Parametric continuous distributions

Li Li

Department of Mathematics and Statistics

Continuous uniform distribution

A continuous uniform random variable X has probability density function (PDF)

$$
f(x)=\frac{1}{b-a}, a \leq x \leq b, \text { Sample }
$$

and 0 elsewhere. Here a and b are two real numbers. We refer the distribution as uniform (a, b).

- For example, a continuous uniform distribution over [0, 1] (often referred as uniform $(0,1)$) has density $f(x)=1$ for $0<x<1$ and 0 elsewhere.
- Interesting fact: given any continuous random variàble Y and its cumulative distribution function $F(y)$, a CDF transformation of Y, i.e $F(Y)$ has a uniform $(0,1)$ distribution.
- For example, if Y has a density $f(y)=\lambda e^{-\lambda y}$ for $y \geq 0$, then its CDF is $F(y)=1-e^{-\lambda y}$ for $y \geq 0$. We have

$$
1-e^{\lambda Y} \sim \operatorname{Uniform}(0,1) .
$$

$$
P(c<x<d)
$$

$$
=\int_{c}^{d} \frac{1}{b-a} d x
$$

$$
=\frac{d-c}{b-a}
$$

$$
p\left(a-x<x^{0}\right)=\frac{x^{2}-a}{b-a}
$$

$X \sim \operatorname{Uniform}(0,1)$
$F($.$) : CDF function$
$Y: F^{-1}(X) \quad Y$ has distribution $F(\cdot)$

Where is continuous uniform distribution used?

- Simulations are used to model complicated processes, estimate distributions of estimators (using methods such as bootstrap), and have dramatically increased the use of an entire field of statistics.
- In simulations, we often generate random numbers from a desired distribution.
- Uniform $(0,1)$ is the where random number generation start.
- To generate a random variable that has CDF $F(y)=1-e^{-\lambda y}$ for $y \geq 0$, we can use the following steps
(a) generate a random number u from $\operatorname{Uniform}(0,1)$.
(b) transform the random number u by the inverse of the CDF for the density we desire, i.e. $-\log (1-u) / \lambda$.

CDF of Uniform (a, b)

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{cc}
0 & x \leq a \\
\frac{x-a}{b-a} & a<x \leq b \\
1 & x>b
\end{array}\right. \\
& F(b)=\frac{b-a}{b-a}=1
\end{aligned}
$$

Mean and variance of uniform (a, b)
Mean and variance of uniform (a, b) :

$$
\mu=\frac{a+b}{2}
$$

$$
\begin{aligned}
b^{3}-a^{3} & =(b-a)\left(b^{2}+b a+a^{2}\right) & \sigma^{2}=\frac{(b-a)^{2}}{12} \\
\mu & =\int_{a}^{b} x \cdot \frac{1}{b-a} d x \quad[\mu & \left.=\int_{-\infty}^{+\infty} x \cdot f(x) d x\right) \\
& =\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b} f(x) & \sigma^{2}=E\left(x^{2}\right)-\mu^{2} \\
& =\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2} & =\left.\frac{x_{a}^{b} \frac{x^{2}}{b-a} d x-\frac{(b+a)^{2}}{4}}{3(b-a)}\right|_{a} ^{b}-\frac{(b+a)^{2}}{4} \\
& & =\frac{b^{2}+b a+a^{2}}{3}-\frac{(b+a)^{2}}{4}
\end{aligned}
$$

$$
f(x)=\left\{\begin{array}{lc}
f_{1}(x) & -1<x<0 \\
f_{2}(x) & 0 \leq x<1
\end{array}\right.
$$

$$
\begin{aligned}
E(x)=\int_{-\infty}^{+\infty} x f(x) d x & =\int_{-1}^{0} x \cdot f_{1}(\alpha) d x \\
& +\int_{0}^{1} x \cdot f_{2}(x) d x
\end{aligned}
$$

Normal distribution

1) Charateristics
2) $P(a<x<b)$
3) Percentiles
4) Normal approximations to Binomial distribution and poisson distribution

Normal distributions

Given parameters $\underline{\mu}$ and $\underline{\sigma}$, PDF of the Normal distribution is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<+\infty . \begin{aligned}
& E(x)=\mu \\
& \\
& \operatorname{Var}(X)=\sigma^{2}
\end{aligned}
$$

Figure: Normal distribution density functions. Density function is denoted as $\phi_{\mu, \sigma^{2}}(x)$.
μ - location parameter or mean of the distribution and σ-scale parameter or standard deviation of the distribution.

