Multivariate distributions

Li Li

Department of Mathematics and Statistics

Coronary heart patient data

 A random sample of N = 200 coronary heart disease patients had their blood pressure (BP) and serum cholesterol (SC) levels measured resulting in the following data summary:

		SC		
		Below 240 mg/dL	Above 240 mg/dL	Total
BP	Below 120/80 mm Hg	0.115	0.13	245
	Above120/80 mm Hg	0.41	0.345	0.755
	Total	0.525	0.475	1

Table: 2×2 table.

Coronary heart patient data

- What is the percentage of patients that have SC below 240 mg/dL and BP below 120/80 mm Hg?
 115 %
- What is the percentage of patients that have SC below 240 mg/dL?
 0.525 = 52.5%
- Are the outcome of SC and the outcome of BP independent? (We do not consider sampling variability whather SC and BP are independent here)
 - is equivalent to whether

= p(sc < 240) p(Bp< 120180)

Since there are not equal, SC and BP are not interembent

2×2 table

- Empirical percentage is a estimate of probability.
- Consider joint probability mass function in the following 2×2 table:

		<i>X</i> ₂		
		a ₁	a_2	Total
X_1	b_1	p_{11}	p_{12}	p_{1+}
	b_2	p ₂₁	p_{22}	p_{2+}
	Total	p_{+1}	p_{+2}	1

Table: 2×2 table.

- Interpret p_{11} as $P(X_1 = b_1 \text{ and } X_2 = a_1)$. In short, we write it as $P(X_1 = b_1, X_2 = a_1)$.
- Interpret p_{12} as $P(X_1 = b_1, X_2 = a_2)$.
- Interpret p_{1+} as $P(X_1 = b_1)$.
- Interpret p_{+1} as $P(X_2 = a_1)$.

Coronary heart patient data

- Hypothesis of particular interest: whether *X*₁ and *X*₂ are independently distributed.
- It is testing whether $P(X_1 = b_j, X_2 = a_k) = P(X_1 = b_j)P(X_2 = a_k)$ for j = 1, 2; k = 1, 2.

Multivariate discrete distribution

- Let X = (X₁, X₂,..., X_p) be a *p*-dimensional vector of random variables and x = (x₁, x₂,..., x_p) be an observation of X.
- If X₁, X₂,..., X_p are discrete, the joint distribution of X is specified through a joint probability mass function, denoted by f_X(x).

$$f_{\mathbf{X}}(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p),$$

which is understood as the probability of X_1, X_2, \ldots, X_p taking value x_1, x_2, \ldots, x_p respectively at the same time.

Multivariate continuous distribution

If X₁, X₂,..., X_p are continuous, the joint distribution of X is specified through a joint density function, denoted by f_X(x) where for any *p*-dimensional region *R*,

$$P(\mathbf{X} \in R) = \int \cdots \int_{R} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

For example, when p = 2, for $R = [0, 1] \times [-1, 2]$,

$$P(\mathbf{X} \in [0,1] \times [-1,2]) = \int_0^1 \int_{-1}^2 f_{\mathbf{X}}(x_1,x_2) dx_2 dx_1$$

Why are multivariate distributions important?

- It is an important tool to understand the statistical relationship between multiple variables, for example, the relationships between the risk of car accident and its various risk factors.
- Concepts like correlation, independence are defined using multivariate distributions.

Marginal distributions

Consider discrete variables X₁, X₂, ..., X_p and its the joint distribution of X is specified through a joint probability mass function, denoted by f_X(x).

$$f_{\mathbf{X}}(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p).$$

- The distribution of one random variable or a subset of random variables is called a **marginal distribution**.
- The marginal of distribution of *X*₁ is the also called the marginal distribution of *X*₁.
- It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables.

Marginal distributions for multivariate discrete distributions example

Consider a case when p = 2 and both X_1 and X_2 are binary random variables taking value 1 and 2. The joint probability mass function is given in the following 2×2 table:

Table: 2×2 table.

		X ₂	
		a ₁	a_2
X_1	b_1	<i>p</i> ₁₁	p_{12}
	b_2	<i>p</i> ₂₁	p ₂₂
	<i>D</i> 2	P21	P22

Marginal distributions for multivariate discrete distributions example

• X_1 has the marginal distribution

Table: Marginal distribution of X_1 .

