Multivariate distributions

Li Li

Department of Mathematics and Statistics

Coronary heart patient data

 A random sample of N = 200 coronary heart disease patients had their blood pressure (BP) and serum cholesterol (SC) levels measured resulting in the following data summary:

		SC		
		Below 240 mg/dL	Above 240 mg/dL	Total
BP	Below 120/80 mm Hg	0.115	0.13	245
	Above120/80 mm Hg	0.41	0.345	0.755
	Total	0.525	0.475	1

Table: 2×2 table.

Coronary heart patient data

- What is the percentage of patients that have SC below 240 mg/dL and BP below 120/80 mm Hg?
- What is the percentage of patients that have SC below 240 mg/dL?
- Are the outcome of SC and the outcome of BP independent?

2×2 table

- Empirical percentage is a estimate of probability.
- Consider joint probability mass function in the following 2×2 table:

		<i>X</i> ₂		
		a ₁	a_2	Total
X_1	b_1	p_{11}	p_{12}	p_{1+}
	b_2	p_{21}	p_{22}	p_{2+}
	Total	p_{+1}	p_{+2}	1

Table: 2×2 table.

- Interpret p_{11} as $P(X_1 = b_1 \text{ and } X_2 = a_1)$. In short, we write it as $P(X_1 = b_1, X_2 = a_1)$.
- Interpret p_{12} as $P(X_1 = b_1, X_2 = a_2)$.
- Interpret p_{1+} as $P(X_1 = b_1)$.
- Interpret p_{+1} as $P(X_2 = a_1)$.

Coronary heart patient data

- Hypothesis of particular interest: whether *X*₁ and *X*₂ are independently distributed.
- It is testing whether $P(X_1 = b_j, X_2 = a_k) = P(X_1 = b_j)P(X_2 = a_k)$ for j = 1, 2; k = 1, 2.

Multivariate discrete distribution

- Let X = (X₁, X₂,..., X_p) be a *p*-dimensional vector of random variables and x = (x₁, x₂,..., x_p) be an observation of X.
- If X₁, X₂,..., X_p are discrete, the joint distribution of X is specified through a joint probability mass function, denoted by f_X(x).

$$f_{\mathbf{X}}(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p),$$

which is understood as the probability of X_1, X_2, \ldots, X_p taking value x_1, x_2, \ldots, x_p respectively at the same time.

Multivariate continuous distribution

If X₁, X₂,..., X_p are continuous, the joint distribution of X is specified through a joint density function, denoted by f_X(x) where for any *p*-dimensional region *R*,

$$P(\mathbf{X} \in R) = \int \cdots \int_{R} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

For example, when p = 2, for $R = [0, 1] \times [-1, 2]$,

$$P(\mathbf{X} \in [0,1] \times [-1,2]) = \int_0^1 \int_{-1}^2 f_{\mathbf{X}}(x_1,x_2) dx_2 dx_1$$

Why are multivariate distributions important?

- It is an important tool to understand the statistical relationship between multiple variables, for example, the relationships between the risk of car accident and its various risk factors.
- Concepts like correlation, independence are defined using multivariate distributions.

Marginal distributions

Consider discrete variables X₁, X₂,..., X_p and its the joint distribution of X is specified through a joint probability mass function, denoted by f_X(x).

$$f_{\mathbf{X}}(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p).$$

- The distribution of one random variable or a subset of random variables is called a **marginal distribution**.
- The marginal of distribution of *X*₁ is the also called the marginal distribution of *X*₁.
- It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

Marginal distributions for multivariate discrete distributions example

Consider a case when p = 2 and both X_1 and X_2 are binary random variables taking value 1 and 2. The joint probability mass function is given in the following 2×2 table:

Table: 2×2 table.

		<i>X</i> ₂	
		a ₁	a_2
X_1	b_1	<i>p</i> ₁₁	p_{12}
	b_2	<i>p</i> ₂₁	p ₂₂

Marginal distributions for multivariate discrete distributions example

• X_1 has the marginal distribution

Table: Marginal distribution of X_1 .

<i>X</i> ₁	<i>b</i> ₁	b ₂
$f(x_1)$	$p_{11} + p_{12}$	$p_{21} + p_{22}$

• X₂ has the marginal distribution

Table: Marginal distribution of X_2 .

X2	a ₁	a ₂
$f(x_2)$	$p_{11} + p_{21}$	$p_{12} + p_{22}$

For the Coronary heart patient data example, what are the marginal distributions of BP and SC respectively?

Marginal distributions for multivariate discrete distributions

- Suppose you are given the joint distribution.
- The marginal probability mass function of X₁ is

$$f(x_1) = P(X_1 = x_1) = \sum_{x_2,...,x_p} f_{\mathbf{x}}(x_1, x_2, ..., x_p)$$

for all possible values of X_1 .

