STAT481/581: Introduction to Time Series Analysis

Ch4. Evaluating forecast accuracy OTexts.org/fpp3/

1 Residual diagnostics

- 2 Evaluating forecast accuracy
- 3 Time series cross-validation

Outline

1 Residual diagnostics

- 2 Evaluating forecast accuracy
- 3 Time series cross-validation

Fitted values

- *ŷ*_{t|t−1} is the forecast of *y*_t based on observations
 *y*₁,..., *y*_t.
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

For example:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.

Forecasting residuals

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- 1 $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- 2 $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- 1 $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- 2 $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- 4 $\{e_t\}$ are normally distributed.

```
google_2015 <- tsibbledata::gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2015) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index = trading_day, regular = TRUE)
```

##	# /	A tsibb]	le: 252 x 9	[1]			
##	# ł	Key:	Symbol	[1]			
##		Symbol	Date	0pen	High	Low	Close
##		<chr></chr>	<date></date>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	GOOG	2015-01-02	526.	528.	521.	522.
##	2	GOOG	2015-01-05	520.	521.	510.	511.
##	3	GOOG	2015-01-06	512.	513.	498.	499.
##	4	GOOG	2015-01-07	504.	504.	497.	498.
##	5	GOOG	2015-01-08	495.	501.	488.	500.
##	6	GOOG	2015-01-09	502.	502.	492.	493.
##	7	GOOG	2015-01-12	492.	493.	485.	490.
##	8	GOOG	2015-01-13	496.	500.	490.	493.
##	9	GOOG	2015-01-14	492.	500.	490.	498.
##	10	GOOG	2015-01-15	503.	503.	495.	499.

```
google_2015 %>%
autoplot(Close) +
    xlab("Day") + ylab("Closing Price (US$)") +
    ggtitle("Google Stock (daily ending 6 December 2013)")
```


Naïve forecast:

 $\hat{y}_{t|t-1} = y_{t-1}$

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Note: e_t are one-step-forecast residuals

```
fit <- google_2015 %>% model(NAIVE(Close))
augment(fit)
```

##	# A	A tsibb]	le: 252	x 6 [1]			
##	# ł	Key:	Symb	ool, .model	[1]		
##		Symbol	.model	trading_day	Close	.fitted	.resid
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	GOOG	NAIVE~	1	522.	NA	NA
##	2	GOOG	NAIVE~	2	511.	522.	-10.9
##	3	GOOG	NAIVE~	3	499.	511.	-11.8
##	4	GOOG	NAIVE~	4	498.	499.	-0.855
##	5	GOOG	NAIVE~	5	500.	498.	1.57
##	6	GOOG	NAIVE~	6	493.	500.	-6.47
##	7	GOOG	NAIVE~	7	490.	493.	-3.60
##	8	GOOG	NAIVE~	8	493.	490.	3.61
##	9	GOOG	NAIVE~	9	498.	493.	4.66
##	10	GOOG	NAIVE~	10	499.	498.	0.915
##	# .	witł	ר 242 mc	ore rows			

10


```
augment(fit) %>%
ggplot(aes(x = .resid)) +
geom_histogram(bins = 30) +
ggtitle("Histogram of residuals")
```



```
augment(fit) %>% ACF(.resid) %>%
  autoplot() + ggtitle("ACF of residuals")
```

Warning in mutate_impl(.data, dots, caller_env()):
Vectorizing 'cf_lag' elements may not preserve
their attributes

13

- We assume that the residuals are white noise (uncorrelated, mean zero, constant variance). If they aren't, then there is information left in the residuals that should be used in computing forecasts.
- So a standard residual diagnostic is to check the ACF of the residuals of a forecasting method.
- We *expect* these to look like white noise.

Consider a *whole set* of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Consider a *whole set* of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Box-Pierce test

$$Q = T \sum_{k=1}^{h} r_k^2$$

where h is max lag being considered and T is number of observations.

- If each r_k close to zero, Q will be small.
- If some r_k values large (positive or negative), Q
 will be large.

Consider a *whole set* of r_k values, and develop a test to see whether the set is significantly different from a zero set.

Ljung-Box test

$$Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$$

where h is max lag being considered and T is number of observations.

- My preferences: h = 10 for non-seasonal data, h = 2m for seasonal data.
 - Better performance, especially in small samples. ¹⁶

Portmanteau tests

- If data are WN, Q[∗] has χ² distribution with (h − K) degrees of freedom where K = no. parameters in model.
- When applied to raw data, set K = 0.

```
# lag=h and fitdf=K
Box.test(augment(fit)$.resid,
    lag = 10, fitdf = 0, type = "Lj")
```

```
##
## Box-Ljung test
##
## data: augment(fit)$.resid
## X-squared = 7.9141, df = 10, p-value =
## 0.6372
```

gg_tsdisplay function

augment(fit) %>%
gg_tsdisplay(.resid, plot_type = "histogram")

Your turn

Compute seasonal naïve forecasts for quarterly Australian beer production from 1992.

```
recent <- aus_production %>% filter(year(Quarter) >= 1992)
fit <- recent %>% model(SNAIVE(Beer))
fit %>% forecast() %>% autoplot(recent)
```


Test if the residuals are white noise.