- A Normal distribution with $\mu=0$ and $\sigma=1$ is referred as "standard Normal distribution".
- Normal distributions are also called "Gaussian distributions".
- Normal distribution is sometimes informally called the "bell curve".
- A random variable with a Gaussian distribution is said to be normally distributed, denoted by $X \sim\left(N \rho, \sigma^{2}\right)$. For example, $\underline{X} \sim N\left(3,2^{2}\right)$.

Important facts about Normal distributions

- All Normal curves have the same overall shape: symmetric, single-peaked, bell-shaped.
- Any specific Normal curve is completely described by giving its mean μ and its standard deviation σ.
- The mean is located at the center of the symmetric curve and is the same as the median. Changing μ without changing σ moves the Normal curve along the horizontal axis without changing its spread.
- The standard deviation σ controls the spread of a Normal curve. Curves with larger standard deviations are more spread out or wider.

Important facts about Normal distributions

- The average of many independent processes (such as measurement errors) often have distributions that are nearly normal.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli random | $\boldsymbol{R}(x)$ | $1-p$ | p |
| ---: | :--- | :--- | variables with the same success rate $p, \overline{\bar{X}}$ (average of $\left.X_{1}, \ldots, X_{n}\right)$ follows a Normal distribution $\bar{N}\left(\underline{p}, \frac{p(1-p)}{n}\right)$ approximately.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Poisson random variables with the same rate of event λ and time interval T, \bar{X} follows a Normal distribution $N\left(\underline{\lambda} T, \frac{\lambda T}{n}\right)$ approximately.

For a Normal distribution with mean μ and standard deviation σ :

- Approximately 68% of the observations fall within σ of the mean μ.
- Approximately 95% of the observations fall within 2σ of the mean μ.
- Approximately 99.7% of the observations fall within 3σ of the mean μ.

The empirical rule

Figure: The 68-95-99.7 rule.

$$
\begin{aligned}
& P(X>\mu+36) \\
& \text { 68-95-99.7 Rule } \\
& =\frac{0.0027}{2} \\
& =0.00135 \\
& p(x>\mu+\sigma) \\
& =\frac{(1-0.6821)}{\downarrow} / \overbrace{2}^{\nu} \underbrace{0.05}_{0.00} \\
& =0.5-\frac{0.6827}{2} \quad P(\mu-\sigma<X<\mu+\sigma) \approx 68.27 \% \\
& P(X>\mu+1.5 \sigma) \\
& P(\mu-2 \sigma<x<\mu+2 \sigma)=95.45 \%
\end{aligned}
$$

How do we find $P(a<X<b)$

For a Normal distribution with mean μ and variance σ^{2} and $X \sim N\left(\mu, \sigma^{2}\right)$, probability

$$
P(a<X<b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

can be calculated by pnorm $((b-\mu) / \sigma)-\operatorname{pnorm}((a-\mu) / \sigma)$ in R.
prom (x) : returns $F(x)$ where $F(\cdot)$ is the CDF of Stand ard Normal distribution.
$P(a<x<b)=F\left(\frac{b-\mu}{\sigma}\right)-\underset{-}{ }\left(\frac{a-\mu}{\sigma}\right)$

How do we find the p-th percentile?

Pith percentile of a continuous distributing with density $f(x)$:

$$
\text { Solve } F(c)=\int_{-\infty}^{c} f(x) d x=\frac{P}{100} \quad 0 \leq P \leq 100
$$

The p-th percentile c where

$$
P(X<c)=\int_{\infty}^{c} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=p / 100
$$

can be calculated by $\operatorname{qnorm}(p / 100) * \sigma+\mu$.