• The marginal probability mass function of X₂ is

$$f(x_2) = P(X_2 = x_2) = \sum_{x_1, x_3, \dots, x_p} f_{\mathbf{x}}(x_1, x_2, \dots, x_p)$$

for all possible values of X_2 .

Conditional distributions in the discrete case

• Consider the 2×2 table again.

Table:	2	× 2	table.
--------	---	-----	--------

		X ₂	
		a ₁	a_2
X_1	b_1	<i>p</i> ₁₁	p_{12}
	b_2	<i>p</i> ₂₁	p ₂₂

• X_1 and X_2 have the marginal distributions:

Table: Marginal distribution of X_1 and X_2 .

<i>x</i> ₁	<i>b</i> ₁	b ₂
$f(x_1)$	$p_{11} + p_{12}$	$p_{21} + p_{22}$
<i>x</i> ₂	a ₁	a_2
$f(x_2)$	$p_{11} + p_{21}$	$p_{12} + p_{22}$

Conditional distributions in the discrete case

• The conditional probability $P(X_1 = x_1 | X_2 = x_2)$ is denoted as

$$f(x_1|x_2) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_2 = x_2)} = \frac{f_{\mathbf{X}}(x_1, x_2)}{f(x_2)}$$

where $f(x_2)$ is the marginal distribution of X_2 .

 Conditional distributions of X₁ given that X₂ takes value b₁ or b₂ are as follows

Table: Conditional distributions of X_1 given $X_2 = a_1$ or a_2 .

<i>x</i> ₁	b ₁	b ₂	total
$f(x_1 x_2=a_1)$	$p_{11}/(p_{11}+p_{21})$	$p_{21}/(p_{11}+p_{21})$	1
$f(x_1 x_2=a_2)$	$p_{12}/(p_{12}+p_{22})$	$p_{22}/(p_{12}+p_{22})$	1

For the Coronary heart patient data example, what are the conditional distributions of BP and SC respectively?

Independence

- Intuitively, two random variables *X* and *Y* are independent if knowing the value of one of them does not change the probabilities for the other one.
- Two random variables are independent if and only if

 $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all sets of A and B.

• When both random variables are discrete, they are independent if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 for all x and y,

i.e. $f_{X,Y}(x, y) = f(x)f(y)$ for all pairs of x and y.

Examples

• Denote *X*₁ as the outcome for flipping the first coin and *X*₂ as the outcome for flipping the second coin. Assume these two flips being independent. The independence implies

•
$$P(X_1 = H, X_2 = H) = P(X_1 = H)P(X_2 = H)$$

►
$$P(X_1 = T, X_2 = H) = P(X_1 = T)P(X_2 = H)$$

$$P(X_1 = H, X_2 = T) = P(X_1 = H)P(X_2 = T)$$

►
$$P(X_1 = T, X_2 = T) = P(X_1 = T)P(X_2 = T)$$

How to show that two random variables are dependent?

• In general, if two random variables are dependent if and only if

 $P(X \in A, Y \in B) \neq P(X \in A)P(Y \in B)$ for some sets of A and B.

 If both random variables are discrete and dependent if and only if

$$P(X = x, Y = y) \neq P(X = x)P(Y = y)$$
 for some x and y.

Coronary heart patient data revisited

For the Coronary heart patient data example, are BP and SC independent? (Note that we do not take sampling variability into account here)

Independence assumption for multiple variables

- Consider multiple random variables X_1, X_2, \cdots, X_p where $p \ge 3$.
- *X*₁, *X*₂, ..., *X*_p are mutually independent if and only if any sub-collection of the random variables from *X*₁, ..., *X*_p are independent from another non-overlapping sub-collection.
- Usually verifying mutual independence for multiple variables is not trivial.
- If X_1, X_2, \dots, X_p are mutually independent, $P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p) = P(X_1 = x_1)P(X_2 = x_2) \dots P(X_p = x_p)$ for all possible x_1, x_2, \dots, x_p .

Covariance

- Common measure of the relationship between two random variables are covariance and correlation.
- The covariance between two random variables X and Y, denoted as *cov*(X, Y) or σ_{X,Y}, is

$$\sigma_{X,Y} = E[(X - \mu_X)(Y - \mu_Y)]$$

where μ_X and μ_Y are the mean of the marginal distributions of *X* and *Y* respectively.

- $E[(X \mu_X)(Y \mu_Y)] = E(XY) \mu_X \mu_Y.$
- Expected value of a function of two discrete random variables:

$$E[h(X, Y)] = \sum \sum h(x, y)f(x, y)$$

Example: 2×2 table

• In the 2×2 table,

Table: 2×2 table.

