Multivariate distributions

Li Li
Department of Mathematics and Statistics

Coronary heart patient data

- A random sample of $N=200$ coronary heart disease patients had their blood pressure (BP) and serum cholesterol (SC) levels measured resulting in the following data summary:

Table: 2×2 table.

		$S C$		
		Below $240 \mathrm{mg} / \mathrm{dL}$	Above $240 \mathrm{mg} / \mathrm{dL}$	Total
$B P$	Below $120 / 80 \mathrm{~mm} \mathrm{Hg}$	0.115	0.13	245
	Above120/80 mm Hg	0.41	0.345	0.755
Total	0.525	0.475	1	

Coronary heart patient data

- What is the percentage of patients that have SC below 240 $\mathrm{mg} / \mathrm{dL}$ and BP below $120 / 80 \mathrm{~mm} \mathrm{Hg}$?
- What is the percentage of patients that have SC below 240 $\mathrm{mg} / \mathrm{dL}$?
- Are the outcome of SC and the outcome of BP independent?

2×2 table

- Empirical percentage is a estimate of probability.
- Consider joint probability mass function in the following 2×2 table:

Table: 2×2 table.

			X_{2}	
			a_{1}	a_{2}
x_{1}	b_{1}	p_{11}	p_{12}	p_{1+}
	b_{2}	p_{21}	p_{22}	p_{2+}
	Total	p_{+1}	p_{+2}	1

- Interpret p_{11} as $P\left(X_{1}=b_{1}\right.$ and $\left.X_{2}=a_{1}\right)$. In short, we write it as $P\left(X_{1}=b_{1}, X_{2}=a_{1}\right)$.
- Interpret p_{12} as $P\left(X_{1}=b_{1}, X_{2}=a_{2}\right)$.
- Interpret p_{1+} as $P\left(X_{1}=b_{1}\right)$.
- Interpret p_{+1} as $P\left(X_{2}=a_{1}\right)$.

Coronary heart patient data

- Hypothesis of particular interest: whether X_{1} and X_{2} are independently distributed.
- It is testing whether

$$
\begin{aligned}
& P\left(X_{1}=b_{j}, X_{2}=a_{k}\right)=P\left(X_{1}=b_{j}\right) P\left(X_{2}=a_{k}\right) \text { for } \\
& j=1,2 ; k=1,2 .
\end{aligned}
$$

Multivariate discrete distribution

- Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ be a p-dimensional vector of random variables and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ be an observation of \mathbf{X}.
- If $X_{1}, X_{2}, \ldots, X_{p}$ are discrete, the joint distribution of \mathbf{X} is specified through a joint probability mass function, denoted by $f_{\mathbf{X}}(\mathbf{x})$.

$$
f_{\mathbf{X}}(\mathbf{x})=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right)
$$

which is understood as the probability of $X_{1}, X_{2}, \ldots, X_{p}$ taking value $x_{1}, x_{2}, \ldots, x_{p}$ respectively at the same time.

Multivariate continuous distribution

- If $X_{1}, X_{2}, \ldots, X_{p}$ are continuous, the joint distribution of \mathbf{X} is specified through a joint density function, denoted by $f_{\mathbf{X}}(\mathbf{x})$ where for any p-dimensional region R,

$$
P(\mathbf{X} \in R)=\int \cdots \int_{R} f_{\mathbf{x}}(\mathbf{x}) d \mathbf{x} .
$$

For example, when $p=2$, for $R=[0,1] \times[-1,2]$,

$$
P(\mathbf{X} \in[0,1] \times[-1,2])=\int_{0}^{1} \int_{-1}^{2} f_{\mathbf{X}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

Why are multivariate distributions important?

- It is an important tool to understand the statistical relationship between multiple variables, for example, the relationships between the risk of car accident and its various risk factors.
- Concepts like correlation, independence are defined using multivariate distributions.

