
STAT481/581:
Introduction to Time
Series Analysis

Ch3. The forecasters’ toolbox

OTexts.org/fpp3/

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

2

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

3

A tidy forecasting workflow

The process of producing forecasts can be split up
into a few fundamental steps.

1 Preparing data
2 Data visualisation
3 Specifying a model
4 Model estimation
5 Accuracy & performance evaluation
6 Producing forecasts

4

A tidy forecasting workflow

Tidy Visualise

Specify

Estimate

Evaluate

Forecast

5

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

6

Some simple forecasting methods

400

450

500

1995 2000 2005 2010
Year

m
eg

al
itr

es

Australian quarterly beer production

7How would you forecast these series?

Some simple forecasting methods

80000

90000

100000

110000

120000

130000

1990 1992 1994 1996
Year

th
ou

sa
nd

s

Number of pigs slaughtered in Victoria, 1990−1995

8How would you forecast these series?

Some simple forecasting methods

125

150

175

200

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019

C
lo

si
ng

 p
ric

e
($

U
S

D
)

Facebook closing stock price in 2018

9How would you forecast these series?

Some simple forecasting methods

MEAN(y): Average method
Forecast of all future values is equal to mean of
historical data {y1, . . . , yT}.
Forecasts: ŷT+h|T = ȳ = (y1 + · · ·+ yT)/T

300

350

400

450

500

1995 2000 2005 2010
Quarter

B
ric

ks

Clay brick production in Australia

10

Some simple forecasting methods

NAIVE(y): Naïve method
Forecasts equal to last observed value.
Forecasts: ŷT+h|T = yT .

300

350

400

450

500

1995 2000 2005 2010
Quarter

B
ric

ks

Clay brick production in Australia

11

Some simple forecasting methods

SNAIVE(y ~ lag(m)): Seasonal naïve method
Forecasts equal to last value from same season.
Forecasts: ŷT+h|T = yT+h−m(k+1), where m =
seasonal period and k is the integer part of
(h − 1)/m.

300

350

400

450

500

1995 2000 2005 2010
Quarter

B
ric

ks

Clay brick production in Australia

12

Some simple forecasting methods

RW(y ~ drift()): Drift method
Forecasts equal to last value plus average change.
Forecasts:

ŷT+h|T = yT + h
T − 1

T∑
t=2

(yt − yt−1)

= yT + h
T − 1(yT − y1).

Equivalent to extrapolating a line drawn between
first and last observations.

13

Some simple forecasting methods

Drift method

200

300

400

500

600

1960 1980 2000
Quarter

B
ric

ks

Clay brick production in Australia

14

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

15

Data preparation and visualisation

Set training data from 1992 to 2007

train <- aus_production %>%

filter(between(year(Quarter), 1992, 2007))

train %>% autoplot(Beer)

400

450

500

1995 2000 2005
Quarter [1Q]

B
ee

r

16

Model estimation

The model() function trains models to data.

Fit the models

beer_fit <- train %>%

model(

Mean = MEAN(Beer),

Naïve = NAIVE(Beer),

Seasonal naïve = SNAIVE(Beer), #or SNAIVE(Beer~lag(4))

or SNAIVE(Beer~lag("year"))

Drift = RW(Beer ~ drift())

)

17

Model estimation

beer_fit

A mable: 1 x 4

Mean Naïve Seasonal naïve Drift

<model> <model> <model> <model>

1 <MEAN> <NAIVE> <SNAIVE> <RW w/ drift>

A mable is a model table, each cell corresponds to a fitted model.

18

Producing forecasts

beer_fc <- beer_fit %>%

forecast(h = 11)

A fable: 44 x 4 [1Q]

Key: .model [4]

.model Quarter Beer .distribution

<chr> <qtr> <dbl> <dist>

1 Mean 2008 Q1 435. N(435, 1964)

2 Mean 2008 Q2 435. N(435, 1964)

3 Mean 2008 Q3 435. N(435, 1964)

4 Mean 2008 Q4 435. N(435, 1964)

... with 40 more rows

A fable is a forecast table with point forecasts and distributions.
19

Visualising forecasts

beer_fc %>%
autoplot(train, level = NULL) +
#level=NULL means no prediction interval
ggtitle("Forecasts for quarterly beer production") +
xlab("Year") + ylab("Megalitres") +
guides(colour=guide_legend(title="Forecast"))