		<i>X</i> ₂	
		1	2
X_1	1	<i>p</i> ₁₁	p_{12}
	2	p ₂₁	p ₂₂

 $E(X_1X_2) = 1 * 1 * p_{11} + 1 * 2 * p_{12} + 2 * 1 * p_{21} + 2 * 2 * p_{22}$ = $p_{11} + 2p_{12} + 2p_{21} + 4p_{22}$ = $1 + p_{12} + p_{21} + 3p_{22}$

- The marginal mean of X_1 is $\mu_{X_1} = 1 + p_{21} + p_{22}$.
- The marginal mean of X_2 is $\mu_{X_2} = 1 + p_{12} + p_{22}$.
- Hence covariance of X_1 and X_2 is $\sigma_{X_1X_2} = E(X_1X_2) - \mu_{X_1}\mu_{X_2} = p_{22}p_{11} - p_{12}p_{21}.$

For the Coronary heart patient data example, find the covariance of BP and SC. Denote the two levels of BP or SC as 0 or 1.

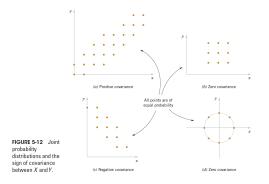
Correlation

- The correlation measures the direction and strength of the linear relationship between two quantitative variables.
- The correlation between two random variables X and Y, denoted as ρ, is

$$\rho = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$$

where σ_X and σ_Y are standard deviations of marginal distribution of *X* and *Y* respectively.

• For any two random variable *X* and *Y*, $-1 \le \rho \le 1$.



- *ρ* > 0 ⇔ (equivalent to) variables have a positive linear relationship.
- $\rho > 0 \Leftrightarrow$ variables have a negative linear relationship.
- The absolute value of ρ is close to 1 ⇔ the linear association is strong. The absolute value of ρ is close to 0 ⇔ the linear association is weak.

For the Coronary heart patient data example, find the correlation of BP and SC.

Linear combination of random variables

• Linear combination: Given random variables X_1, X_2, \ldots, X_n and constants c_1, c_2, \ldots, c_n ,

$$Y = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n$$

is a linear combination of X_1, X_2, \ldots, X_n .

• Random sample mean is a direct linear combination of X_1, X_2, \ldots, X_n :

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{n} X_1 + \frac{1}{n} X_2 + \dots + \frac{1}{n} X_n.$$

Linear combination of random variables

- The distribution of the linear combination may be difficult to obtain but we can find the find the mean and variance of it.
- Mean of a linear function: If $Y = c_1 X_1 + c_2 X_2 + \dots + c_n X_n$, then

$$E(Y) = c_1 E(X_1) + c_2 E(X_2) + \cdots + c_n E(X_n)$$

• For example, if X_1, X_2, \ldots, X_n have the same mean 3, then $E(\bar{X}) = \frac{1}{n}E(X_1) + \frac{1}{n}E(X_2) + \cdots + \frac{1}{n}E(X_n) = 3.$

Linear combination of random variables

• Variance of the linear combination

$$Var(Y) = c_1^2 Var(X_1) + c_2^2 Var(X_2) + \dots + c_n^2 Var(X_n)$$

+
$$2 \sum_{i < j} c_i c_j Cov(X_i, X_j)$$

where $\textit{Var}(\cdot)$ denotes variance and $\textit{Cov}(\cdot, \cdot)$ denotes covariance.

• If X_1, X_2, \ldots, X_n are mutually independent,

$$Var(Y) = c_1^2 Var(X_1) + c_2^2 Var(X_2) + \dots + c_n^2 Var(X_n)$$

If $Y = 2X_1 + X_2$, $E(X_1) = 1$, $E(X_2) = 2$, $Var(X_1) = 1$, $Var(X_2)$, and $Cov(X_1, X_2) = -0.5$. What are the mean and variance of *Y*? If $\overline{X} = (X_1 + X_2 + \dots + X_n)/n$ with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ for $i = 1, \dots, n$ and $Cov(X_i, X_j) = -0.1\sigma^2$. Find $E(\overline{X})$ and $Var(\overline{X})$.

If $\overline{X} = (X_1 + X_2 + \dots + X_n)/n$ with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for $i = 1, \dots, n$. Suppose that X_1, X_2, \dots, X_n are independent. Find $E(\overline{X})$ and $Var(\overline{X})$.

Independence in Central limit theorem

 Central limit theorem (CLT): If X₁,..., X_n are mutually independent random variables having a distribution (not necessarily Normal distribution) with mean μ and variance σ² and if X̄ is the sample mean, then

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

for large n.