Marginal distributions

- Consider discrete variables $X_{1}, X_{2}, \ldots, X_{p}$ and its the joint distribution of \mathbf{X} is specified through a joint probability mass function, denoted by $f_{x}(\mathbf{x})$.

$$
f_{\mathbf{x}}(\mathbf{x})=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right) .
$$

- The distribution of one random variable or a subset of random variables is called a marginal distribution.
- The marginal of distribution of X_{1} is the also called the marginal distribution of X_{1}.
- It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

Marginal distributions for multivariate discrete distributions example

Consider a case when $p=2$ and both X_{1} and X_{2} are binary random variables taking value 1 and 2 . The joint probability mass function is given in the following 2×2 table:

Table: 2×2 table.

Marginal distributions for multivariate discrete distributions example

- X_{1} has the marginal distribution

Table: Marginal distribution of X_{1}.

x_{1}	b_{1}	b_{2}
$f\left(x_{1}\right)$	$p_{11}+p_{12}$	$p_{21}+p_{22}$

- X_{2} has the marginal distribution

Table: Marginal distribution of X_{2}.

x_{2}	a_{1}	a_{2}
$f\left(x_{2}\right)$	$p_{11}+p_{21}$	$p_{12}+p_{22}$

For the Coronary heart patient data example, what are the marginal distributions of BP and SC respectively?

Marginal distributions for multivariate discrete distributions

- Suppose you are given the joint distribution.
- The marginal probability mass function of X_{1} is

$$
f\left(x_{1}\right)=P\left(X_{1}=x_{1}\right)=\sum_{x_{2}, \ldots, x_{p}} f_{\mathbf{x}}\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

for all possible values of X_{1}.

- The marginal probability mass function of X_{2} is

$$
f\left(x_{2}\right)=P\left(X_{2}=x_{2}\right)=\sum_{x_{1}, x_{3} \ldots, x_{p}} f_{\mathbf{x}}\left(x_{1}, x_{2}, \ldots, x_{p}\right)
$$

for all possible values of X_{2}.

Conditional distributions in the discrete case

- Consider the 2×2 table again.

Table: 2×2 table.

		X_{2}	
		a_{1}	a_{2}
X_{1}	b_{1}	p_{11}	p_{12}
	b_{2}	p_{21}	p_{22}

- X_{1} and X_{2} have the marginal distributions:

Table: Marginal distribution of X_{1} and X_{2}.

x_{1}	b_{1}	b_{2}
$f\left(x_{1}\right)$	$p_{11}+p_{12}$	$p_{21}+p_{22}$
x_{2}	a_{1}	a_{2}
$f\left(x_{2}\right)$	$p_{11}+p_{21}$	$p_{12}+p_{22}$

Conditional distributions in the discrete case

- The conditional probability $P\left(X_{1}=x_{1} \mid X_{2}=x_{2}\right)$ is denoted as

$$
f\left(x_{1} \mid x_{2}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P\left(X_{2}=x_{2}\right)}=\frac{f_{\mathrm{x}}\left(x_{1}, x_{2}\right)}{f\left(x_{2}\right)}
$$

where $f\left(x_{2}\right)$ is the marginal distribution of X_{2}.

- Conditional distributions of X_{1} given that X_{2} takes value b_{1} or b_{2} are as follows

Table: Conditional distributions of X_{1} given $X_{2}=a_{1}$ or a_{2}.

x_{1}	b_{1}	b_{2}	total
$f\left(x_{1} \mid x_{2}=a_{1}\right)$	$p_{11} /\left(p_{11}+p_{21}\right)$	$p_{21} /\left(p_{11}+p_{21}\right)$	1
$f\left(x_{1} \mid x_{2}=a_{2}\right)$	$p_{12} /\left(p_{12}+p_{22}\right)$	$p_{22} /\left(p_{12}+p_{22}\right)$	1

For the Coronary heart patient data example, what are the conditional distributions of BP and SC respectively?

