STAT481/581: Introduction to Time Series Analysis

Ch3. The forecasters' toolbox OTexts.org/fpp3/

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

The process of producing forecasts can be split up into a few fundamental steps.

- Preparing data
- 2 Data visualisation
- Specifying a model
- 4 Model estimation
- Accuracy & performance evaluation
- Producing forecasts

A tidy forecasting workflow

Outline

1 A tidy forecasting workflow

- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

How would you forecast these series?

How would you forecast these series?

How would you forecast these series?

MEAN(y): Average method

■ Forecast of all future values is equal to mean of historical data {y₁,..., y_T}.

Forecasts:
$$\hat{y}_{\mathcal{T}+h|\mathcal{T}} = \bar{y} = (y_1 + \cdots + y_{\mathcal{T}})/\mathcal{T}$$

Clay brick production in Australia

Forecasts equal to last observed value.

• Forecasts:
$$\hat{y}_{T+h|T} = y_T$$
.

SNAIVE(y ~ lag(m)): Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: ŷ_{T+h|T} = y_{T+h-m(k+1)}, where m = seasonal period and k is the integer part of (h − 1)/m.

RW(y ~ drift()): Drift method

Forecasts equal to last value plus average change.
Forecasts:

$$egin{aligned} y_{T+h|T} &= y_T + rac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1}) \ &= y_T + rac{h}{T-1} (y_T - y_1). \end{aligned}$$

 Equivalent to extrapolating a line drawn between first and last observations.

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

Data preparation and visualisation

```
# Set training data from 1992 to 2007
train <- aus_production %>%
  filter(between(year(Quarter), 1992, 2007))
train %>% autoplot(Beer)
```


The model() function trains models to data.

```
# Fit the models
beer_fit <- train %>%
model(
    Mean = MEAN(Beer),
    Naïve = NAIVE(Beer),
    Seasonal naïve = SNAIVE(Beer), #or SNAIVE(Beer~lag(4))
    # or SNAIVE(Beer~lag("year"))
    Drift = RW(Beer ~ drift())
)
```

beer_fit

##	#	A mable	:1 x 4		
##		Mean	Naïve	Seasonal naïve	Drift
##		<model></model>	<model></model>	<model></model>	<model></model>
##	1	<mean></mean>	<naive></naive>	<snaive></snaive>	<rw drift="" w=""></rw>

A mable is a model table, each cell corresponds to a fitted model.

Producing forecasts

```
beer_fc <- beer_fit %>%
forecast(h = 11)
```

##	#	A fable	e: 44	x 4	4 [1Q]		
##	#	Key:	.mc	odel	[4]		
##		.model	Quart	ter	Beer	.distr	ibution
##		<chr></chr>	<qt< td=""><td>tr></td><td><dbl></dbl></td><td><dist></dist></td><td></td></qt<>	tr>	<dbl></dbl>	<dist></dist>	
##	1	Mean	2008	Q1	435.	N(435,	1964)
##	2	Mean	2008	Q2	435.	N(435,	1964)
##	3	Mean	2008	Q3	435.	N(435,	1964)
##	4	Mean	2008	Q4	435.	N(435,	1964)
##	#	wi†	th 40	mor	re rows	5	

A fable is a forecast table with point forecasts and distributions.

Visualising forecasts

```
beer_fc %>%
autoplot(train, level = NULL) +
#level=NULL means no prediction interval
ggtitle("Forecasts for quarterly beer production") +
xlab("Year") + ylab("Megalitres") +
guides(colour=guide_legend(title="Forecast"))
```


Facebook closing stock price

```
# Extract training data
fb_stock <- gafa_stock %>%
  group by(Symbol) %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE) %>%
  filter(Symbol == "FB",
         between(Date, ymd("2018-01-01"), ymd("2018-09-01")))
# Specify, estimate and forecast
fb_stock %>%
  model(
    Mean = MEAN(Close),
    Naïve = NAIVE(Close),
    Drift = RW(Close ~ drift())
  ) %>%
  forecast(h=42) %>%
  autoplot(fb_stock, level = NULL) +
  ggtitle("Facebook closing stock price (daily ending Sep 2018)") +
  xlab("Day") + ylab("") +
  guides(colour=guide_legend(title="Forecast"))
```

Facebook closing stock price

- Produce forecasts from the appropriate method for Amazon closing price (gafa_stock) and Australian takeaway food turnover (aus_retail).
- Plot the results using autoplot().

Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful. If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root	$w_t = \sqrt{y_t}$	\downarrow
Cube root	$w_t = \sqrt[3]{y_t}$	Increasing
Logarithm	$w_t = \log(y_t)$	strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root	$w_t = \sqrt{y_t}$	\downarrow
Cube root	$w_t = \sqrt[3]{y_t}$	Increasing
Logarithm	$w_t = \log(y_t)$	strength

Logarithms, in particular, are useful because they are more interpretable: changes in a log value are **relative** (percent) changes on the original scale.