<i>X</i> ₁	<i>b</i> ₁	b ₂
$f(x_1)$	$p_{11} + p_{12}$	$p_{21} + p_{22}$

• X₂ has the marginal distribution

Table: Marginal distribution of X_2 .

<i>X</i> ₂	<i>a</i> 1	a_2
$f(x_2)$	$p_{11} + p_{21}$	$p_{12} + p_{22}$

For the Coronary heart patient data example, what are the marginal distributions of BP and SC respectively?

BP :	denot	e 'd' as	BP < 120/2	80 mmHg
	denote	i'a	5 BP >, 12018	30 mmH
SC	dano	te 'o' a	as SC < 24	o mg/dl
	deno	te 'r'	os 5c >2	40 mgld
Larginol di	stribution	ot Bp		
вр	×	0	I.	
	f(x)	0.245	0.755	
Vorginal	distrib	ntion of s	٢	
SC	3	0	1	
	fy	0.525	0.475	

Marginal distributions for multivariate discrete distributions

- Suppose you are given the joint distribution.
- The marginal probability mass function of X₁ is

$$f(x_1) = P(X_1 = x_1) = \sum_{x_2,...,x_p} f_{\mathbf{x}}(x_1, x_2, ..., x_p)$$

for all possible values of X_1 .

• The marginal probability mass function of X₂ is

$$f(x_2) = P(X_2 = x_2) = \sum_{x_1, x_3, \dots, x_p} f_{\mathbf{x}}(x_1, x_2, \dots, x_p)$$

for all possible values of X_2 .

Conditional distributions in the discrete case

• Consider the 2×2 table again.

Table. 2×2 table.	Tab	le:	2	\times	2	table.
-----------------------------------	-----	-----	---	----------	---	--------

		X ₂	
		<i>a</i> ₁	a_2
X_1	b_1	<i>p</i> ₁₁	p_{12}
	b ₂	p ₂₁	p ₂₂

• X_1 and X_2 have the marginal distributions:

Table: Marginal distribution of X_1 and X_2 .

<i>x</i> ₁	<i>b</i> ₁	b ₂
$f(x_1)$	$p_{11} + p_{12}$	$p_{21} + p_{22}$
<i>x</i> ₂	a ₁	a_2
$f(x_2)$	$p_{11} + p_{21}$	$p_{12} + p_{22}$

Conditional distributions in the discrete case

• The conditional probability $P(X_1 = x_1 | X_2 = x_2)$ is denoted as

$$f(x_1|x_2) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_2 = x_2)} = \frac{f_{\mathbf{X}}(x_1, x_2)}{f(x_2)}$$

where $f(x_2)$ is the marginal distribution of X_2 .

 Conditional distributions of X₁ given that X₂ takes value b₁ or b₂ are as follows

Table: Conditional distributions of X_1 given $X_2 = a_1$ or a_2 .

X ₁	b ₁	b ₂	total
$f(x_1 x_2=a_1)$	$p_{11}/(p_{11}+p_{21})$	$p_{21}/(p_{11}+p_{21})$	1
$f(x_1 x_2=a_2)$	$p_{12}/(p_{12}+p_{22})$	$p_{22}/(p_{12}+p_{22})$	1

For the Coronary heart patient data example, what are the conditional distributions of BP and SC respectively?

Conditional	distribution s	of Bp given SC	1
вр	0	1	
f(6p1s(=0)	0.115/0.525	0.41/0.525	
f(Bplsc=1)	0.13/0.475	0,345/0.475	

Independence

- Intuitively, two random variables *X* and *Y* are independent if knowing the value of one of them does not change the probabilities for the other one.
- Two random variables are independent if and only if

 $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all sets of A and B.

• When both random variables are discrete, they are independent if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 for all x and y,

i.e. $f_{X,Y}(x, y) = f(x)f(y)$ for all pairs of x and y.