Independence

- Intuitively, two random variables X and Y are independent if knowing the value of one of them does not change the probabilities for the other one.
- Two random variables are independent if and only if
$P(X \in A, Y \in B)=P(X \in A) P(Y \in B)$ for all sets of A and B.
- When both random variables are discrete, they are independent if and only if

$$
P(X=x, Y=y)=P(X=x) P(Y=y) \text { for all } x \text { and } y
$$

i.e. $f_{X, Y}(x, y)=f(x) f(y)$ for all pairs of x and y.

Examples

- Denote X_{1} as the outcome for flipping the first coin and X_{2} as the outcome for flipping the second coin. Assume these two flips being independent. The independence implies
- $P\left(X_{1}=H, X_{2}=H\right)=P\left(X_{1}=H\right) P\left(X_{2}=H\right)$
- $P\left(X_{1}=T, X_{2}=H\right)=P\left(X_{1}=T\right) P\left(X_{2}=H\right)$
- $P\left(X_{1}=H, X_{2}=T\right)=P\left(X_{1}=H\right) P\left(X_{2}=T\right)$
- $P\left(X_{1}=T, X_{2}=T\right)=P\left(X_{1}=T\right) P\left(X_{2}=T\right)$

How to show that two random variables are dependent?

- In general, if two random variables are dependent if and only if
$P(X \in A, Y \in B) \neq P(X \in A) P(Y \in B)$ for some sets of A and B.
- If both random variables are discrete and dependent if and only if
$P(X=x, Y=y) \neq P(X=x) P(Y=y)$ for some x and y.

Coronary heart patient data revisited

For the Coronary heart patient data example, are BP and SC independent? (Note that we do not take sampling variability into account here)

Independence assumption for multiple variables

- Consider multiple random variables $X_{1}, X_{2}, \cdots, X_{p}$ where $p \geq 3$.
- $X_{1}, X_{2}, \cdots, X_{p}$ are mutually independent if and only if any sub-collection of the random variables from X_{1}, \ldots, X_{p} are independent from another non-overlapping sub-collection.
- Usually verifying mutual independence for multiple variables is not trivial.
- If $X_{1}, X_{2}, \cdots, X_{p}$ are mutually independent,
$P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{p}=x_{p}\right)=P\left(X_{1}=x_{1}\right) P\left(X_{2}=\right.$ $\left.x_{2}\right) \cdots P\left(X_{p}=x_{p}\right)$ for all possible $x_{1}, x_{2}, \ldots, x_{p}$.

Covariance

- Common measure of the relationship between two random variables are covariance and correlation.
- The covariance between two random variables X and Y, denoted as $\operatorname{cov}(X, Y)$ or $\sigma_{X, Y}$, is

$$
\sigma_{X, Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

where μ_{X} and μ_{Y} are the mean of the marginal distributions of X and Y respectively.

- $E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-\mu_{X} \mu_{Y}$.
- Expected value of a function of two discrete random variables:

$$
E[h(X, Y)]=\sum \sum h(x, y) f(x, y)
$$

Example: 2×2 table

- In the 2×2 table,

Table: 2×2 table.

		X_{2}	
		1	2
X_{1}	1	p_{11}	p_{12}
	2	p_{21}	p_{22}

$$
\begin{aligned}
E\left(X_{1} X_{2}\right) & =1 * 1 * p_{11}+1 * 2 * p_{12}+2 * 1 * p_{21}+2 * 2 * p_{22} \\
& =p_{11}+2 p_{12}+2 p_{21}+4 p_{22} \\
& =1+p_{12}+p_{21}+3 p_{22}
\end{aligned}
$$

- The marginal mean of X_{1} is $\mu_{X_{1}}=1+p_{21}+p_{22}$.
- The marginal mean of X_{2} is $\mu_{X_{2}}=1+p_{12}+p_{22}$.
- Hence covariance of X_{1} and X_{2} is

$$
\sigma_{X_{1} X_{2}}=E\left(X_{1} X_{2}\right)-\mu_{X_{1}} \mu_{X_{2}}=p_{22} p_{11}-p_{12} p_{21}
$$

For the Coronary heart patient data example, find the covariance of BP and SC. Denote the two levels of BP or SC as 0 or 1 .

