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A tidy forecasting workflow

The process of producing forecasts can be split up
into a few fundamental steps.

1 Preparing data
2 Data visualisation
3 Specifying a model
4 Model estimation
5 Accuracy & performance evaluation
6 Producing forecasts
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A tidy forecasting workflow
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Some simple forecasting methods
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Some simple forecasting methods
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Some simple forecasting methods

MEAN(y): Average method
Forecast of all future values is equal to mean of
historical data {y1, . . . , yT}.
Forecasts: ŷT+h|T = ȳ = (y1 + · · ·+ yT )/T
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Some simple forecasting methods

NAIVE(y): Naïve method
Forecasts equal to last observed value.
Forecasts: ŷT+h|T = yT .
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Some simple forecasting methods

SNAIVE(y ~ lag(m)): Seasonal naïve method
Forecasts equal to last value from same season.
Forecasts: ŷT+h|T = yT+h−m(k+1), where m =
seasonal period and k is the integer part of
(h − 1)/m.
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Some simple forecasting methods

RW(y ~ drift()): Drift method
Forecasts equal to last value plus average change.
Forecasts:

ŷT+h|T = yT + h
T − 1

T∑
t=2

(yt − yt−1)

= yT + h
T − 1(yT − y1).

Equivalent to extrapolating a line drawn between
first and last observations.
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Some simple forecasting methods

Drift method
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Data preparation and visualisation

# Set training data from 1992 to 2007

train <- aus_production %>%

filter(between(year(Quarter), 1992, 2007))

train %>% autoplot(Beer)
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Model estimation

The model() function trains models to data.

# Fit the models

beer_fit <- train %>%

model(

Mean = MEAN(Beer),

Naïve = NAIVE(Beer),

Seasonal naïve = SNAIVE(Beer), #or SNAIVE(Beer~lag(4))

# or SNAIVE(Beer~lag("year"))

Drift = RW(Beer ~ drift())

)
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Model estimation

beer_fit

## # A mable: 1 x 4

## Mean Naïve Seasonal naïve Drift

## <model> <model> <model> <model>

## 1 <MEAN> <NAIVE> <SNAIVE> <RW w/ drift>

A mable is a model table, each cell corresponds to a fitted model.
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Producing forecasts

beer_fc <- beer_fit %>%

forecast(h = 11)

## # A fable: 44 x 4 [1Q]

## # Key: .model [4]

## .model Quarter Beer .distribution

## <chr> <qtr> <dbl> <dist>

## 1 Mean 2008 Q1 435. N(435, 1964)

## 2 Mean 2008 Q2 435. N(435, 1964)

## 3 Mean 2008 Q3 435. N(435, 1964)

## 4 Mean 2008 Q4 435. N(435, 1964)

## # ... with 40 more rows

A fable is a forecast table with point forecasts and distributions.
19



Visualising forecasts

beer_fc %>%
autoplot(train, level = NULL) +
#level=NULL means no prediction interval
ggtitle("Forecasts for quarterly beer production") +
xlab("Year") + ylab("Megalitres") +
guides(colour=guide_legend(title="Forecast"))
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Facebook closing stock price

# Extract training data
fb_stock <- gafa_stock %>%
group_by(Symbol) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE) %>%
filter(Symbol == "FB",

between(Date, ymd("2018-01-01"), ymd("2018-09-01")))
# Specify, estimate and forecast
fb_stock %>%
model(
Mean = MEAN(Close),
Naïve = NAIVE(Close),
Drift = RW(Close ~ drift())

) %>%
forecast(h=42) %>%
autoplot(fb_stock, level = NULL) +
ggtitle("Facebook closing stock price (daily ending Sep 2018)") +
xlab("Day") + ylab("") +
guides(colour=guide_legend(title="Forecast")) 21



Facebook closing stock price
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Your turn

Produce forecasts from the appropriate method
for Amazon closing price (gafa_stock) and
Australian takeaway food turnover
(aus_retail).
Plot the results using autoplot().
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Variance stabilization

If the data show different variation at different levels of
the series, then a transformation can be useful.

