
Chapter 7, 8-Estimation and confidence intervals

After we have selected a sample, we know the responses of the individuals in the sample.

The usual reason for taking a sample is to to infer from the sample data some conclusion

about the wider population that the sample represents.

1 Chapter 7: Point estimation

In statistics, point estimation involves the use of sample data to calculate a single value

(known as a point estimate or statistic) which is to serve as a “best guess” or “best estimate”

of an unknown population distribution parameter.

• Based on the data of flipping a coin 10 times, we calculate the proportion of “heads”

and use it to estimate the probability of “head” for the coin.

• Based on the data of 50 randomly selected UNM first-year college students, we calculate

the average age and use it to estimate the average age of all UNM first-year students.

• Based on the data of 10 randomly selected days of traffic data, we calculate the average

number of vehicles passing Lomas and University intersection from 6-8am. Then we

use the average divided by 2 to estimate the rate parameter of a Poisson distribution

that may describe the traffic.

• Based on the data of 20 experiment data on treatment and placebo, we calculate the

difference of the averages within each group. The we use the difference to estimate the

distribution mean differences in the two groups.

Why point estimation is important? Learning from samples to make conjecture about pop-

ulation distributions (statistical inference) is one of the basic goals of statistics. Point es-

timation provides a number to any unknown parameter in the population distribution. All

statistical predictions involve estimation of an unknown model that generate the data.
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Denote an observed sample of a univariate distribution as x1, x2, . . . , xn, an observed sample

of a bivariate distribution as {(x1, y1), (x2, y2), . . . , (xn, yn)} and an observed sample of a mul-

tivariate distribution as x1,x2, . . . ,xn. Denote a random sample of a univariate distribution

asX1, X2, . . . , Xn, a random sample of a bivariate distribution as {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}
and a random sample from a multivariate distribution as X1,X2, . . . ,Xn. Typically we as-

sume independence among X1,X2, . . . ,Xn. The resulting terminology is that X1,X2, . . . ,Xn

is a simple random sample.

• Point estimate is a single numerical value summarizing the observed sample, for

example, a function of x1, x2, . . . , xn.

• Point estimator is a random variable that summarizing the random sample, for

example, a function of X1, X2, . . . , Xn.

We view a point estimate as a realization of its corresponding point estimator. Study prop-

erties of the point estimator answers how good the point estimate is.

1.1 Application

Table 1: Commonly seen estimaters. Define x̄ =
∑n

i=1 xi/n, s2 = 1
n−1

∑n
i=1(xi − x̄)2, p̂

as sample proportion of successes, i.e. p̂ = x̄i if xi ∈ {0, 1}, sample correlation rxy =∑n
i=1 yi(xi−x̄)√

[
∑n
i=1(yi−ȳ)2

∑n
i=1(xi−x̄)2]

.

Parameter of interest Estimate

(1) The mean µ of a population x̄

(2) The variance σ2 of a population s2

(3) Success rate p p̂

(4) The µ parameter of Normal distribution (µ, σ2) x̄

(5) The σ2 parameter of Normal distribution (µ, σ2) s2

(6) The λ parameter in Poisson distribution (λT ) x̄/T

(7) The λ parameter in Exponential distribution (λ) 1/x̄

(8) Correlation of two continuous variables rxy

Example 1.1. For a sample of 20 bottles of wine that are selected from a large batch, wine

quality ratings are 19.2, 18.3, 17.1, 15.2, 14.0, 13.8, 12.8, 17.3, 16.3, 16.0, 15.7, 15.3, 14.3,

14.0,13.8, 12.5, 11.5, 14.2,17.3,15.8.
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PH level for the 20 bottles are 3.85,3.75,3.88,3.66,3.47,3.75,3.92,3.97,3.76,3.98,3.75,3.77,3.76,3.76,3.90,

3.80,3.65,3.60,3.86,3.93.

• Give an estimate for the mean of wine quality rate of the large batch (µ).

• Give an estimate for the variance of wine quality rate of the large batch (σ2).

• Give an estimate for the correlation of wine quality and PH.