Correlation

- The correlation measures the direction and strength of the linear relationship between two quantitative variables.
- The correlation between two random variables X and Y, denoted as ρ, is

$$
\rho=\frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}
$$

where σ_{X} and σ_{Y} are standard deviations of marginal distribution of X and Y respectively.

- For any two random variable X and $Y,-1 \leq \rho \leq 1$.

FIGURE 5-12 Joint probability distributions and the sign of covariance between X and Y.

- $\rho>0 \Leftrightarrow$ (equivalent to) variables have a positive linear relationship.
- $\rho>0 \Leftrightarrow$ variables have a negative linear relationship.
- The absolute value of ρ is close to $1 \Leftrightarrow$ the linear association is strong. The absolute value of ρ is close to 0 \Leftrightarrow the linear association is weak.

For the Coronary heart patient data example, find the correlation of BP and SC.

Linear combination of random variables

- Linear combination: Given random variables $X_{1}, X_{2}, \ldots, X_{n}$ and constants $c_{1}, c_{2}, \ldots, c_{n}$,

$$
Y=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}
$$

is a linear combination of $X_{1}, X_{2}, \ldots, X_{n}$.

- Random sample mean is a direct linear combination of $X_{1}, X_{2}, \ldots, X_{n}$:

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\frac{1}{n} X_{1}+\frac{1}{n} X_{2}+\cdots+\frac{1}{n} X_{n}
$$

Linear combination of random variables

- The distribution of the linear combination may be difficult to obtain but we can find the find the mean and variance of it.
- Mean of a linear function: If
$Y=c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}$, then

$$
E(Y)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\cdots+c_{n} E\left(X_{n}\right)
$$

- For example, if $X_{1}, X_{2}, \ldots, X_{n}$ have the same mean 3, then $E(\bar{X})=\frac{1}{n} E\left(X_{1}\right)+\frac{1}{n} E\left(X_{2}\right)+\cdots+\frac{1}{n} E\left(X_{n}\right)=3$.

Linear combination of random variables

- Variance of the linear combination

$$
\begin{aligned}
\operatorname{Var}(Y) & =c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\cdots+c_{n}^{2} \operatorname{Var}\left(X_{n}\right) \\
& +2 \sum \sum_{i<j} c_{i} c_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

where $\operatorname{Var}(\cdot)$ denotes variance and $\operatorname{Cov}(\cdot, \cdot)$ denotes covariance.

- If $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent,

$$
\operatorname{Var}(Y)=c_{1}^{2} \operatorname{Var}\left(X_{1}\right)+c_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\cdots+c_{n}^{2} \operatorname{Var}\left(X_{n}\right)
$$

If $Y=2 X_{1}+X_{2}, E\left(X_{1}\right)=1, E\left(X_{2}\right)=2, \operatorname{Var}\left(X_{1}\right)=1, \operatorname{Var}\left(X_{2}\right)$, and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-0.5$. What are the mean and variance of Y ?

If $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n$ with $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-0.1 \sigma^{2}$. Find $E(\bar{X})$ and $\operatorname{Var}(\bar{X})$.

If $\bar{X}=\left(X_{1}+X_{2}+\cdots+X_{n}\right) / n$ with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent. Find $E(\bar{X})$ and $\operatorname{Var}(\bar{X})$.

Independence in Central limit theorem

- Central limit theorem (CLT): If X_{1}, \ldots, X_{n} are mutually independent random variables having a distribution (not necessarily Normal distribution) with mean μ and variance σ^{2} and if \bar{X} is the sample mean, then

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)
$$

for large n.