25

Variance stabilization

food <- aus_retail %>%
filter(Industry == "Food retailing") %>%
summarise(Turnover = sum(Turnover))

food %>% autoplot(sqrt(Turnover)) + labs(y = "Square root turnover")

food %>% autoplot(Turnover^(1/3)) +
 labs(y = "Cube root turnover")

Variance stabilization

food %>% autoplot(log(Turnover)) +
 labs(y = "Log turnover")

food %>% autoplot(-1/Turnover) + labs(y = "Inverse turnover")

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \left\{ egin{array}{ll} \log(y_t), & \lambda = 0; \ (y_t^\lambda - 1)/\lambda, & \lambda
eq 0. \end{array}
ight.$$

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \left\{ egin{array}{ll} \log(y_t), & \lambda = 0; \ (y_t^\lambda - 1)/\lambda, & \lambda
eq 0. \end{array}
ight.$$

- $\lambda = 1$: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- $\lambda = 0$: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

Box-Cox transformations

food %>% autoplot(box_cox(Turnover, 1/3)) +
 labs(y = "Box-Cox transformed turnover")

- y_t^{λ} for λ close to zero behaves like logs.
- If some $y_t = 0$, then must have $\lambda > 0$
- if some y_t < 0, no power transformation is possible unless all y_t adjusted by adding a constant to all values.
- Simple values of λ are easier to explain.
- Results are relatively insensitive to λ.
- Often no transformation $(\lambda = 1)$ needed.
- Transformation can have very large effect on PI.
 Choosing \u03c6 = 0 is a simple way to force forecasts to be positive

food %>%
features(Turnover, features = guerrero)

- ## # A tibble: 1 x 1
- ## lambda_guerrero

<dbl>

1 0.0524

it uses the BoxCoxLambda function in the forecast package # use the guerrero function for an automated approach # Guerrero, V.M. (1993) Time-series analysis supported by # power transformations. # Journal of Forecasting, 12, 37--48.

- The guerrero approach attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

#use library(TSA)

lambda.fit <- BoxCox.ar(food\$Turnover)</pre>

BoxCox.ar is to estimate the power transformation so that the transformed time series is approximately a Gaussian AR process (no seasonal/cyclic pattern or trend is allowed). Hence the food turner over data is not appropriate here.

lambda.fit\$mle

[1] 0.2

lambda.fit\$ci

[1] 0.1 0.3

We must reverse the transformation (or *back-transform*) to obtain forecasts on the original scale. The reverse Box-Cox transformations are given by

$$y_t = \left\{ egin{array}{ll} \exp(w_t), & \lambda = 0; \ (\lambda W_t + 1)^{1/\lambda}, & \lambda
eq 0. \end{array}
ight.$$

Modelling with transformations

Transformations used in the left of the formula will be automatically back-transformed. To model log-transformed food retailing turnover, you could use:

fit <- food %>%
 model(SNAIVE(log(Turnover) ~ lag("year")))

```
## # A mable: 1 x 1
```

- ## SNAIVE(log(Turnover) ~ lag("year"))
- ## <model>

```
## 1 <SNAIVE>
```

Forecasting with transformations

fc <- fit %>%

forecast(h = "3 years")

- ## # A fable: 36 x 4 [1M]
- ## # Key: .model [1]
- ## .model
- ## <chr>
- ## 1 "SNAIVE(log(Turnover) ~ 2
- ## 2 "SNAIVE(log(Turnover) ~ 2
- ## 3 "SNAIVE(log(Turnover) ~ 2
- ## 4 "SNAIVE(log(Turnover) ~ 2
- ## 5 "SNAIVE(log(Turnover) ~ 2
- ## 6 "SNAIVE(log(Turnover) ~ 2
- ## # ... with 30 more rows

М	onth	Turnover .distribution		ution
<	mth>	<dbl></dbl>	<dist></dist>	
2019	Jan	10738.	t(N(9.3,	0.004~
2019	Feb	9856.	t(N(9.2,	0.004~
2019	Mar	11214.	t(N(9.3,	0.004~
2019	Apr	10378.	t(N(9.2,	0.004~
2019	Мау	10670.	t(N(9.3,	0.004~
2019	Jun	10292.	t(N(9.2,	
				40

Forecasting with transformations

fc %>% autoplot(filter(food,year(Month)>2010))

Find a transformation that works for the Australian gas production (aus_production).

- Back-transformed median forecasts for w_{T+h} are median forecasts for y_{T+h} .
- Back-transformed PI have the correct coverage.
- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.