400

450

500

1995 2000 2005 2010
Year

M
eg

al
itr

es

Forecast

Drift

Mean

Naïve

Seasonal naïve

Forecasts for quarterly beer production

#guide_legend: let the legend value determine the colour

20

Facebook closing stock price

Extract training data
fb_stock <- gafa_stock %>%
group_by(Symbol) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE) %>%
filter(Symbol == "FB",

between(Date, ymd("2018-01-01"), ymd("2018-09-01")))
Specify, estimate and forecast
fb_stock %>%
model(
Mean = MEAN(Close),
Naïve = NAIVE(Close),
Drift = RW(Close ~ drift())

) %>%
forecast(h=42) %>%
autoplot(fb_stock, level = NULL) +
ggtitle("Facebook closing stock price (daily ending Sep 2018)") +
xlab("Day") + ylab("") +
guides(colour=guide_legend(title="Forecast")) 21

Facebook closing stock price

160

180

200

220

3550 3600 3650 3700
Day

Forecast

Drift

Mean

Naïve

Facebook closing stock price (daily ending Sep 2018)

22

Your turn

Produce forecasts from the appropriate method
for Amazon closing price (gafa_stock) and
Australian takeaway food turnover
(aus_retail).
Plot the results using autoplot().

23

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

24

Variance stabilization

If the data show different variation at different levels of
the series, then a transformation can be useful.

Denote original observations as y1, . . . , yn and transformed
observations as w1, . . . ,wn.
Mathematical transformations for stabilizing variation

Square root wt = √yt ↓

Cube root wt = 3
√yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more
interpretable: changes in a log value are relative
(percent) changes on the original scale.

25

Variance stabilization

If the data show different variation at different levels of
the series, then a transformation can be useful.
Denote original observations as y1, . . . , yn and transformed
observations as w1, . . . ,wn.

Mathematical transformations for stabilizing variation

Square root wt = √yt ↓

Cube root wt = 3
√yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more
interpretable: changes in a log value are relative
(percent) changes on the original scale.

25

Variance stabilization

If the data show different variation at different levels of
the series, then a transformation can be useful.
Denote original observations as y1, . . . , yn and transformed
observations as w1, . . . ,wn.
Mathematical transformations for stabilizing variation

Square root wt = √yt ↓

Cube root wt = 3
√yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more
interpretable: changes in a log value are relative
(percent) changes on the original scale.

25

Variance stabilization

If the data show different variation at different levels of
the series, then a transformation can be useful.
Denote original observations as y1, . . . , yn and transformed
observations as w1, . . . ,wn.
Mathematical transformations for stabilizing variation

Square root wt = √yt ↓

Cube root wt = 3
√yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more
interpretable: changes in a log value are relative
(percent) changes on the original scale. 25

Variance stabilization

food <- aus_retail %>%
filter(Industry == "Food retailing") %>%
summarise(Turnover = sum(Turnover))

5000

10000

1990 2000 2010 2020
Month [1M]

Tu
rn

ov
er

 (
$A

U
D

)

26

Variance stabilization

food %>% autoplot(sqrt(Turnover)) +
labs(y = "Square root turnover")

50

75

100

1990 2000 2010 2020
Month [1M]

S
qu

ar
e

ro
ot

 tu
rn

ov
er

27

Variance stabilization

food %>% autoplot(Turnover^(1/3)) +
labs(y = "Cube root turnover")

10

15

20

1990 2000 2010 2020
Month [1M]

C
ub

e
ro

ot
 tu

rn
ov

er

28

Variance stabilization

food %>% autoplot(log(Turnover)) +
labs(y = "Log turnover")

7.0

7.5

8.0

8.5

9.0

9.5

1990 2000 2010 2020
Month [1M]

Lo
g

tu
rn

ov
er

29

Variance stabilization

food %>% autoplot(-1/Turnover) +
labs(y = "Inverse turnover")

−0.00075

−0.00050

−0.00025

1990 2000 2010 2020
Month [1M]

In
ve

rs
e

tu
rn

ov
er

30

Box-Cox transformations

Each of these transformations is close to a member
of the family of Box-Cox transformations:

wt =
 log(yt), λ = 0;

(yλt − 1)/λ, λ 6= 0.

λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)

31

Box-Cox transformations

Each of these transformations is close to a member
of the family of Box-Cox transformations:

wt =
 log(yt), λ = 0;

(yλt − 1)/λ, λ 6= 0.

λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)

31

Box-Cox transformations

food %>% autoplot(box_cox(Turnover, 1/3)) +
labs(y = "Box-Cox transformed turnover")

30

40

50

60

1990 2000 2010 2020
Month [1M]

B
ox

−
C

ox
 tr

an
sf

or
m

ed
 tu

rn
ov

er

32

Box-Cox transformations

yλt for λ close to zero behaves like logs.
If some yt = 0, then must have λ > 0
if some yt < 0, no power transformation is
possible unless all yt adjusted by adding a
constant to all values.
Simple values of λ are easier to explain.
Results are relatively insensitive to λ.
Often no transformation (λ = 1) needed.
Transformation can have very large effect on PI.
Choosing λ = 0 is a simple way to force
forecasts to be positive 33

Box-Cox transformations

food %>%

features(Turnover, features = guerrero)

A tibble: 1 x 1

lambda_guerrero

<dbl>

1 0.0524

it uses the BoxCoxLambda function in the forecast package

use the guerrero function for an automated approach

Guerrero, V.M. (1993) Time-series analysis supported by

power transformations.

Journal of Forecasting, 12, 37--48.

34

Box-Cox transformations

The guerrero approach attempts to balance the seasonal
fluctuations and random variation across the series.
Always check the results.
A low value of λ can give extremely large prediction intervals.

35

Box-Cox transformations

#use library(TSA)

lambda.fit <- BoxCox.ar(food$Turnover)

−2 −1 0 1 2

13
00

15
00

17
00

λ

Lo
g

Li
ke

lih
oo

d

 95%

36

Box-Cox transformations

BoxCox.ar is to estimate the power transformation so that the
transformed time series is approximately a Gaussian AR process (no
seasonal/cyclic pattern or trend is allowed). Hence the food turner over
data is not appropriate here.

lambda.fit$mle

[1] 0.2

lambda.fit$ci

[1] 0.1 0.3

37

Back-transformation

We must reverse the transformation (or
back-transform) to obtain forecasts on the original
scale. The reverse Box-Cox transformations are given
by

yt =
 exp(wt), λ = 0;

(λWt + 1)1/λ, λ 6= 0.

38

Modelling with transformations

Transformations used in the left of the formula will
be automatically back-transformed. To model
log-transformed food retailing turnover, you could
use:

fit <- food %>%
model(SNAIVE(log(Turnover) ~ lag("year")))

A mable: 1 x 1
SNAIVE(log(Turnover) ~ lag("year"))
<model>
1 <SNAIVE>

39

Forecasting with transformations

fc <- fit %>%
forecast(h = "3 years")

A fable: 36 x 4 [1M]

Key: .model [1]

.model Month Turnover .distribution

<chr> <mth> <dbl> <dist>

1 "SNAIVE(log(Turnover) ~ 2019 Jan 10738. t(N(9.3, 0.004~

2 "SNAIVE(log(Turnover) ~ 2019 Feb 9856. t(N(9.2, 0.004~

3 "SNAIVE(log(Turnover) ~ 2019 Mar 11214. t(N(9.3, 0.004~

4 "SNAIVE(log(Turnover) ~ 2019 Apr 10378. t(N(9.2, 0.004~

5 "SNAIVE(log(Turnover) ~ 2019 May 10670. t(N(9.3, 0.004~

6 "SNAIVE(log(Turnover) ~ 2019 Jun 10292. t(N(9.2, 0.004~

... with 30 more rows
40

Forecasting with transformations

fc %>% autoplot(filter(food,year(Month)>2010))

7500

10000

12500

15000

2012 2014 2016 2018 2020 2022
Month

Tu
rn

ov
er .level

80

95

41

Your turn

Find a transformation that works for the Australian
gas production (aus_production).

42

Bias adjustment

Back-transformed median forecasts for wT+h are
median forecasts for yT+h.
Back-transformed PI have the correct coverage.
A forecast ŷT+h|T is (usually) the mean of the
conditional distribution yT+h | y1, . . . , yT .

Back-transformed means

Let X be have mean µ and variance σ2.

Let f (x) be back-transformation function, and
Y = f (X).

43

Bias adjustment

Back-transformed median forecasts for wT+h are
median forecasts for yT+h.
Back-transformed PI have the correct coverage.
A forecast ŷT+h|T is (usually) the mean of the
conditional distribution yT+h | y1, . . . , yT .

Back-transformed means

Let X be have mean µ and variance σ2.

Let f (x) be back-transformation function, and
Y = f (X).

43

Bias adjustment

Taylor series expansion about µ:
f (X) = f (µ) + (X − µ)f ′(µ) + 1

2(X − µ)2f ′′(µ).

