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Coronary heart patient data

• A random sample of N = 200 coronary heart disease
patients had their blood pressure (BP) and serum
cholesterol (SC) levels measured resulting in the following
data summary:

Table: 2× 2 table.

SC
Below 240 mg/dL Above 240 mg/dL Total

BP Below 120/80 mm Hg 0.115 0.13 245
Above120/80 mm Hg 0.41 0.345 0.755

Total 0.525 0.475 1
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Coronary heart patient data

• What is the percentage of patients that have SC below 240
mg/dL and BP below 120/80 mm Hg?
• What is the percentage of patients that have SC below 240

mg/dL?
• Are the outcome of SC and the outcome of BP

independent?
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2× 2 table

• Empirical percentage is a estimate of probability.
• Consider joint probability mass function in the following

2× 2 table:

Table: 2× 2 table.

X2
a1 a2 Total

X1 b1 p11 p12 p1+
b2 p21 p22 p2+

Total p+1 p+2 1

• Interpret p11 as P(X1 = b1 and X2 = a1). In short, we write
it as P(X1 = b1,X2 = a1).
• Interpret p12 as P(X1 = b1,X2 = a2).
• Interpret p1+ as P(X1 = b1).
• Interpret p+1 as P(X2 = a1).
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Coronary heart patient data

• Hypothesis of particular interest: whether X1 and X2 are
independently distributed.
• It is testing whether

P(X1 = bj ,X2 = ak ) = P(X1 = bj)P(X2 = ak ) for
j = 1,2; k = 1,2.
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Multivariate discrete distribution

• Let X = (X1,X2, . . . ,Xp) be a p-dimensional vector of
random variables and x = (x1, x2, . . . , xp) be an
observation of X.
• If X1,X2, . . . ,Xp are discrete, the joint distribution of X is

specified through a joint probability mass function,
denoted by fX(x).

fX(x) = P(X1 = x1,X2 = x2, . . . ,Xp = xp),

which is understood as the probability of X1,X2, . . . ,Xp
taking value x1, x2, . . . , xp respectively at the same time.
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Multivariate continuous distribution

• If X1,X2, . . . ,Xp are continuous, the joint distribution of X is
specified through a joint density function, denoted by
fX(x) where for any p-dimensional region R,

P(X ∈ R) =

∫
· · ·

∫
R

fX(x)dx.

For example, when p = 2, for R = [0,1]× [−1,2],

P(X ∈ [0,1]× [−1,2]) =

∫ 1

0

∫ 2

−1
fX(x1, x2)dx2dx1
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Why are multivariate distributions important?

• It is an important tool to understand the statistical
relationship between multiple variables, for example, the
relationships between the risk of car accident and its
various risk factors.
• Concepts like correlation, independence are defined using

multivariate distributions.
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Marginal distributions

• Consider discrete variables X1,X2, . . . ,Xp and its the joint
distribution of X is specified through a joint probability
mass function, denoted by fX(x).

fX(x) = P(X1 = x1,X2 = x2, . . . ,Xp = xp).

• The distribution of one random variable or a subset of
random variables is called a marginal distribution.
• The marginal of distribution of X1 is the also called the

marginal distribution of X1.
• It gives the probabilities of various values of the variables

in the subset without reference to the values of the other
variables.
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Marginal distributions for multivariate discrete
distributions example

Consider a case when p = 2 and both X1 and X2 are binary
random variables taking value 1 and 2. The joint probability
mass function is given in the following 2× 2 table:

Table: 2× 2 table.

X2
a1 a2

X1 b1 p11 p12
b2 p21 p22
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Marginal distributions for multivariate discrete
distributions example

• X1 has the marginal distribution

Table: Marginal distribution of X1.

x1 b1 b2
f (x1) p11 + p12 p21 + p22

• X2 has the marginal distribution

Table: Marginal distribution of X2.

x2 a1 a2
f (x2) p11 + p21 p12 + p22
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For the Coronary heart patient data example, what are the
marginal distributions of BP and SC respectively?
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Marginal distributions for multivariate discrete
distributions

• Suppose you are given the joint distribution.
• The marginal probability mass function of X1 is

f (x1) = P(X1 = x1) =
∑

x2,...,xp

fx(x1, x2, . . . , xp)

for all possible values of X1.
• The marginal probability mass function of X2 is

f (x2) = P(X2 = x2) =
∑

x1,x3...,xp

fx(x1, x2, . . . , xp)

for all possible values of X2.
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Conditional distributions in the discrete case

• Consider the 2× 2 table again.