CDF

The cumulative distribution function (CDF) of a Normal distribution function is denoted as

$$
\begin{array}{ll}
\Phi_{1,2^{2}}(x) & \Phi_{\mu, \sigma^{2}}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} d u \text {. 1) Monotone increasing } \\
\text { within the sample } \\
\text { space of the }
\end{array}
$$

Figure: Normal distribution CDF functions. CDF functions are denoted as $\Phi_{\mu, \sigma^{2}}(x)$.

Standard Normal distribution and z-score

Standard Normal distribution:

$$
p(a<x<b)
$$

- If a variable X has Normal distribution $N\left(\mu, \sigma^{2}\right)$, then the standardized variable

has the standard Normal distribution $N(0,1)$. For example, if X follows a Normal distribution with mean 3 and variance 4, i.e. $X \sim N\left(3,2^{2}\right)$, then $Z=\frac{x-\mu}{\sigma} \sim N(0,1)$.
- For a real number a, the standardized value of a is

$$
z=\frac{a-\mu}{\sigma_{\cdot}}
$$

is called the z-score of a.

$$
\begin{aligned}
F_{z}(z) & =P(z \leq z) \\
& =P\left(\frac{x-\mu}{\sigma} \leq z\right) \\
& =P(X \leq \sigma z+\mu) \\
& =\int_{-\infty}^{\sigma z+\mu} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
\end{aligned}
$$

show let $y=\frac{x-\mu}{8}$

$$
\begin{aligned}
& =\frac{\int_{-\infty}^{\operatorname{let}} y=\frac{1}{2}}{\frac{1}{\sqrt{2 \pi}}} e^{-\frac{y^{2}}{2}} d y \\
& =\Phi_{0,1}(z)
\end{aligned}
$$

Use of z-score

- When the z-score of an observation has an absolute value greater than 3, this observation can be viewed roughly as an outlier or unusual.
- z-score can be used to compare two observations from two populations that have different Normal distributions.

Example

Consider for two high school senior students,
$\sigma=106$

- student A scored 670 on the Mathematics part of the SAT. 4 The distribution of SAT Math scores in 2010 was Normal with mean 516 and standard deviation 116. $p=506$
- student B took the ACT and scored 46 on the Mathematics portion. ACT Math scores for 2010 were Normally distributed with mean 21.0 and standard deviation of 5.3.
(a) Find the z - scores for both students.
(b) Assuming that both tests measure the same kind of ability, who had a higher score? Are any of these two test scores outlying?

$$
\text { a) } \begin{aligned}
z_{A} & =\frac{670-516}{116}=1.3276 \\
z_{B} & =\frac{46-21}{5.3}=4.7170
\end{aligned}
$$

Normal table

Gool: $X \sim N\left(\mu \cdot \sigma^{2}\right) ; P(a<x<b)$

- Only used in test situation these days. toMe.
- It is a one to one mapping of z to $\Phi_{0,1}(z)$ (Standard Normal CDF) for z goes from -3.99 to 3.99 .
- Given z, use the table we can find $\Phi_{0,1}(z)$. Given p such that $\Phi_{0,1}(z)=p$, we can also find z. This gives us the $p * 100$-th percentile of the Standard Normal distribution.

Normal table

Figure: One to one mapping of z to $\Phi_{0,1}(z)$ for z from -3.99 to 0 .

Normal table

Figure: One to one mapping of z to $\Phi_{0,1}(z)$ for z from 0 to 3.99.

What is the probability for a standard Normal variable Z take values less than 1.47 ?

- Locate 1.4 in the left-hand column of the Normal table
- Then locate the remaining digit seven as .07 in the top row.
- The entry opposite 1.4 and under .07 is 0.9292 . This is the cumulative proportion we seek.
What is the 92.9-th percentile of a Standard Normal distribution?-It is 1.47.

$x \sim N\left(\mu, \sigma^{2}\right)$

For a Normal random variable follows a distribution that has a mean μ and variance σ^{2}, how to find the probability for the random variable to fall within an interval $[a, b]$?