Denote original observations as y1, . . . , yn and transformed
observations as w1, . . . ,wn.
Mathematical transformations for stabilizing variation

Square root wt = √yt ↓

Cube root wt = 3
√yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more
interpretable: changes in a log value are relative
(percent) changes on the original scale.
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Variance stabilization

food <- aus_retail %>%
filter(Industry == "Food retailing") %>%
summarise(Turnover = sum(Turnover))
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Variance stabilization

food %>% autoplot(sqrt(Turnover)) +
labs(y = "Square root turnover")
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Variance stabilization

food %>% autoplot(Turnover^(1/3)) +
labs(y = "Cube root turnover")
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Variance stabilization

food %>% autoplot(log(Turnover)) +
labs(y = "Log turnover")

7.0

7.5

8.0

8.5

9.0

9.5

1990 2000 2010 2020
Month [1M]

Lo
g 

tu
rn

ov
er

29



Variance stabilization

food %>% autoplot(-1/Turnover) +
labs(y = "Inverse turnover")
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Box-Cox transformations

Each of these transformations is close to a member
of the family of Box-Cox transformations:

wt =
 log(yt), λ = 0;

(yλt − 1)/λ, λ 6= 0.

λ = 1: (No substantive transformation)
λ = 1

2 : (Square root plus linear transformation)
λ = 0: (Natural logarithm)
λ = −1: (Inverse plus 1)
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Box-Cox transformations

food %>% autoplot(box_cox(Turnover, 1/3)) +
labs(y = "Box-Cox transformed turnover")
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Box-Cox transformations

yλt for λ close to zero behaves like logs.
If some yt = 0, then must have λ > 0
if some yt < 0, no power transformation is
possible unless all yt adjusted by adding a
constant to all values.
Simple values of λ are easier to explain.
Results are relatively insensitive to λ.
Often no transformation (λ = 1) needed.
Transformation can have very large effect on PI.
Choosing λ = 0 is a simple way to force
forecasts to be positive 33



Box-Cox transformations

food %>%

features(Turnover, features = guerrero)

## # A tibble: 1 x 1

## lambda_guerrero

## <dbl>

## 1 0.0524

# it uses the BoxCoxLambda function in the forecast package

# use the guerrero function for an automated approach

# Guerrero, V.M. (1993) Time-series analysis supported by

# power transformations.

# Journal of Forecasting, 12, 37--48.
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Box-Cox transformations

The guerrero approach attempts to balance the seasonal
fluctuations and random variation across the series.
Always check the results.
A low value of λ can give extremely large prediction intervals.
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Box-Cox transformations

#use library(TSA)

lambda.fit <- BoxCox.ar(food$Turnover)
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Box-Cox transformations

BoxCox.ar is to estimate the power transformation so that the
transformed time series is approximately a Gaussian AR process (no
seasonal/cyclic pattern or trend is allowed). Hence the food turner over
data is not appropriate here.

lambda.fit$mle

## [1] 0.2

lambda.fit$ci

## [1] 0.1 0.3
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Back-transformation

We must reverse the transformation (or
back-transform) to obtain forecasts on the original
scale. The reverse Box-Cox transformations are given
by

yt =
 exp(wt), λ = 0;

(λWt + 1)1/λ, λ 6= 0.
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Modelling with transformations

Transformations used in the left of the formula will
be automatically back-transformed. To model
log-transformed food retailing turnover, you could
use:

fit <- food %>%
model(SNAIVE(log(Turnover) ~ lag("year")))

## # A mable: 1 x 1
## SNAIVE(log(Turnover) ~ lag("year"))
## <model>
## 1 <SNAIVE>
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Forecasting with transformations

fc <- fit %>%
forecast(h = "3 years")

## # A fable: 36 x 4 [1M]

## # Key: .model [1]

## .model Month Turnover .distribution

## <chr> <mth> <dbl> <dist>

## 1 "SNAIVE(log(Turnover) ~ 2019 Jan 10738. t(N(9.3, 0.004~

## 2 "SNAIVE(log(Turnover) ~ 2019 Feb 9856. t(N(9.2, 0.004~

## 3 "SNAIVE(log(Turnover) ~ 2019 Mar 11214. t(N(9.3, 0.004~

## 4 "SNAIVE(log(Turnover) ~ 2019 Apr 10378. t(N(9.2, 0.004~

## 5 "SNAIVE(log(Turnover) ~ 2019 May 10670. t(N(9.3, 0.004~

## 6 "SNAIVE(log(Turnover) ~ 2019 Jun 10292. t(N(9.2, 0.004~

## # ... with 30 more rows
40



Forecasting with transformations

fc %>% autoplot(filter(food,year(Month)>2010))
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Your turn

Find a transformation that works for the Australian
gas production (aus_production).
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Bias adjustment

Back-transformed median forecasts for wT+h are
median forecasts for yT+h.
Back-transformed PI have the correct coverage.
A forecast ŷT+h|T is (usually) the mean of the
conditional distribution yT+h | y1, . . . , yT .