R codes to find the answers:

mean(winequality)

var(winequality)

cor(winequality,PH)

Interpretations:

• The average wine quality rate of the batch is estimated to be 15.22.

• The variance of wine quality rate of the batch is estimated to be 3.99.
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• The correlation between wine quality rate and PH level is estimated to be 0.349.

Define

• X̄ =
∑n

i=1Xi/n.

• S2 = 1
n−1

∑n
i=1(Xi − X̄)2.

• P̂ as random sample proportion of successes, i.e. P̂ = X̄i if Xi ∈ {0, 1}.

• Random sample correlation Rxy =
∑n
i=1 Yi(Xi−X̄)√

[
∑n
i=1(Yi−Ȳ )2

∑n
i=1(Xi−X̄)2]

Table 2: Commonly seen estimates and estimators.

Parameter of interest estimate Estimator

(1) The mean µ of a population x̄ X̄

(2) The variance σ2 of a population s2 S2

(3) Success rate p p̂ P̂

(4) The µ parameter of Normal distribution (µ, σ2) x̄ X̄

(5) The σ2 parameter of Normal distribution (µ, σ2) s2 S2

(6) The λ parameter in Poisson distribution (λT ) x̄/T X̄

(7) The λ parameter in Exponential distribution (λ) 1/x̄ 1/X̄

(8) Correlation of two continuous variables rxy Rxy

Suppose we assume a linear regression model between wine quality Y and PH X:

Yi = α + βXi + εi

where εi is assumed to follow a Normal distribution with mean 0 and variance σ2. How do

we estimate α, β, and σ?

• It turns out β can be estimated by β̂ =
∑n
i=1 yi(xi−x̄)2∑2
i=1(xi−x̄)2

.

• α can be estimated by ȳ − β̂x̄.

• σ2 can be estimated by
∑

(yi − α̂− β̂xi)2/(n− 2).

R codes to fitting the linear regression model and plot it:

plot(PH, winequality)

abline(lm(winequality~PH))
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1.2 General concepts

Bias of an estimator:the bias of a point estimator θ̂ for parameter θ is E(θ̂) − θ. If the

bias is zero, we say the estimator is unbiased.

Mean squared error is defined as

MSE(θ̂) = E(θ̂ − θ)2.

We typically select an unbiased estimator with the smallest MSE. Sometimes, we compromise

the answer by finding a biased estimator but with the smallest MSE.

Example 1.2. Let X1, X2, . . . , X10 be a simple random sample from a Normal distribution

N(2, 32) and X̄ = 1
10

∑10
i=1 Xi is the random sample mean. We want to investigate two

estimators for distribution mean µ (pretending we do not know µ = 2): X̄ and X1+X2

2
. What

are their bias and mean squared errors? Which estimator is preferred?

1.3 Maximum likelihood method

How to find the estimators? Commonly seen methods include maximum likelihood method

and moment method. We will focus on the maximum likelihood method and a univariate

random sample.

Let x1, x2, . . . , xn be a simple random sample from distribution f(x) where f(x) can be

discrete mass function or a continuous probability density function with unknown parameter

θ. Then the likelihood function of the parameter is

L(θ) = f(x1)× f(x2) · · · × f(xn).

The likelihood function is now a function of only the unknown parameter θ. The maximum
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likelihood estimate of θ is value of θ that maximizes the likelihood function L(θ) or logL(θ).

For example, if f(x) =
(

10
x

)
px(1 − p)10−x where p is the unknown parameter, then the

likelihood function based on a sample of {2, 2, 4, 6} is

L(p) = f(x1)× f(x2) · · · × f(x4)

=

((
10

2

)
p2(1− p)8

)2(
10

4

)
p4(1− p)6

(
10

6

)
p6(1− p)4

=

((
10

2

))2(
10

4

)(
10

6

)
p14(1− p)26

To maximize L(p) with respect to p, we can maximize log(L(p)) with respect to p instead.

In fact log(L(p)) = log
(((

10
2

))2 (10
4

)(
10
6

))
+ 14 ∗ log(p) + 26 ∗ log(1− p). Taking derivative of

log(L(p)) with respect to p, we obtain dlog(L(p))
dp

= 14/p− 26/(1− p). Setting the derivative

to zero, we solve for p = 7/20. Since the second derivative of log(L(p)) is less than zero,

hence p = 7/20 maximizes log(L(p)). Hence the maximum likelihood estimate of p is 7/20.

