STAT481/581: Introduction to Time Series Analysis

Ch3. The forecasters' toolbox
OTexts.org/fpp3/

Outline

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

Outline

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

A tidy forecasting workflow

The process of producing forecasts can be split up into a few fundamental steps.

1. Preparing data

2 Data visualisation
3 Specifying a model
4 Model estimation
${ }_{5}$ Accuracy \& performance evaluation
${ }_{6}$ Producing forecasts

A tidy forecasting workflow

Outline

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

Some simple forecasting methods

Australian quarterly beer production

How would you forecast these series?

Some simple forecasting methods

Number of pigs slaughtered in Victoria, 1990-1995

How would you forecast these series?

Some simple forecasting methods

Facebook closing stock price in 2018

How would you forecast these series?

Some simple forecasting methods

MEAN(y): Average method

- Forecast of all future values is equal to mean of historical data $\left\{y_{1}, \ldots, y_{T}\right\}$.
- Forecasts: $\hat{y}_{T+h \mid T}=\bar{y}=\left(y_{1}+\cdots+y_{T}\right) / T$

Clay brick production in Australia

Some simple forecasting methods

NAIVE(y): Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h \mid T}=y_{T}$.

Clay brick production in Australia

Some simple forecasting methods

SNAIVE (y ~ lag(m)): Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h \mid T}=y_{T+h-m(k+1)}$, where $m=$ seasonal period and k is the integer part of $(h-1) / m$.
Clay brick production in Australia

Some simple forecasting methods

RW(y ~ drift()): Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$
\begin{aligned}
\hat{y}_{T+h \mid T} & =y_{T}+\frac{h}{T-1} \sum_{t=2}^{T}\left(y_{t}-y_{t-1}\right) \\
& =y_{T}+\frac{h}{T-1}\left(y_{T}-y_{1}\right) .
\end{aligned}
$$

- Equivalent to extrapolating a line drawn between first and last observations.

Some simple forecasting methods

Drift method

Clay brick production in Australia

Outline

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

Data preparation and visualisation

```
# Set training data from 1992 to 2007
train <- aus_production %>%
    filter(between(year(Quarter), 1992, 2007))
train %>% autoplot(Beer)
```


Model estimation

The model() function trains models to data.

```
# Fit the models
beer_fit <- train %>%
    model(
    Mean = MEAN(Beer),
    Naïve = NAIVE(Beer),
    Seasonal naïve = SNAIVE(Beer), #or SNAIVE(Beer~lag(4))
    # or SNAIVE(Beer~lag("year"))
    Drift = RW(Beer ~ drift())
    )
```


Model estimation

```
beer_fit
## # A mable: 1 x 4
## Mean Naïve Seasonal naïve Drift
## <model> <model> <model> <model>
## 1 <MEAN> <NAIVE> <SNAIVE> <RW w/ drift>
```

A mable is a model table, each cell corresponds to a fitted model.

Producing forecasts

```
beer_fc <- beer_fit %>%
    forecast(h = 11)
```

\#\# \# A fable: 44×4 [1Q]
\#\# \# Key: .model [4]
\#\# .model Quarter Beer .distribution
\#\# <chr> <qtr> <dbl> <dist>
\#\# 1 Mean 2008 Q1 435. N(435, 1964)
\#\# 2 Mean 2008 Q2 435. N(435, 1964)
\#\# 3 Mean 2008 Q3 435. N(435, 1964)
\#\# 4 Mean 2008 Q4 435. N(435, 1964)
\#\# \# ... with 40 more rows

A fable is a forecast table with point forecasts and distributions.

Visualising forecasts

```
beer_fc %>%
autoplot(train, level = NULL) +
#level=NULL means no prediction interval
ggtitle("Forecasts for quarterly beer production") +
xlab("Year") + ylab("Megalitres") +
guides(colour=guide_legend(title="Forecast"))
```

Forecasts for quarterly beer production

Facebook closing stock price

```
# Extract training data
fb_stock <- gafa_stock %>%
    group_by(Symbol) %>%
    mutate(trading_day = row_number()) %>%
    update_tsibble(index=trading_day, regular=TRUE) %>%
    filter(Symbol == "FB",
        between(Date, ymd("2018-01-01"), ymd("2018-09-01")))
# Specify, estimate and forecast
fb_stock %>%
    model(
        Mean = MEAN(Close),
        Naïve = NAIVE(Close),
        Drift = RW(Close ~ drift())
    ) %>%
    forecast(h=42) %>%
    autoplot(fb_stock, level = NULL) +
    ggtitle("Facebook closing stock price (daily ending Sep 2018)") +
    xlab("Day") + ylab("") +
    guides(colour=guide_legend(title="Forecast"))
```


Facebook closing stock price

Facebook closing stock price (daily ending Sep 2018)

- Produce forecasts from the appropriate method for Amazon closing price (gafa_stock) and Australian takeaway food turnover (aus_retail).
- Plot the results using autoplot().

