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TBATS model

TBATS
Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and

non-integer periods)
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Complex seasonality

fit <- tbats(USAccDeaths)
plot(forecast(fit))

Forecasts from TBATS(1, {0,0}, −, {<12,5>})
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TBATS model

TBATS
Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and non-integer periods)

Handles non-integer seasonality, multiple seasonal
periods.
Entirely automated
Prediction intervals often too wide
Very slow on long series
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Neural network models

Simplest version: linear regression

Input #1

Input #2

Input #3

Input #4

Output

Input
layer

Output
layer

Coefficients attached to predictors are called “weights”.
Forecasts are obtained by a linear combination of inputs.
Weights selected using a “learning algorithm” that
minimises a “cost function”.
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Neural network models

Nonlinear model with one hidden layer

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

A multilayer feed-forward network where each
layer of nodes receives inputs from the previous
layers.
Inputs to each node combined using linear
combination.
Result modified by nonlinear function before being
output.
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Neural network models

Inputs to hidden neuron j linearly combined:

zj = bj +
4∑

i=1
wi ,jxi .

Modified using nonlinear function such as a sigmoid:
s(z) = 1

1 + e−z ,

This tends to reduce the effect of extreme input
values, thus making the network somewhat robust to
outliers.
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Neural network models

Weights take random values to begin with,
which are then updated using the observed data.
There is an element of randomness in the
predictions. So the network is usually trained
several times using different random starting
points, and the results are averaged.
Number of hidden layers, and the number of
nodes in each hidden layer, must be specified in
advance.
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NNAR models

Lagged values of the time series can be used as
inputs to a neural network.
NNAR(p, k): p lagged inputs and k nodes in the
single hidden layer.
NNAR(p, 0) model is equivalent to an
ARIMA(p, 0, 0) model but without stationarity
restrictions.
Seasonal NNAR(p,P, k): inputs
(yt−1, yt−2, . . . , yt−p, yt−m, yt−2m, yt−Pm) and k
neurons in the hidden layer.
NNAR(p,P, 0)m model is equivalent to an
ARIMA(p, 0, 0)(P,0,0)m model but without
stationarity restrictions. 18



NNAR models in R

The nnetar() function fits an NNAR(p,P, k)m
model.
If p and P are not specified, they are
automatically selected.
For non-seasonal time series, default p = optimal
number of lags (according to the AIC) for a
linear AR(p) model.
For seasonal time series, defaults are P = 1 and
p is chosen from the optimal linear model fitted
to the seasonally adjusted data.
Default k = (p + P + 1)/2 (rounded to the
nearest integer). 19



Sunspots

Surface of the sun contains magnetic regions
that appear as dark spots.
These affect the propagation of radio waves and
so telecommunication companies like to predict
sunspot activity in order to plan for any future
difficulties.
Sunspots follow a cycle of length between 9 and
14 years.
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NNAR(9,5) model for sunspots

sunspots <- as_tsibble(fpp2::sunspotarea)
fit <- sunspots %>% model(NNETAR(value))
fit %>% forecast(h=20, times = 1) %>%
autoplot(sunspots, level = NULL)
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Prediction intervals by simulation

fit %>% forecast(h=20) %>%
autoplot(sunspots)
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