A maximum likelihood estimator is obtained by maximizing the likelihood with respect to

the unknown parameter but we replace x1, x2, . . . , xn by X1, X2, . . . , Xn. Following the

previous example,

L(p) = f(X1)× f(X2)× f(X3)× f(X4)

=

(
10

X1

)
pX1(1− p)10−X1

(
10

X2

)
pX2(1− p)10−X2

×
(

10

X3

)
pX3(1− p)10−X3

(
10

X1

)
pX4(1− p)10−X4

= cpX1+X2+X3+X4(1− p)40−X1−X2−X3−X4

Hence Log(L(p)) = log(c) +
∑4

i=1Xilog(p) + (40−
∑4

i=1Xi)log(1− p) and hence dLog(L(p))
dp

=∑4
i=1 Xi/p−(40−

∑4
i=1Xi)/(1−p). Setting dLog(L(p))

dp
to zero, we solve p =

∑4
i=1Xi/40. The

second derivative is less than zero, so setting p =
∑4

i=1Xi/40 maximizes the log likelihood.

We call
∑4

i=1Xi/40 an estimator and denote it by p̂.

Example 1.3. Consider an exponential distribution with rate parameter λ, i.e. fX(x) =

λexp(−λx), x > 0. Derive the maximum likelihood estimator of λ based on a simple random

sample of size n.
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2 Chapter 8: Confidence intervals

In statistics, a confidence interval (CI) is a type of interval estimate, computed from the

statistics of the observed data, that might contain the true value of an unknown population

parameter. The interval has an associated confidence level that, loosely speaking, quantifies

the level of confidence that the parameter lies in the interval. More strictly speaking, the

confidence level represents the frequency (i.e. the proportion) of possible confidence inter-

vals that contain the true value of the unknown population parameter. In other words, if

confidence intervals are constructed using a given confidence level from an infinite number of

independent sample statistics, the proportion of those intervals that contain the true value

of the parameter will be equal to the confidence level.

A confidence interval provides complementary information addressing the uncertainty of a

point estimate. For example, if two samples both gives a point estimate of 0.2 for the

distribution mean, one sample is based on 100 observations and its 95% confidence interval

is [0.11, 0.31]; the other is based on 10 observations and its 95% confidence interval is [-

0.1, 0.4]. Both confidence intervals reflects the uncertainties for the point estimate. Both

confidence intervals reflects the uncertainties for the point estimate. We would prefer the

first sample result since it is narrower and hence more informative.

Commonly used confidence intervals include:

• Confidence interval on the mean of a normal distribution or a general distribution,

assuming variance is known/unknown.

• Confidence interval on the variance of a normal distribution or a general distribution.

• Confidence interval on the difference of two normal distributions or two general distri-
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butions, assuming variances known/unknown.

• Confidence interval on regression coefficients.

2.1 Confidence intervals for sample from a Normal distribution

2.1.1 Confidence intervals for the distribution mean

Conditions for the z-confidence interval formula:

(a) We can regard our data as a simple random sample from the population, i.e. the sample

units were selected with equal probability.

(b) The distribution of the variable we measure has an exactly Normal distribution N(µ, σ2)

in the population.

(c) We don’t know the population mean µ. But we do know the population variance σ2.

Knowing the population variance is rare, but unless the sample size is small, using an

approximate answer is also okay.

Let q be a number between 0 and 1, and zq be a number denotes the 100×(1− q) percentile

of the standard normal distribution. For example, z0.025 denote the 97.5% percentile, which

is approximately 1.96. Denote x̄ as the sample mean of an observed sample (x1, . . . , xn). A

100(1− α)% CI on µ is given by

[x̄− zα
2

σ√
n
, x̄+ zα

2

σ√
n

]

For example, if a sample is (1, 3,−1, 2, 5) and assume σ2 = 4 , then n = 5, x̄ = 2.4, the 95%

confidence interval for the Normal distribution mean is

(2.4− 1.96 ∗ 2/
√

5, 2.4 + 1.96 ∗ 2/
√

5) = (0.65, 4.15).