- Note that $P(a<X<b)=P\left(\frac{a-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma}\right)$ and $\frac{X-\mu}{\sigma}$ follows a standardNormal distribution.
- Hence $P(a<X<b)=\Phi_{0,1}\left(\frac{\left(\frac{6-\mu}{\sigma}\right)}{(}\right)-\Phi_{0,1}\left(\frac{\left(\frac{2-\mu}{\sigma}\right)}{\sigma}\right)$.
- Calculate $\frac{b-\mu}{\sigma}$ and $\frac{a-\mu}{\sigma}$. Then use the Normal table to find the corresponding probabilities $\Phi_{0,1}\left(\frac{b-\mu}{\sigma}\right)$ and $\Phi_{0,1}\left(\frac{a-\mu}{\sigma}\right)$ respectively.

Suppose $X \sim N\left(2,2^{2}\right)$, show that $\quad Y \sim N\left(3,1^{2}\right)$

$$
P(1<X<3)=\phi_{0,1}^{\infty}(0.5)-\left(\begin{array}{l}
\phi_{01}(-0.5)
\end{array}\right)=0.383 .
$$

$$
\begin{aligned}
& P(1<x<3)= P\left(\frac{1-2}{2}<\frac{x-2}{2}<\frac{3-2}{2}\right) \\
&= P(-0.5<z<0.5) \quad z-N(0.1) \\
&= \Phi_{0}(0.5)-\Phi_{0.1}(-0.5)= \\
& P(a<z<b)=P(z<b)-P(z<a) P(x)
\end{aligned}
$$

Finding percentiles using the Normal table

For a Normal random variable follows a distribution that has a mean μ and standard deviation σ, how to find the the p-th percentile of the distribution?
(a) Note that our goal is to find c such that $P(X<c)=p / 100$. Since $P(X<c)=\Phi_{0,1}\left(\frac{c-\mu}{\sigma}\right)$, we are solving c from $\Phi_{0,1}\left(\frac{c-\mu}{\sigma}\right)=p / 100$.
(b) Use the table to find the p-th percentile of the standard Normal distribution. Denoted it by z_{p}.
(c) Then $c=\left(z_{D}\right) * \sigma+\underline{\mu}$.

Suppose $X \sim N\left(2,2^{2}\right)$, show that the 92.9-th percentile of the distribution is $1.47 * 2+2=4.94$.

$$
\frac{\Phi}{0.1}(1.47)=92.9
$$

Goal: find p-th percentile of distribution $N\left(\mu, \sigma^{2}\right)$
i.e find c such that

$$
\begin{aligned}
& \frac{P(x \leq c)}{}=P / 100 \\
& \frac{\Phi}{\Phi_{01}\left(\frac{c-\mu}{\sigma}\right)}=\frac{P}{100} \\
& c=z_{p} \\
&=z_{p} \cdot \sigma+\mu
\end{aligned}
$$

Normal probability plot

How to tell whether observations from a population follows a Normal distribution? (Chapter 7)

- Normal probability plot or QQ plot.
- Shapiro-Wilk test.

Normal approximation to Binomial distributions

Normal approximation to the Binomial distribution: If $X \mathrm{~s}$ a binomial random variable with parameters n and p,

$$
Z=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

follows a standard Normal distribution approximately. The approximation is close if $n p>5$ and $n(1-p)>5$.
https://newonlinecourses.science.psu.edu/
stat414/node/179/

Normal approximation to Binomial distributions

- To approximate a binomial probability with a normal distribution, a continuity correction is applied as follows:

$$
P(X \leq x)=P(X \leq x+0.5) \approx P\left(Z \leq \frac{x+0.5-n p}{\sqrt{n p(1-p)}}\right)
$$

and

$$
P(X \geq x)=P(X \geq x-0.5) \approx P\left(z \geq \frac{x-0.5-n p}{\sqrt{n p(1-p)}}\right)
$$

- For example, if $n=20$ and $p=0.3$, then
$P(X \leq 7) \approx \Phi_{0,1}\left(\frac{7+0.5-6}{\sqrt{4.2}}\right)=0.758$,
$P(X \geq 7) \approx 1-\Phi_{0,1}\left(\frac{7-0.5-6}{\sqrt{4.2}}\right)=1-0.596=0.404$.
- Note that $P(X<x)=P(X \leq x-1)$ and $P(X>x)=P(X \geq x+1)$.