- Back-transformed median forecasts for w_{T+h} are median forecasts for y_{T+h}.
- Back-transformed PI have the correct coverage.
- A forecast $\hat{y}_{T+h|T}$ is (usually) the mean of the conditional distribution $y_{T+h} \mid y_1, \dots, y_T$.

Back-transformed means

- Let X be have mean μ and variance σ^2 .
- Let f(x) be back-transformation function, and Y = f(X).

Taylor series expansion about μ : $f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$

Taylor series expansion about μ : $f(X) = f(\mu) + (X - \mu)f'(\mu) + \frac{1}{2}(X - \mu)^2 f''(\mu).$

$E[Y] = E[f(X)] = f(\mu) + \frac{1}{2}\sigma^2 f''(\mu)$

Box-Cox back-transformation:

$$y_t = \left\{egin{array}{ll} \exp(w_t) & \lambda = 0; \ (\lambda W_t + 1)^{1/\lambda} & \lambda
eq 0. \end{array}
ight.$$
 $f(x) = \left\{egin{array}{ll} e^x & \lambda = 0; \ (\lambda x + 1)^{1/\lambda} & \lambda
eq 0. \end{array}
ight.$
 $f''(x) = \left\{egin{array}{ll} e^x & \lambda = 0; \ (1 - \lambda)(\lambda x + 1)^{1/\lambda - 2} & \lambda
eq 0. \end{array}
ight.$

$$\mathsf{E}[Y] = egin{cases} e^{\mu} \left[1 + rac{\sigma^2}{2}
ight] & \lambda = 0; \ (\lambda \mu + 1)^{1/\lambda} \left[1 + rac{\sigma^2(1-\lambda)}{2(\lambda \mu + 1)^2}
ight] & \lambda
eq 0. \end{cases}$$

```
eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50, bias_adjust = TRUE)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)
```



```
# the point forecasts are bias adjusted means
eggs %>% autoplot(value) +
   autolayer(fc, series="Simple back transformation", level=80)
```


Outline

- 1 A tidy forecasting workflow
- 2 Some simple forecasting methods
- 3 The workflow in action
- 4 Transformations
- 5 Distributional forecasts

- Most time series models produce normally distributed forecasts.
- The forecast distribution describes the probability of observing any future value.

Assuming residuals are normal, uncorrelated, sd = $\hat{\sigma}$:

Mean: $\hat{y}_{T+h|T} \sim N(\bar{y}, (1+1/T)\hat{\sigma}^2)$ Naïve: $\hat{y}_{T+h|T} \sim N(y_T, h\hat{\sigma}^2)$ Seasonal naïve: $\hat{y}_{T+h|T} \sim N(y_{T+h-m(k+1)}, (k+1)\hat{\sigma}^2)$ Drift: $\hat{y}_{T+h|T} \sim N(y_T + \frac{h}{T-1}(y_T - y_1), h\frac{T+h}{T})$

where k is the integer part of (h-1)/m.

Note that when h = 1 and T is large, these all give the same approximate forecast variance: $\hat{\sigma}^2$.

- A prediction interval gives a region within which we expect y_{T+h} to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a 95% PI is

 $\hat{y}_{T+h|T} \pm 1.96\hat{\sigma}_h$

where $\hat{\sigma}_h$ is the st dev of the *h*-step distribution.

■ When h = 1, ô_h can be estimated from the residuals.

Prediction intervals

fit <- fb_stock %>% model(NAIVE(Close))
forecast(fit)

## # A fable: 2 x 5 [1]							
##	#	Key:	Symbol,	.model [1]			
##		Symbol	.model	trading_day	Close	.distr	ibution
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dist></dist>	
##	1	FB	NAIVE(Cl~	3693	176.	N(176,	21)
##	2	FB	NAIVE(Cl~	3694	176.	N(176,	42)

res_sd <- sqrt(mean(augment(fit)\$.resid^2, na.rm = TRUE))
last(fb_stock\$Close) + 1.96 * res_sd * c(-1,1)</pre>

[1] 166.7196 184.7404

Prediction intervals

```
forecast(fit, h = 1) %>%
    transmute(interval = hilo(.distribution, level = 95))
```

##	# # A tsibble: 1 x 4 [1]				
##	#	Key:	Symbol,	.model [1]	
##		Symbol	.model	trading_day	interval
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<hilo></hilo>
##	1	FB	NAIVE(Close)	3693	[166.7198, 184.7402]95

transmute: add a new variable to the tsibble object by forecast # hilo: use the forecast object and compute its 95% PI # .distribution is a column of the forecast object

- Point forecasts are often useless without a measure of uncertainty (such as prediction intervals).
- Prediction intervals require a stochastic model (with random errors, etc).
- Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).

- Computed automatically from the forecast distribution.
- Use level argument to control coverage.
- Check residual assumptions before believing them (we will see this next class).
- Usually too narrow due to unaccounted uncertainty.