Interpretation: the confidence interval 0.65, 4.15] contains the true value of µ (interpret µ

in the context, for example, mean income level), with 95% confidence.

Addressing the assumptions

• Can we view our sample data as a simple random sample? Typically taking a sample

randomly from a very large population can be viewed as a simple random sample.
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• Is the distribution of the variable we measure Normally distributed? We can use QQ

plot and a formal test.

A QQ plot is a scatterplot of the sorted sample x(i) for i = 1, . . . , n against standard Normal

distribution percentiles for 100*pi = i
n
− 1

2n
. Use library (ggplot2) and then command

ggplot()+stat_qq(aes(sample = x1))+stat_qq_line(aes(sample = x1))

For a large sample from standard Normal distribution the plot should be a straight line

through the origin with slope 1. If the plot is a straight line with a different slope or

intercept, then the data distribution corresponds to a general Normal distribution.

Figure 1: QQ plot of four simulated datasets where each dataset has 100 data points.

−2

−1

0

1

2

−2 −1 0 1 2

Standard Normal

sa
m

pl
e

−5.0

−2.5

0.0

2.5

5.0

−2 −1 0 1 2

Normal(1,4)

sa
m

pl
e

0

2

4

−2 −1 0 1 2

Exponential (1)

sa
m

pl
e

32

36

40

44

−1 0 1

Binomial(10,0.4)

sa
m

pl
e

9



Example 2.1. The Charpy V-notch (CVN) technique measures impact energy and is often

used to determine whether or not a material experience a ductile-to-brittle transition with

decreasing temperature. Ten measurements of impact energy (J) on specimens of a 238 Steel

cut at 60o are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, 64.3. Assume that

impact energy is normally distributed with σ = 1J . Based on the data x̄ = 64.46, n = 10.

Find the 95% CI for µ and assess the Normality assumption.

What if population is unknown? We can use a t-confidence interval. Suppose we observe

sample (x1, . . . , xn) and x̄ is the sample mean and s is the sample standard deviation. The

100(1− α)% t-confidence interval of µ is

[x̄− tα
2
,n−1

s√
n
, x̄+ tα

2
,n−1

s√
n

]

where tα
2
,n−1 is the 100× (1− α

2
) percentage point of a t distribution with n− 1 degrees of

freedom. In R, use “qt(α
2
, n− 1, lower.tail = FALSE, log.p = FALSE)” to obtain the value.

Hence for the mean impact energy example, the t-confidence interval is

[64.46− 2.26 ∗ 0.227/
√

10, 64.46 + 2.26 ∗ 0.227/
√

10] = [64.30, 64.62]

What is t-distribution? It is also called “student’s t-distribution”. A t distribution with ν

degree of freedom has PDF

f(x) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

,−∞ < x < +∞

10



Figure 2: t-distributions.

2.1.2 Method

The confidence interval is based on the sampling distribution of X̄: if X1, X2, . . . , Xn is a

simple random sample from Normal distribution with mean µ and variance σ2, i.e. Xi ∼
N(µ, σ2), i = 1, . . . , n and they are mutually independent, then for any random sample size

n,

X̄ ∼ N(µ, σ2/n),

or equivalently,

Z =
X̄ − µ
σ/
√
n
∼ N(0, 1),

where X̄ =
∑n
i=1Xi
n

Therefore,

P (−zα
2
≤ Z ≤ zα

2
) = 1− α. (1)

Plug Z = X̄−µ
σ/
√
n

into formula (1), we get

P

(
−zα

2
≤ X̄ − µ
σ/
√
n
≤ zα

2

)
= 1− α and then

P

(
X̄ − zα

2

σ√
n
≤ µ ≤ X̄ + zα

2

σ√
n

)
= 1− α.
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Let L = X̄ − zα
2

σ√
n

and U = X̄ + zα
2

σ√
n
, then P (L ≤ µ ≤ U) = 1 − α. It means that the

random intervals will have probability 100(1− α)% to cover the truth.