Outline

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Mathematical transformations for stabilizing variation

Square root
$w_{t}=\sqrt{y_{t}}$
\downarrow
Cube root $\quad w_{t}=\sqrt[3]{y_{t}} \quad$ Increasing
Logarithm $\quad w_{t}=\log \left(y_{t}\right) \quad$ strength

Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_{1}, \ldots, y_{n} and transformed observations as w_{1}, \ldots, w_{n}.

Mathematical transformations for stabilizing variation

Square root $w_{t}=\sqrt{y_{t}} \quad \downarrow$
Cube root $\quad w_{t}=\sqrt[3]{y_{t}} \quad$ Increasing
Logarithm $\quad w_{t}=\log \left(y_{t}\right) \quad$ strength
Logarithms, in particular, are useful because they are more interpretable: changes in a log value are relative
(percent) changes on the original scale.

Variance stabilization

food <- aus_retail \%>\%
filter (Industry == "Food retailing") \%>\%
summarise(Turnover $=$ sum(Turnover))

Variance stabilization

food \%>\% autoplot(sqrt(Turnover)) +
labs(y = "Square root turnover")

Variance stabilization

food \%>\% autoplot(Turnover^(1/3)) +
labs(y = "Cube root turnover")

Variance stabilization

food \%>\% autoplot(log(Turnover)) + labs(y = "Log turnover")

Variance stabilization

food \%>\% autoplot(-1/Turnover) +
labs(y = "Inverse turnover")

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

$$
w_{t}= \begin{cases}\log \left(y_{t}\right), & \lambda=0 \\ \left(y_{t}^{\lambda}-1\right) / \lambda, & \lambda \neq 0\end{cases}
$$

Box-Cox transformations

Each of these transformations is close to a member of the family of Box-Cox transformations:

$$
w_{t}= \begin{cases}\log \left(y_{t}\right), & \lambda=0 \\ \left(y_{t}^{\lambda}-1\right) / \lambda, & \lambda \neq 0\end{cases}
$$

■ $\lambda=1$: (No substantive transformation)

- $\lambda=\frac{1}{2}$: (Square root plus linear transformation)

■ $\lambda=0$: (Natural logarithm)

- $\lambda=-1$: (Inverse plus 1)

Box-Cox transformations

food \%>\% autoplot(box_cox(Turnover, 1/3)) + labs(y = "Box-Cox transformed turnover")

Box-Cox transformations

- y_{t}^{λ} for λ close to zero behaves like logs.

■ If some $y_{t}=0$, then must have $\lambda>0$
■ if some $y_{t}<0$, no power transformation is possible unless all y_{t} adjusted by adding a constant to all values.

- Simple values of λ are easier to explain.
- Results are relatively insensitive to λ.
- Often no transformation $(\lambda=1)$ needed.
- Transformation can have very large effect on PI.
- Choosing $\lambda=0$ is a simple way to force forecasts to be positive

Box-Cox transformations

```
food %>%
    features(Turnover, features = guerrero)
## # A tibble: 1 x 1
## lambda_guerrero
## <dbl>
## 1 0.0524
# it uses the BoxCoxLambda function in the forecast package
# use the guerrero function for an automated approach
# Guerrero, V.M. (1993) Time-series analysis supported by
# power transformations.
# Journal of Forecasting, 12, 37--48.
```


Box-Cox transformations

- The guerrero approach attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

Box-Cox transformations

```
#use library(TSA)
lambda.fit <- BoxCox.ar(food\$Turnover)
```


Box-Cox transformations

BoxCox.ar is to estimate the power transformation so that the transformed time series is approximately a Gaussian AR process (no seasonal/cyclic pattern or trend is allowed). Hence the food turner over data is not appropriate here.
lambda.fit\$mle
\#\# [1] 0.2
lambda.fit\$ci
\#\# [1] 0.10 .3