Review (11/5/2019)

Consider a discrete joint distribution table

	Contra			y		0
	Traig		1	2	3	+x(x)
	×	1	0,25	0,25	0	0.5
		2	0	0.25	٥،٢٢	٥٠5
	fy(4)		0,25	015	0,25	
	$\mu_{X} = \frac{3}{2}$		14 y= 2	Gx	= 1	6r=ñ
	C0V(Χ , Υ)	= 4			
	ρ =	0,	71			
-	Independ	ence				
-	Covar	ian	v			
	Corre	ati	on			

$$Probability \begin{pmatrix} k \cdot M \ rule \ 3 \end{pmatrix} if A \cap B = \emptyset, \\ Probability \begin{pmatrix} 0 \in P(A) \in I \\ 0 \in P(A) \in I \\ 3 \end{pmatrix} p(S) = I = p(A) + p(B) \end{pmatrix}$$

$$Probability \ uariables \\ (Discrete / Continuous r.U.)$$

$$Probability \ moss \ function \ f(x) = p(x = x)$$

$$Probability \ density \ function \ p(a < x < b) \\ f(x) = p(x = x)$$

$$Probability \ density \ function \ p(a < x < b) \\ f(x) = p(x = x)$$

$$P(x < b) = f(x) = f(x)$$

$$P(x < b) = p(x = i) + p(x = 2)$$

$$A \cup B \qquad A \qquad B$$

$$I f(x) = f(x) = f(x) = i + p(x = 2)$$

$$A \cup B \qquad A \qquad B$$

$$I f(x) = f(x) = f(x) = i + p(x = 2)$$

$$A \cup B \qquad A \qquad B$$

$$I f(x) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

$$P(x < b) = f(x) = f(x) = i + p(x) = 2$$

Consider two discrete r.U. jointly

fix,y) 3 2 X 0,25 0125 0 25.0 0.25 0 $i) o \in f(x,y) \in i$ $\sum \sum f(x,y) = 1$ 2) xy p(x = 1, Y = 3) = 03) $p(x=1) = p(\{x=1_0\} = 1\} \cup \{x=1, Y=2\}$ U{X=1, Y= 35) = 0.5 ~0.5 P(X=1, Y<3) = f(1, 1) + f(1, 2)

If x and Y are continuous r.v; the joint density function f(x, y) satisty the following Conditions; 1) f(x,y) 7,0 2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$ 3) $P((x, y) \in R)$ = $\iint_{R} f(x,y) dx dy$

Bivariate Normal distribution $f(x,y) = \frac{1}{\sqrt{2\pi}|\Sigma|} e^{-\frac{1}{2}(x-\mu_x, y-\mu_y)\Sigma - (x-\mu_x)} \frac{1}{\sqrt{2\pi}|\Sigma|}$ I: Covariance $-\infty < X < \infty$ $\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} : Mean sector$ $\infty < y < \infty$ Morginal distributions Conditional distributions

$$f(x,y) = \frac{f(x,y)}{x} = \frac{1}{2} + \frac{2}{2} + \frac{3}{5} + \frac{f(x)}{x} = \frac{5}{5} + \frac{5}{5}$$

Independence of two/multiple r.US.
Covariance of two r.US
Correlation of two r.US.
Independence of X and Y => for any sets A.B

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

Covariance
 $S_{X,Y} = E[(X - \mu_X)(Y - \mu_Y)]$
Correlation
 $P_{X,Y} = \frac{S_{X,Y}}{S_{X} + S_{Y}}; + EP_{X,Y} \in I$

Are an Y independent? Х Ч f(x,y) 1 $f_{r}(x)$ 3 1 2 イ 0.25 0.25 0,5 0 D.ZS 0 0.25 0.5 2 fx (y) 0.25 0.5 0.25 $(x,y) = f_x(x) f_y(y)$ Does all for possible (x,y)? $f(1,1) \neq f_{x}(1) \neq f_{y}(1)$ 0.5 . 0.25 =) X and Y 0.25 not independent $\mp f_x(1) f_1(2)$ 1,2) 0.25 0.5.0.5

Examples

• Denote *X*₁ as the outcome for flipping the first coin and *X*₂ as the outcome for flipping the second coin. Assume these two flips being independent. The independence implies

•
$$P(X_1 = H, X_2 = H) = P(X_1 = H)P(X_2 = H)$$

•
$$P(X_1 = T, X_2 = H) = P(X_1 = T)P(X_2 = H)$$

$$P(X_1 = H, X_2 = T) = P(X_1 = H)P(X_2 = T)$$

►
$$P(X_1 = T, X_2 = T) = P(X_1 = T)P(X_2 = T)$$

How to show that two random variables are dependent?