The confidence interval is based on the sampling distribution of X̄−µ
S/
√
n
: if X1, X2, . . . , Xn

is a random sample from Normal distribution with mean µ and variance σ2, i.e. Xi ∼
N(µ, σ2), i = 1, . . . , n and they are mutually independent, then for any random sample size

n,

T =
X̄ − µ
S/
√
n
∼ tn−1,

where X̄ =
∑n
i=1Xi
n

, S =
√∑n

i=1(Xi−X̄)2

n−1
, and tn−1 represents a t distribution with n − 1

degrees of freedom.

P

(
−tα

2
,n−1 ≤

X̄ − µ
S/
√
n
≤ tα

2
,n−1

)
= 1− α and then

P

(
X̄ − tα

2
,n−1

S√
n
≤ µ ≤ X̄ + tα

2
,n−1

S√
n

)
= 1− α.

Let L = X̄ − tα
2
,n−1

S√
n

and U = X̄ + tα
2
,n−1

S√
n
, then P (L ≤ µ ≤ U) = 1− α. It means that

the random intervals will have probability 100(1− α)% to cover the true µ.

2.1.3 Sample size calculation

Suppose we are still interested in to know the distribution mean µ. We want to plan ahead

before data are collected. One question is: how many subjects do we include in the study?

First we start with a pre-specified amount of error that we allow in estimating µ. Denote

the error by E. Note that X̄ is an unbiased estimator of µ. The variance of X̄ is σ2/n.

Hence, though we expect x̄ to be right at the target, but because of sampling variability,

a one time estimate is usually in the neighborhood of µ, and the size of the neighborhood

depend on n and σ2. We want to calculate the smallest sample size so that |x̄ − µ| <= E

with 100(1− α)% confidence.

Assume σ2 is known (usually this is unknown, but an estimate of it can be used). The

sample size needed to ensure the absolute error |x̄−µ| will not exceed a specified amount

E with 100(1− α)% confidence is

n ≥
(zα

2
σ

E

)2

.

How to derive this formula? From confidence interval formula, we know |x̄− µ| ≤ zα
2
σ/
√
n
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with 100(1 − α)% confidence. Hence let zα
2
σ/
√
n ≤ E and solve for n, we will obtain

n ≥
(
zα
2
σ

E

)2

.

Example 2.2. Consider the CVN test again and suppose that we want to determine how

many specimens must be tested to ensure that with 95% that the absolute error does not

exceed 0.5, i.e. |x̄− µ| ≤ 0.5, i.e. the smallest sample size to ensure that with 95% that the

absolute error does not exceed 0.05. Use the sample standard deviation in replace of σ.

2.1.4 Confidence intervals for the distribution variance

Confidence interval for the variance is useful in uncertainty quantification. In experiment

data, we compare the variability due to different sources. Previously we used sample vari-

ance to estimate variance. Confidence interval for the variance acknowledges the sampling

variability in estimating variance. Suppose data x1, x2, . . . , xn are simple random samples

from a Normal distribution. The 100(1− α)% for σ2 is[
(n− 1)s2

χ2
n−1,1−α/2

,
(n− 1)s2

χ2
n−1,α/2

]

where χ2
n−1,1−α/2 is the 1−α/2 percentile of a Chi-square distribution that has a n−1 degree

of freedom; similarly, χ2
n−1,α/2 is the α/2 percentile of a Chi-square distribution that has a

n− 1 degree of freedom. The 100(1− α)% for σ is[√
(n− 1)s2

χ2
n−1,1−α/2

,

√
(n− 1)s2

χ2
n−1,α/2

]

Example 2.3. The Charpy V-notch (CVN) technique measures impact energy and is often

used to determine whether or not a material experience a ductile-to-brittle transition with

decreasing temperature. Ten measurements of impact energy (J) on specimens of a 238 Steel

cut at 60o are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, 64.3. Obtain a
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95% confidence interval for σ2.

2.2 Large-sample confidence interval on the mean

In this section, we present a large-sample CI for population mean µ that does not require

Normal assumption.

Simple conditions for inference about a mean in this section:

(a) We can regard our data as a simple random sample from the population.