Back-transformation

We must reverse the transformation (or back-transform) to obtain forecasts on the original scale. The reverse Box-Cox transformations are given by

$$
y_{t}= \begin{cases}\exp \left(w_{t}\right), & \lambda=0 \\ \left(\lambda W_{t}+1\right)^{1 / \lambda}, & \lambda \neq 0\end{cases}
$$

Modelling with transformations

Transformations used in the left of the formula will be automatically back-transformed. To model log-transformed food retailing turnover, you could use:
fit <- food \%>\%
model(SNAIVE(log(Turnover) ~ lag("year")))
\#\# \# A mable: 1×1
\#\# SNAIVE(log(Turnover) ~ lag("year"))
\#\# <model>
\#\# 1 <SNAIVE>

Forecasting with transformations

fc <- fit \%>\%
 forecast(h = "3 years")

```
## # A fable: 36 x 4 [1M]
## # Key: .model [1]
## .model Month Turnover .distribution
## <chr> <mth> <dbl> <dist>
## 1 "SNAIVE(log(Turnover) ~ 2019 Jan 10738. t(N(9.3, 0.004~
## 2 "SNAIVE(log(Turnover) ~ 2019 Feb 9856. t(N(9.2, 0.004~
## 3 "SNAIVE(log(Turnover) ~ 2019 Mar 11214. t(N(9.3, 0.004~
## 4 "SNAIVE(log(Turnover) ~ 2019 Apr 10378. t(N(9.2, 0.004~
## 5 "SNAIVE(log(Turnover) ~ 2019 May 10670. t(N(9.3, 0.004~
## 6 "SNAIVE(log(Turnover) ~ 2019 Jun 10292. t(N(9.2, 0.004~
## # ... with 30 more rows

\section*{Forecasting with transformations}
fc \%>\% autoplot(filter(food,year(Month)>2010))


\section*{Your turn}

Find a transformation that works for the Australian gas production (aus_production).

\section*{Bias adjustment}
- Back-transformed median forecasts for \(w_{T+h}\) are median forecasts for \(y_{T+h}\).
- Back-transformed PI have the correct coverage.
- A forecast \(\hat{y}_{T+h \mid T}\) is (usually) the mean of the conditional distribution \(y_{T+h} \mid y_{1}, \ldots, y_{T}\).

\section*{Bias adjustment}

■ Back-transformed median forecasts for \(w_{T+h}\) are median forecasts for \(y_{T+h}\).
- Back-transformed PI have the correct coverage.
- A forecast \(\hat{y}_{T+h \mid T}\) is (usually) the mean of the conditional distribution \(y_{T+h} \mid y_{1}, \ldots, y_{T}\).

\section*{Back-transformed means}

Let \(X\) be have mean \(\mu\) and variance \(\sigma^{2}\).
Let \(f(x)\) be back-transformation function, and
\(Y=f(X)\).

\section*{Bias adjustment}

Taylor series expansion about \(\mu\) :
\[
f(X)=f(\mu)+(X-\mu) f^{\prime}(\mu)+\frac{1}{2}(X-\mu)^{2} f^{\prime \prime}(\mu)
\]

\section*{Bias adjustment}

Taylor series expansion about \(\mu\) :
\[
f(X)=f(\mu)+(X-\mu) f^{\prime}(\mu)+\frac{1}{2}(X-\mu)^{2} f^{\prime \prime}(\mu)
\]
\[
\mathrm{E}[Y]=\mathrm{E}[f(X)]=f(\mu)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(\mu)
\]

\section*{Bias adjustment}

\section*{Box-Cox back-transformation:}
\[
\begin{aligned}
y_{t} & = \begin{cases}\exp \left(w_{t}\right) & \lambda=0 ; \\
\left(\lambda W_{t}+1\right)^{1 / \lambda} & \lambda \neq 0 .\end{cases} \\
f(x) & = \begin{cases}e^{x} & \lambda=0 ; \\
(\lambda x+1)^{1 / \lambda} & \lambda \neq 0 .\end{cases} \\
f^{\prime \prime}(x) & = \begin{cases}e^{x} & \lambda=0 ; \\
(1-\lambda)(\lambda x+1)^{1 / \lambda-2} & \lambda \neq 0 .\end{cases}
\end{aligned}
\]

\section*{Bias adjustment}
\[
E[Y]= \begin{cases}e^{\mu}\left[1+\frac{\sigma^{2}}{2}\right] & \lambda=0 \\ (\lambda \mu+1)^{1 / \lambda}\left[1+\frac{\sigma^{2}(1-\lambda)}{2(\lambda \mu+1)^{2}}\right] & \lambda \neq 0 .\end{cases}
\]

\section*{Bias adjustment}
```

