\left(\frac{7+0.5-6}{\sqrt{4.2}}\right)=0.758$,
$P(X \geq 7) \approx 1-\Phi_{0,1}\left(\frac{7-0.5-6}{\sqrt{4.2}}\right)=1-0.596=0.404$.
- Note that $P(X<x)=P(X \leq x-1)$ and $P(X>x)=P(X \geq x+1)$.

Example

Assume that in a digital communication channel, the number of bits received in error can be modeled by a Binomial random variable, and assume that the probability that a bit is received in error is 1×10^{-5}. If 16 million bits are transmitted, what is the probability that 150 or fewer errors occur?

Normal approximation to Poisson distribution

Normal approximation to the Poisson distribution: If X is a Poisson random variable with $E(X)=\lambda T$ and $V(X)=\lambda T$,

$$
P(X \leq x)=P(X \leq x+0.5)=P\left(Z \leq \frac{x+0.5-\lambda T}{\sqrt{\lambda T}}\right)
$$

and

$$
P(X \geq x)=P(X \geq x-0.5)=P\left(Z \geq \frac{x-0.5-\lambda T}{\sqrt{\lambda T}}\right)
$$

The approximation is generally good for $\lambda T>5$.

Chi-square distributions

If Z follows a standard Normal distribution then:

$$
V=Z^{2} \sim \chi_{1}^{2}
$$

where χ_{1}^{2} is called a chi-square distribution with 1 degree of freedom which has density

$$
f(v)=\frac{1}{\Gamma(1 / 2) 2^{0.5}} v^{0.5-1} e^{-v / 2}, v \geq 0
$$

Chi-square distributions

More generally, if $Z_{1}, Z_{2}, \ldots, Z_{k}$ are independent (one does not affect the distribution of another), standard Normal random variables, then

$$
V=\sum_{i=1}^{k} Z_{i}^{2} \sim \chi_{k}^{2}
$$

which denotes a chi-squared distribution with k degrees of freedom. For example, $V=Z_{1}^{2}+Z_{2}^{2} \sim \chi_{2}^{2}$. The density of the distribution is

$$
f(v)=\frac{1}{\Gamma(k / 2) 2^{k / 2}} v^{k / 2-1} e^{-v / 2}, v \geq 0
$$

Chi-squared distributions are used primarily in hypothesis testing.

Distributions of random sample mean and random sample variance

Suppose X_{1}, \ldots, X_{n} are independent Normal random variables, which all follow distribution $N\left(\mu, \sigma^{2}\right)$, which means they are identical.

- Denote $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ as the random sample mean.
- Denote $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ as the random sample variance.
Then the results are true regardless what values of μ and σ^{2} are:
- $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$
- $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$

Example

Suppose X_{1}, \ldots, X_{20} are independent Normal random variables, which all follow distribution $N\left(2,3^{2}\right)$, which means they are identical.

- Denote $\bar{X}=\frac{1}{20} \sum_{i=1}^{20} X_{i}$ as the random sample mean.
- Denote $S^{2}=\frac{1}{19} \sum_{i=1}^{20}\left(X_{i}-\bar{X}\right)^{2}$ as the random sample variance.
- $\bar{X} \sim N(2,9 / 20)$
- $19 S^{2} / 9 \sim \chi_{19}^{2}$

Simple random sample

If X_{1}, \ldots, X_{n} is called a simple random sample if

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables.
- $X_{1}, X_{2}, \ldots, X_{n}$ follow the same distribution, i.e. they are identical.

Central limit theorem (CLT)

If X_{1}, \ldots, X_{n} is a random sample of size n taken from a population or a distribution (not necessarily Normal distribution) with mean μ and variance σ^{2} and if \bar{X} is the sample mean, then

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)
$$

for large n. For example,

- If $X_{1}, X_{2}, \ldots, X_{10}$ are independent random variables following an uniform distribution $(0,1)$, then \bar{X} follows a Normal distribution $N(0.5,1 / 12 / 10)$, i.e. $N(0.5,0.0083)$.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli random variables with the same success rate $0.4, \bar{X}$ (average of $\left.X_{1}, \ldots, X_{n}\right)$ follows a Normal distribution $N\left(0.4, \frac{0.24}{n}\right)$ approximately.

Animation of CLT

https://www.youtube.com/watch?v=Pujol1yC1_A