• In general, if two random variables are dependent if and only if

 $P(X \in A, Y \in B) \neq P(X \in A)P(Y \in B)$ for some sets of A and B.

 If both random variables are discrete and dependent if and only if

$$P(X = x, Y = y) \neq P(X = x)P(Y = y)$$
 for some x and y.

Coronary heart patient data revisited

For the Coronary heart patient data example, are BP and SC independent? (Note that we do not take sampling variability into account here) **skipped**

Independence assumption for multiple variables

- Consider multiple random variables X_1, X_2, \cdots, X_p where $p \ge 3$.
- *X*₁, *X*₂, ..., *X*_p are mutually independent if and only if any sub-collection of the random variables from *X*₁, ..., *X*_p are independent from another non-overlapping sub-collection.
- Usually verifying mutual independence for multiple variables is not trivial.
- If X_1, X_2, \dots, X_p are mutually independent, $P(X_1 = x_1, X_2 = x_2, \dots, X_p = x_p) = P(X_1 = x_1)P(X_2 = x_2) \dots P(X_p = x_p)$ for all possible x_1, x_2, \dots, x_p .

Covariance

- Common measure of the relationship between two random variables are covariance and correlation.
- The covariance between two random variables X and Y, denoted as *cov*(X, Y) or σ_{X,Y}, is

$$\sigma_{X,Y} = E[(X - \mu_X)(Y - \mu_Y)]$$

where μ_X and μ_Y are the mean of the marginal distributions of *X* and *Y* respectively.

- $E[(X \mu_X)(Y \mu_Y)] = E(XY) \mu_X \mu_Y.$
- Expected value of a function of two discrete random variables:

$$E[h(X, Y)] = \sum \sum h(x, y)f(x, y)$$

Example: 2×2 table

• In the 2×2 table,

Table: 2×2 table.

		<i>X</i> ₂	
		1	2
X_1	1	p_{11}	p_{12}
	2	p ₂₁	p ₂₂

 $E(X_1X_2) = 1 * 1 * p_{11} + 1 * 2 * p_{12} + 2 * 1 * p_{21} + 2 * 2 * p_{22}$ = $p_{11} + 2p_{12} + 2p_{21} + 4p_{22}$ = $1 + p_{12} + p_{21} + 3p_{22}$

- The marginal mean of X_1 is $\mu_{X_1} = 1 + p_{21} + p_{22}$.
- The marginal mean of X_2 is $\mu_{X_2} = 1 + p_{12} + p_{22}$.
- Hence covariance of X_1 and X_2 is $\sigma_{X_1X_2} = E(X_1X_2) - \mu_{X_1}\mu_{X_2} = p_{22}p_{11} - p_{12}p_{21}.$

For the Coronary heart patient data example, find the covariance of BP and SC. Denote the two levels of BP or SC as 0 or 1.

Table: 2×2 table.

		SC 🜔	(1)	
		Below 240 mg/dL	Above 240 mg/dL	Total
BP	Below 120/80 mm Hg	0.115	0.13	0.245
	Above120/80 mm Hg	0.41	0.345	0.755
Total		0.525	0.475	1

$$Cov(Bp, Sc) = E(Bp \cdot sc) - E(Bp) \cdot E(Sc)$$

$$= 0.345 - 0.755 \cdot 0.47S$$

$$= -0.013$$

$$Covr(Bp, Sc) = \frac{-0.013}{\sqrt{0.185 \times 0.249}} = -0.06 \text{ where } 0.185$$
is the voriance of Bp, 0.249 is the variance of Sc.

Correlation

- The correlation measures the direction and strength of the linear relationship between two quantitative variables.
- The correlation between two random variables X and Y, denoted as ρ, is

$$\rho = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}$$

where σ_X and σ_Y are standard deviations of marginal distribution of *X* and *Y* respectively.

• For any two random variable *X* and *Y*, $-1 \le \rho \le 1$.

- *ρ* > 0 ⇔ (equivalent to) variables have a positive linear relationship.
- $\rho > 0 \Leftrightarrow$ variables have a negative linear relationship.
- The absolute value of ρ is close to 1 ⇔ the linear association is strong. The absolute value of ρ is close to 0 ⇔ the linear association is weak.

For the Coronary heart patient data example, find the correlation of BP and SC.