E[Y] = E[f (X)] = f (µ) + 1
2σ

2f ′′(µ)

44

Bias adjustment

Taylor series expansion about µ:
f (X) = f (µ) + (X − µ)f ′(µ) + 1

2(X − µ)2f ′′(µ).

E[Y] = E[f (X)] = f (µ) + 1
2σ

2f ′′(µ)

44

Bias adjustment

Box-Cox back-transformation:

yt =
 exp(wt) λ = 0;

(λWt + 1)1/λ λ 6= 0.

f (x) =

ex λ = 0;
(λx + 1)1/λ λ 6= 0.

f ′′(x) =

ex λ = 0;
(1− λ)(λx + 1)1/λ−2 λ 6= 0.

45

Bias adjustment

E[Y] =

eµ
[
1 + σ2

2

]
λ = 0;

(λµ + 1)1/λ
[
1 + σ2(1−λ)

2(λµ+1)2

]
λ 6= 0.

46

Bias adjustment

eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50, bias_adjust = TRUE)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)

47

Bias adjustment

the point forecasts are medians
eggs %>% autoplot(value) +

autolayer(fc_biased, series="Simple back transformation", level=80)

0

100

200

300

1900 1950 2000 2050
index [1Y]

va
lu

e .level

80

48

Bias adjustment

the point forecasts are bias adjusted means
eggs %>% autoplot(value) +

autolayer(fc, series="Simple back transformation", level=80)

0

100

200

300

1900 1950 2000 2050
index [1Y]

va
lu

e .level

80

49

Outline

1 A tidy forecasting workflow

2 Some simple forecasting methods

3 The workflow in action

4 Transformations

5 Distributional forecasts

50

Forecast distributions

Most time series models produce normally
distributed forecasts.
The forecast distribution describes the
probability of observing any future value.

51

Forecast distributions

Assuming residuals are normal, uncorrelated, sd = σ̂:

Mean: ŷT+h|T ∼ N(ȳ , (1 + 1/T)σ̂2)

Naïve: ŷT+h|T ∼ N(yT , hσ̂2)

Seasonal naïve: ŷT+h|T ∼ N(yT+h−m(k+1), (k + 1)σ̂2)

Drift: ŷT+h|T ∼ N(yT + h
T−1(yT − y1), hT+h

T σ̂2)

where k is the integer part of (h − 1)/m.

Note that when h = 1 and T is large, these all give
the same approximate forecast variance: σ̂2.

52

Prediction intervals

A prediction interval gives a region within which
we expect yT+h to lie with a specified probability.
Assuming forecast errors are normally
distributed, then a 95% PI is

ŷT+h|T ± 1.96σ̂h

where σ̂h is the st dev of the h-step distribution.
When h = 1, σ̂h can be estimated from the
residuals.

53

Prediction intervals

fit <- fb_stock %>% model(NAIVE(Close))

forecast(fit)

A fable: 2 x 5 [1]

Key: Symbol, .model [1]

Symbol .model trading_day Close .distribution

<chr> <chr> <dbl> <dbl> <dist>

1 FB NAIVE(Cl~ 3693 176. N(176, 21)

2 FB NAIVE(Cl~ 3694 176. N(176, 42)

54

Prediction intervals

res_sd <- sqrt(mean(augment(fit)$.resid^2, na.rm = TRUE))

last(fb_stock$Close) + 1.96 * res_sd * c(-1,1)

[1] 166.7196 184.7404

55

Prediction intervals

forecast(fit, h = 1) %>%
transmute(interval = hilo(.distribution, level = 95))

A tsibble: 1 x 4 [1]

Key: Symbol, .model [1]

Symbol .model trading_day interval

<chr> <chr> <dbl> <hilo>

1 FB NAIVE(Close) 3693 [166.7198, 184.7402]95

transmute: add a new variable to the tsibble object by forecast
hilo: use the forecast object and compute its 95% PI
.distribution is a column of the forecast object

56

Prediction intervals

Point forecasts are often useless without a
measure of uncertainty (such as prediction
intervals).
Prediction intervals require a stochastic model
(with random errors, etc).
Multi-step forecasts for time series require a
more sophisticated approach (with PI getting
wider as the forecast horizon increases).

57

Prediction intervals

Computed automatically from the forecast
distribution.
Use level argument to control coverage.
Check residual assumptions before believing
them (we will see this next class).
Usually too narrow due to unaccounted
uncertainty.

58

	A tidy forecasting workflow
	Some simple forecasting methods
	The workflow in action
	Transformations
	Distributional forecasts