Table: 2× 2 table.

X2
a1 a2

X1 b1 p11 p12
b2 p21 p22

• X1 and X2 have the marginal distributions:

Table: Marginal distribution of X1 and X2.

x1 b1 b2
f (x1) p11 + p12 p21 + p22

x2 a1 a2
f (x2) p11 + p21 p12 + p22
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Conditional distributions in the discrete case

• The conditional probability P(X1 = x1|X2 = x2) is denoted
as

f (x1|x2) =
P(X1 = x1,X2 = x2)

P(X2 = x2)
=

fX(x1, x2)

f (x2)

where f (x2) is the marginal distribution of X2.
• Conditional distributions of X1 given that X2 takes value b1

or b2 are as follows

Table: Conditional distributions of X1 given X2 = a1 or a2.

x1 b1 b2 total
f (x1|x2 = a1) p11/(p11 + p21) p21/(p11 + p21) 1
f (x1|x2 = a2) p12/(p12 + p22) p22/(p12 + p22) 1
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For the Coronary heart patient data example, what are the
conditional distributions of BP and SC respectively?
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Independence

• Intuitively, two random variables X and Y are independent
if knowing the value of one of them does not change the
probabilities for the other one.
• Two random variables are independent if and only if

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) for all sets of A and B.

• When both random variables are discrete, they are
independent if and only if

P(X = x ,Y = y) = P(X = x)P(Y = y) for all x and y ,

i.e. fX ,Y (x , y) = f (x)f (y) for all pairs of x and y .
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Examples

• Denote X1 as the outcome for flipping the first coin and X2
as the outcome for flipping the second coin. Assume these
two flips being independent. The independence implies
I P(X1 = H,X2 = H) = P(X1 = H)P(X2 = H)
I P(X1 = T ,X2 = H) = P(X1 = T )P(X2 = H)
I P(X1 = H,X2 = T ) = P(X1 = H)P(X2 = T )
I P(X1 = T ,X2 = T ) = P(X1 = T )P(X2 = T )
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How to show that two random variables are
dependent?

• In general, if two random variables are dependent if and
only if

P(X ∈ A,Y ∈ B) 6= P(X ∈ A)P(Y ∈ B) for some sets of A and B.

• If both random variables are discrete and dependent if and
only if

P(X = x ,Y = y) 6= P(X = x)P(Y = y) for some x and y .
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Coronary heart patient data revisited
For the Coronary heart patient data example, are BP and SC
independent? (Note that we do not take sampling variability into
account here)
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Independence assumption for multiple variables

• Consider multiple random variables X1,X2, · · · ,Xp where
p ≥ 3.
• X1,X2, · · · ,Xp are mutually independent if and only if any

sub-collection of the random variables from X1, . . . ,Xp are
independent from another non-overlapping sub-collection.
• Usually verifying mutual independence for multiple

variables is not trivial.
• If X1,X2, · · · ,Xp are mutually independent,

P(X1 = x1,X2 = x2, · · · ,Xp = xp) = P(X1 = x1)P(X2 =
x2) · · ·P(Xp = xp) for all possible x1, x2, . . . , xp.
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Covariance

• Common measure of the relationship between two random
variables are covariance and correlation.
• The covariance between two random variables X and Y ,

denoted as cov(X ,Y ) or σX ,Y , is

σX ,Y = E [(X − µX )(Y − µY )]

where µX and µY are the mean of the marginal
distributions of X and Y respectively.
• E [(X − µX )(Y − µY )] = E(XY )− µXµY .
• Expected value of a function of two discrete random

variables:

E [h(X ,Y )] =
∑∑

h(x , y)f (x , y)
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Example: 2× 2 table

• In the 2× 2 table,

Table: 2× 2 table.