Example

Assume that in a digital communication channel, the number of bits received in error can be modeled by a Binomial random variable, and assume that the probability that a bit is received in error is 1×10^{-5}. If 16 million bits are transmitted, what is the probability that 150 or fewer errors occur?

Normal approximation to Poisson distribution

Normal approximation to the Poisson distribution: If X is a Poisson random variable with $E(X)=\lambda T$ and $V(X)=\lambda T$,

$$
P(X \leq x)=P(X \leq x+0.5)=P\left(Z \leq \frac{x+0.5-\lambda T}{\sqrt{\lambda T}}\right)
$$

and

$$
P(X \geq x)=P(X \geq x-0.5)=P\left(Z \geq \frac{x-0.5-\lambda T}{\sqrt{\lambda T}}\right)
$$

The approximation is generally good for $\lambda T>5$.

Chi-square distributions

If Z follows a standard Normal distribution then:

$$
V=Z^{2} \sim \chi_{1}^{2}
$$

where χ_{1}^{2} is called a chi-square distribution with 1 degree of freedom which has density

$$
f(v)=\frac{1}{\Gamma(1 / 2) 2^{0.5}} v^{0.5-1} e^{-v / 2}, v \geq 0
$$

Chi-square distributions

More generally, if $Z_{1}, Z_{2}, \ldots, Z_{k}$ are independent (one does not affect the distribution of another), standard Normal random variables, then

$$
V=\sum_{i=1}^{k} Z_{i}^{2} \sim \chi_{k}^{2}
$$

which denotes a chi-squared distribution with k degrees of freedom. For example, $V=Z_{1}^{2}+Z_{2}^{2} \sim \chi_{2}^{2}$. The density of the distribution is

$$
f(v)=\frac{1}{\Gamma(k / 2) 2^{k / 2}} v^{k / 2-1} e^{-v / 2}, v \geq 0
$$

Chi-squared distributions are used primarily in hypothesis testing.

Distributions of random sample mean and random sample variance

Suppose X_{1}, \ldots, X_{n} are independent Normal random variables, which all follow distribution $N\left(\mu, \sigma^{2}\right)$, which means they are identical.

- Denote $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ as the random sample mean.
- Denote $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ as the random sample variance.
Then the results are true regardless what values of μ and σ^{2} are:
- $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$
- $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$

Example

Suppose X_{1}, \ldots, X_{20} are independent Normal random variables, which all follow distribution $N\left(2,3^{2}\right)$, which means they are identical.

- Denote $\bar{X}=\frac{1}{20} \sum_{i=1}^{20} X_{i}$ as the random sample mean.
- Denote $S^{2}=\frac{1}{19} \sum_{i=1}^{20}\left(X_{i}-\bar{X}\right)^{2}$ as the random sample variance.
- $\bar{X} \sim N(2,9 / 20)$
- $19 S^{2} / 9 \sim \chi_{19}^{2}$

Simple random sample

If X_{1}, \ldots, X_{n} is called a simple random sample if

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables.
- $X_{1}, X_{2}, \ldots, X_{n}$ follow the same distribution, i.e. they are identical.

Central limit theorem (CLT)

If X_{1}, \ldots, X_{n} is a random sample of size n taken from a population or a distribution (not necessarily Normal distribution) with mean μ and variance σ^{2} and if \bar{X} is the sample mean, then

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)
$$

for large n. For example,

- If $X_{1}, X_{2}, \ldots, X_{10}$ are independent random variables following an uniform distribution $(0,1)$, then \bar{X} follows a Normal distribution $N(0.5,1 / 12 / 10)$, i.e. $N(0.5,0.0083)$.
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli random variables with the same success rate $0.4, \bar{X}$ (average of $\left.X_{1}, \ldots, X_{n}\right)$ follows a Normal distribution $N\left(0.4, \frac{0.24}{n}\right)$ approximately.

Animation of CLT

https://www.youtube.com/watch?v=Pujol1yC1_A