Linear combination of random variables

• Linear combination: Given random variables X_1, X_2, \ldots, X_n and constants c_1, c_2, \ldots, c_n ,

$$Y = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n$$

is a linear combination of X_1, X_2, \ldots, X_n .

• Random sample mean is a direct linear combination of X_1, X_2, \ldots, X_n :

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{n} X_1 + \frac{1}{n} X_2 + \dots + \frac{1}{n} X_n.$$

Linear combination of random variables

- The distribution of the linear combination may be difficult to obtain but we can find the find the mean and variance of it.
- Mean of a linear function: If $Y = c_1 X_1 + c_2 X_2 + \dots + c_n X_n$, then

$$E(Y) = c_1 E(X_1) + c_2 E(X_2) + \cdots + c_n E(X_n)$$

• For example, if X_1, X_2, \ldots, X_n have the same mean 3, then $E(\bar{X}) = \frac{1}{n}E(X_1) + \frac{1}{n}E(X_2) + \cdots + \frac{1}{n}E(X_n) = 3.$

Linear combination of random variables

• Variance of the linear combination

$$Var(Y) = c_1^2 Var(X_1) + c_2^2 Var(X_2) + \dots + c_n^2 Var(X_n)$$

+
$$2 \sum_{i < j} c_i c_j Cov(X_i, X_j)$$

where $\textit{Var}(\cdot)$ denotes variance and $\textit{Cov}(\cdot, \cdot)$ denotes covariance.

• If X_1, X_2, \ldots, X_n are mutually independent,

$$Var(Y) = c_1^2 Var(X_1) + c_2^2 Var(X_2) + \dots + c_n^2 Var(X_n)$$

If $Y = 2X_1 + X_2$, $E(X_1) = 1$, $E(X_2) = 2$, $Var(X_1) = 1$, $Var(X_2) \subseteq 1$ and $Cov(X_1, X_2) = -0.5$. What are the mean and variance of *Y*?

 $E(Y) = 2E(X_1) + E(X_2)$ = 2.1 + 2 = 4 $\Im_{(1^2)}$ $V_{ar}(Y) = 4 Y_{ar}(X_1) + IV_{ar}(X_2) + 2 \cdot 2 Cov(X_1, X_2)$ = 4.1 + 1 + 4.(-0.5) = -3 If $\overline{X} = (X_1 + X_2 + \cdots + X_n)/n$ with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ for $i = 1, \ldots, n$ and $Cov(X_i, X_i) = -0.1\sigma^2$. Find $E(\bar{X})$ and $Var(\bar{X})$. $E(\bar{X}) = \pi E(X_1) + \pi E(X_2) + \dots + \pi E(X_n)$ A covier = + · [+ + + · · · M] = + · n· H = H Var(x) = 1/2 Var(X1) + 1/2 Var(X2) + ... 1/2 Var(Xn) +2. t. t. S Cov(Xi, Xj) $= \frac{1}{n^2} \left(6^2 + 6^2 + \cdots 6^2 \right) + \frac{2}{n^2} \cdot \frac{n(n+1)}{2} \cdot (-\alpha 16^2)$ $= \frac{1}{n} 6^2 - \frac{n}{n} \int 6^2$ - 1.1 - 011A . 6 2

If $\overline{X} = (X_1 + X_2 + \dots + X_n)/n$ with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for $i = 1, \dots, n$. Suppose that X_1, X_2, \dots, X_n are independent. Find $E(\overline{X})$ and $Var(\overline{X})$.

 $E(\bar{x}) \text{ is still } \mu$ $Var(\bar{x}) = \frac{1}{N^2} Var(x_1) + \frac{1}{N^2} Var(x_2) + \dots + \frac{1}{N^2} Var(x_n)$ $= \frac{1}{N^2} \left[6^2 + 6^2 + \dots + 6^2 \right] = \frac{6^2}{N^2}$

Independence in Central limit theorem

• Central limit theorem (CLT): If X_1, \ldots, X_n are mutually independent random variables having a distribution (not necessarily Normal distribution) with mean μ and variance σ^2 and if \bar{X} is the sample mean, then

$$ar{X} \sim N(\mu, \sigma^2/n)$$

for large n.

• If $X_1, X_2, \dots X_n$ are identically and independently distributed from $N(\mu, \sigma^2)$, regardless how large n is, $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$