X2
1 2

X1 1 p11 p12
2 p21 p22

E(X1X2) = 1 ∗ 1 ∗ p11 + 1 ∗ 2 ∗ p12 + 2 ∗ 1 ∗ p21 + 2 ∗ 2 ∗ p22

= p11 + 2p12 + 2p21 + 4p22

= 1 + p12 + p21 + 3p22
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• The marginal mean of X1 is µX1 = 1 + p21 + p22.
• The marginal mean of X2 is µX2 = 1 + p12 + p22.
• Hence covariance of X1 and X2 is
σX1X2 = E(X1X2)− µX1µX2 = p22p11 − p12p21.
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For the Coronary heart patient data example, find the
covariance of BP and SC. Denote the two levels of BP or SC as
0 or 1.
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Correlation

• The correlation measures the direction and strength of the
linear relationship between two quantitative variables.
• The correlation between two random variables X and Y ,

denoted as ρ, is
ρ =

σX ,Y

σXσY

where σX and σY are standard deviations of marginal
distribution of X and Y respectively.
• For any two random variable X and Y , −1 ≤ ρ ≤ 1.
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• ρ > 0⇔ (equivalent to) variables have a positive linear
relationship.
• ρ > 0⇔ variables have a negative linear relationship.
• The absolute value of ρ is close to 1⇔ the linear

association is strong. The absolute value of ρ is close to 0
⇔ the linear association is weak.
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For the Coronary heart patient data example, find the
correlation of BP and SC.
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Linear combination of random variables

• Linear combination: Given random variables
X1,X2, . . . ,Xn and constants c1, c2, . . . , cn,

Y = c1X1 + c2X2 + · · ·+ cnXn

is a linear combination of X1,X2, . . . ,Xn.
• Random sample mean is a direct linear combination of

X1,X2, . . . ,Xn:

X̄ =

∑n
i=1 Xi

n
=

1
n

X1 +
1
n

X2 + · · ·+ 1
n

Xn.
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Linear combination of random variables

• The distribution of the linear combination may be difficult to
obtain but we can find the find the mean and variance of it.
• Mean of a linear function: If

Y = c1X1 + c2X2 + · · ·+ cnXn, then

E(Y ) = c1E(X1) + c2E(X2) + · · ·+ cnE(Xn)

• For example, if X1,X2, . . . ,Xn have the same mean 3, then
E(X̄ ) = 1

n E(X1) + 1
n E(X2) + · · ·+ 1

n E(Xn) = 3.
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Linear combination of random variables

• Variance of the linear combination

Var(Y ) = c2
1Var(X1) + c2

2Var(X2) + · · ·+ c2
nVar(Xn)

+ 2
∑∑

i<j

cicjCov(Xi ,Xj)

where Var(·) denotes variance and Cov(·, ·) denotes
covariance.

• If X1,X2, . . . ,Xn are mutually independent,

Var(Y ) = c2
1Var(X1) + c2

2Var(X2) + · · ·+ c2
nVar(Xn)
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If Y = 2X1 + X2, E(X1) = 1, E(X2) = 2, Var(X1) = 1, Var(X2),
and Cov(X1,X2) = −0.5. What are the mean and variance of
Y ?
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If X̄ = (X1 + X2 + · · ·+ Xn)/n with E(Xi) = µ, Var(Xi) = σ2 for
i = 1, . . . ,n and Cov(Xi ,Xj) = −0.1σ2. Find E(X̄ ) and Var(X̄ ).
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If X̄ = (X1 + X2 + · · ·+ Xn)/n with E(Xi) = µ and Var(Xi) = σ2

for i = 1, . . . ,n. Suppose that X1,X2, . . . ,Xn are independent.
Find E(X̄ ) and Var(X̄ ).
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Independence in Central limit theorem

• Central limit theorem (CLT): If X1, . . . ,Xn are mutually
independent random variables having a distribution (not
necessarily Normal distribution) with mean µ and variance
σ2 and if X̄ is the sample mean, then

X̄ ∼ N(µ, σ2/n)

for large n.
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