(b) Generally, sample size n should be at least 40 to use this result reliably.

(c) Both mean µ and standard deviation σ could be unknown.

A large-sample confidence interval for µ with confidence level of approximately 100(1−α)%

is

[x̄− zα
2

s√
n
, x̄+ zα

2

s√
n

].

The confidence interval is based on large sample sampling distribution of X̄−µ
S/
√
n
: when n is

large (usually > 30), the quantity X̄−µ
S/
√
n

has an approximate standard Normal distribution.

The sample size here is just a rule of thumb. Better confidence interval formula is based on

Bootstrapping, which does not rely on this assumption.

Example 2.4. An article in the 1993 volume of the transactions of the American Fisheries

Society reports the results of a study to investigate the mercury contamination in large

mouth bass. A sample of fish was elected from 53 Florida lakes, and mercury concentration

in the muscle tissue was measured (ppm). Find an approximate 95% CI on µ. The summary

statistics for the sample are as follows:
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Variable N Mean StDev
Concentration 53 0.525 0.349

2.3 Large sample confidence interval of a population proportion

Population proportion refers to is a parameter that describes a percentage value associated

with a population. For example, the 2010 United States Census showed that 83.7% of the

American Population was identified as not being Hispanic or Latino. The value of .837

is a population proportion. In general, the population proportion and other population

parameters are unknown. A census can be conducted in order to determine the actual value

of a population parameter, but often a census is not practical due to its costs and time

consumption.

A population proportion is usually estimated through a simple random sample proportion

obtained from an observational study or experiment. For example, the National Techno-
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logical Literacy Conference conducted a national survey of 2,000 adults to determine the

percentage of adults who are economically illiterate. The study showed that 72% of the

2,000 adults sampled did not understand what a gross domestic product is.The value of 72%

is a sample proportion. A population proportion can also be estimated through the usage

of a confidence interval known as a one-sample proportion Z-interval.

Denote the random sample as x1, x2, . . . , xn, each taking value 0 or 1. The theoretical

framework is to view each sample item xi which takes value 0 or 1 as a realization from a

Bernoulli random variable. Consider X1, X2, . . . , Xn are a random sample from Bernoulli

population. Suppose the proportion of “1” in the population is p, then distribution of each

Xi is Bernoulli (p). The Bernoulli distribution has mean p and variance p(1− p). Consider

X̄ =
∑p
i=1Xi
n

, then according to the central limit theorem,

X̄ ∼ N

(
p,
p(1− p)

n

)

Denote p̂ as the sample proportion. Denote p̂ as the sample proportion. It is calculated as

p̂ =
∑n
i=1 xi
n

. Apply the large sample confidence interval formula, we obtain a one-sample

proportion Z-interval for p with confidence level of 100(1− α)%[
p̂− zα

2

√
p̂(1− p̂)

n
, p̂+ zα

2

√
p̂(1− p̂)

n

]
,

where zα
2

is the 100(1− α
2
) percentile of standard Normal disribution.

Use this interval only when the numbers of successes and failures in the sample are both

at least 5 (this is just a rule of thumb, more accurate confidence interval can be obtained

through Bootstrap method.).

Example 2.5. In a random sample of 85 automobile engine crankshaft bearings, 10 have a

surface finish that is rougher than the specifications allow. What would be the point estimate

of the proportion of bearings in the population that exceeds the roughness specification? Find

a 95% confidence interval for the proportion.
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If we desire a bound of error |p− p̂|, i.e. |p− p̂| < E, the sample size needed is

n ≥
(zα

2

E

)2

p(1− p).

Usually, we plug in p using values from pe-studies or fix p at 0.5 to obtain the largest sample

size needed.

In the automobile engine example, what is the minimum sample size needed if we want to

be 95% confident that the error in using p̂ to estimate p is less than 0.05? Using the number

from the random sample, n ≥
(

1.96
0.05

)2
0.118(1 − 0.118) = 159.9. The smallest sample size is

160. To be more conservative, n ≥
(

1.96
0.05

)2
0.118(1 − 0.118) = 284.16. The smallest sample

size is 285.
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