Back-transformed means

Let X be have mean µ and variance σ2.

Let f (x) be back-transformation function, and
Y = f (X ).
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Bias adjustment

Taylor series expansion about µ:
f (X ) = f (µ) + (X − µ)f ′(µ) + 1

2(X − µ)2f ′′(µ).

E[Y ] = E[f (X )] = f (µ) + 1
2σ

2f ′′(µ)
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Bias adjustment

Box-Cox back-transformation:

yt =
 exp(wt) λ = 0;

(λWt + 1)1/λ λ 6= 0.

f (x) =

ex λ = 0;
(λx + 1)1/λ λ 6= 0.

f ′′(x) =

ex λ = 0;
(1− λ)(λx + 1)1/λ−2 λ 6= 0.
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Bias adjustment

E[Y ] =


eµ
[
1 + σ2

2

]
λ = 0;

(λµ + 1)1/λ
[
1 + σ2(1−λ)

2(λµ+1)2

]
λ 6= 0.
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Bias adjustment

eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50, bias_adjust = TRUE)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)
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Bias adjustment

# the point forecasts are medians
eggs %>% autoplot(value) +

autolayer(fc_biased, series="Simple back transformation", level=80)
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Bias adjustment

# the point forecasts are bias adjusted means
eggs %>% autoplot(value) +

autolayer(fc, series="Simple back transformation", level=80)
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Forecast distributions

Most time series models produce normally
distributed forecasts.
The forecast distribution describes the
probability of observing any future value.

51



Forecast distributions

Assuming residuals are normal, uncorrelated, sd = σ̂:

Mean: ŷT+h|T ∼ N(ȳ , (1 + 1/T )σ̂2)

Naïve: ŷT+h|T ∼ N(yT , hσ̂2)

Seasonal naïve: ŷT+h|T ∼ N(yT+h−m(k+1), (k + 1)σ̂2)

Drift: ŷT+h|T ∼ N(yT + h
T−1(yT − y1), hT+h

T σ̂2)

where k is the integer part of (h − 1)/m.

Note that when h = 1 and T is large, these all give
the same approximate forecast variance: σ̂2.
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Prediction intervals

A prediction interval gives a region within which
we expect yT+h to lie with a specified probability.
Assuming forecast errors are normally
distributed, then a 95% PI is

ŷT+h|T ± 1.96σ̂h

where σ̂h is the st dev of the h-step distribution.
When h = 1, σ̂h can be estimated from the
residuals.
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Prediction intervals

fit <- fb_stock %>% model(NAIVE(Close))

forecast(fit)

## # A fable: 2 x 5 [1]

## # Key: Symbol, .model [1]

## Symbol .model trading_day Close .distribution

## <chr> <chr> <dbl> <dbl> <dist>

## 1 FB NAIVE(Cl~ 3693 176. N(176, 21)

## 2 FB NAIVE(Cl~ 3694 176. N(176, 42)
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Prediction intervals

res_sd <- sqrt(mean(augment(fit)$.resid^2, na.rm = TRUE))

last(fb_stock$Close) + 1.96 * res_sd * c(-1,1)

## [1] 166.7196 184.7404
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Prediction intervals

forecast(fit, h = 1) %>%
transmute(interval = hilo(.distribution, level = 95))

## # A tsibble: 1 x 4 [1]

## # Key: Symbol, .model [1]

## Symbol .model trading_day interval

## <chr> <chr> <dbl> <hilo>

## 1 FB NAIVE(Close) 3693 [166.7198, 184.7402]95

# transmute: add a new variable to the tsibble object by forecast
# hilo: use the forecast object and compute its 95% PI
# .distribution is a column of the forecast object
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Prediction intervals

Point forecasts are often useless without a
measure of uncertainty (such as prediction
intervals).
Prediction intervals require a stochastic model
(with random errors, etc).
Multi-step forecasts for time series require a
more sophisticated approach (with PI getting
wider as the forecast horizon increases).
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Prediction intervals

Computed automatically from the forecast
distribution.
Use level argument to control coverage.
Check residual assumptions before believing
them (we will see this next class).
Usually too narrow due to unaccounted
uncertainty.
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