eggs <- as_tsibble(fma::eggs)
fit <- eggs %>% model(RW(log(value) ~ drift()))
fc <- fit %>% forecast(h=50, bias_adjust = TRUE)
fc_biased <- fit %>% forecast(h=50, bias_adjust = FALSE)

```

\section*{Bias adjustment}
```


the point forecasts are medians

eggs %>% autoplot(value) +
autolayer(fc_biased, series="Simple back transformation", level=80)

```


\section*{Bias adjustment}
```


the point forecasts are bias adjusted means

eggs %>% autoplot(value) +
autolayer(fc, series="Simple back transformation", level=80)

```


\section*{Outline}

1 A tidy forecasting workflow
2 Some simple forecasting methods
3 The workflow in action
4 Transformations
5 Distributional forecasts

\section*{Forecast distributions}
- Most time series models produce normally distributed forecasts.
- The forecast distribution describes the probability of observing any future value.

\section*{Forecast distributions}

Assuming residuals are normal, uncorrelated, sd \(=\hat{\sigma}\) :

\section*{Mean:}
\[
\hat{y}_{T+h \mid T} \sim N\left(\bar{y},(1+1 / T) \hat{\sigma}^{2}\right)
\]

Naïve:
\[
\hat{y}_{T+h \mid T} \sim N\left(y_{T}, h \hat{\sigma}^{2}\right)
\]

Seasonal naïve: \(\quad \hat{y}_{T+h \mid T} \sim N\left(y_{T+h-m(k+1)},(k+1) \hat{\sigma}^{2}\right)\)
Drift:
\[
\hat{y}_{T+h \mid T} \sim N\left(y_{T}+\frac{h}{T-1}\left(y_{T}-y_{1}\right), h \frac{T+h}{T}\right.
\]
where \(k\) is the integer part of \((h-1) / m\).
Note that when \(h=1\) and \(T\) is large, these all give the same approximate forecast variance: \(\hat{\sigma}^{2}\).

\section*{Prediction intervals}
- A prediction interval gives a region within which we expect \(y_{T+h}\) to lie with a specified probability.
- Assuming forecast errors are normally distributed, then a \(95 \% \mathrm{PI}\) is
\[
\hat{y}_{T+h \mid T} \pm 1.96 \hat{\sigma}_{h}
\]
where \(\hat{\sigma}_{h}\) is the st dev of the \(h\)-step distribution.
- When \(h=1, \hat{\sigma}_{h}\) can be estimated from the residuals.

\section*{Prediction intervals}
```

fit <- fb_stock %>% model(NAIVE(Close))
forecast(fit)

```
```


\# A fable: 2 x 5 [1]

\# Key: Symbol, .model [1]

Symbol .model trading_day Close .distribution

<chr> <chr> <dbl> <dbl> <dist>

1 FB NAIVE(Cl~ 3693 176. N(176, 21)

2 FB NAIVE(Cl~ 3694 176. N(176, 42)

```

\section*{Prediction intervals}
```

res_sd <- sqrt(mean(augment(fit)$.resid^2, na.rm = TRUE))
last(fb_stock$Close) + 1.96 * res_sd * c(-1,1)

```
\#\# [1] 166.7196184 .7404

\section*{Prediction intervals}
```

forecast(fit, h = 1) %>%
transmute(interval = hilo(.distribution, level = 95))

```
\#\# \# A tsibble: 1 x 4 [1]
\#\# \# Key: Symbol, .model [1]
\begin{tabular}{lllrr} 
\#\# & Symbol .model & trading_day & interval \\
\#\# & <chr> & <chr> & <dbl> & <hilo> \\
\#\# & 1 & FB & NAIVE(Close) & 3693
\end{tabular}
\# transmute: add a new variable to the tsibble object by forecast
\# hilo: use the forecast object and compute its 95\% PI
\# .distribution is a column of the forecast object

\section*{Prediction intervals}
- Point forecasts are often useless without a measure of uncertainty (such as prediction intervals).
- Prediction intervals require a stochastic model (with random errors, etc).
■ Multi-step forecasts for time series require a more sophisticated approach (with PI getting wider as the forecast horizon increases).

\section*{Prediction intervals}
- Computed automatically from the forecast distribution.
■ Use level argument to control coverage.
- Check residual assumptions before believing them (we will see this next class).
■ Usually too narrow due to unaccounted uncertainty.```