Box.test(augment(fit)\$.resid, lag=10, fitdf=0, type="Lj")
augment(fit) %>% gg_tsdisplay(.resid, plot_type = "hist")

What do you conclude?

1 Residual diagnostics

- 2 Evaluating forecast accuracy
- 3 Time series cross-validation

Training and test sets

- A model which fits the training data well will not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters.
- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.
- The test set must not be used for any aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set. 22

Forecast "error": the difference between an observed value and its forecast.

$$e_{T+h}=y_{T+h}-\hat{y}_{T+h|T},$$

where the training data is given by $\{y_1, \ldots, y_T\}$

- Unlike residuals, forecast errors on the test set involve multi-step forecasts.
- These are *true* forecast errors as the test data is not used in computing $\hat{y}_{T+h|T}$.

$$y_{T+h} = (T+h)$$
th observation, $h = 1, ..., H$
 $\hat{y}_{T+h|T} =$ its forecast based on data up to time T .
 $e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$

$$\begin{aligned} \mathsf{MAE} &= \mathsf{mean}(|e_{\mathcal{T}+h}|)\\ \mathsf{MSE} &= \mathsf{mean}(e_{\mathcal{T}+h}^2)\\ \mathsf{RMSE} &= \sqrt{\mathsf{mean}(e_{\mathcal{T}+h}^2)}\\ \mathsf{MAPE} &= 100\mathsf{mean}(|e_{\mathcal{T}+h}|/|y_{\mathcal{T}+h}|) \end{aligned}$$

$$y_{T+h} = (T+h)$$
th observation, $h = 1, ..., H$
 $\hat{y}_{T+h|T} =$ its forecast based on data up to time T .
 $e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$

$$\begin{aligned} \mathsf{MAE} &= \mathsf{mean}(|e_{\mathcal{T}+h}|)\\ \mathsf{MSE} &= \mathsf{mean}(e_{\mathcal{T}+h}^2)\\ \mathsf{RMSE} &= \sqrt{\mathsf{mean}(e_{\mathcal{T}+h}^2)}\\ \mathsf{MAPE} &= 100\mathsf{mean}(|e_{\mathcal{T}+h}|/|y_{\mathcal{T}+h}|) \end{aligned}$$

MAE, MSE, RMSE are all scale dependent.
MAPE is scale independent but is only sensible if yt ≫ 0 for all t, and y has a natural zero.

Mean Absolute Scaled Error

 $\mathsf{MASE} = \mathsf{mean}(|e_{\mathcal{T}+h}|/Q)$ where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

 $\mathsf{MASE} = \mathsf{mean}(|e_{\mathcal{T}+h}|/Q)$ where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006). For seasonal time series,

$$Q = (T - m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.

Training set accuracy

```
recent_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
train <- recent_production %>% filter(year(Quarter) <= 2007)
beer_fit <- train %>%
  model(
    Mean = MEAN(Beer),
    Naïve = NAIVE(Beer),
    Seasonal naïve = SNAIVE(Beer),
    Drift = RW(Beer ~ drift())
  )
accuracy(beer_fit)
```

	RMSE	MAE	MAPE	MASE
Mean method	43.62858	35.23438	7.886776	2.463942
Naïve method	65.31511	54.73016	12.164154	3.827284
Seasonal naïve method	16.78193	14.30000	3.313685	1.000000
Drift method	65.31337	54.76795	12.178793	3.829927

```
beer_fc <- beer_fit %>%
forecast(h = 10)
accuracy(beer_fc, recent_production)
```

	RMSE	MAE	MAPE	MASE
Drift method	64.90129	58.87619	14.577487	4.1172161
Mean method	38.44724	34.82500	8.283390	2.4353147
Naïve method	62.69290	57.40000	14.184424	4.0139860
Seasonal naïve method	14.31084	13.40000	3.168503	0.9370629

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- 2 A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

1 Residual diagnostics

- 2 Evaluating forecast accuracy
- 3 Time series cross-validation

Traditional evaluation

- Forecast accuracy averaged over test sets.
- Also known as "evaluation on a rolling forecasting origin"

Creating the rolling training sets

There are three main rolling types which can be used.

- Stretch: extends a growing length window with new data.
- Slide: shifts a fixed length window through the data.
- Tile: moves a fixed length window without overlap.

Three functions to roll a tsibble: stretch_tsibble(), slide_tsibble(), and tile_tsibble().

For time series cross-validation, stretching windows are most commonly used.

Creating the rolling training sets

Stretch with a minimum length of 3, growing by 1 each step.

```
google_2015_stretch <- google_2015 %>%
stretch_tsibble(.init = 3, .step = 1) %>%
filter(.id != max(.id))
```

##	#	A tsibble:	31,623 x 4 [1]	
##	#	Key:	.id [249]	
##		Date	Close trading_day .	id
##		<date></date>	<dbl> <int> <ir< td=""><td>ıt></td></ir<></int></dbl>	ıt>
##	1	2015-01-02	522. 1	1
##	2	2015-01-05	511. 2	1
##	3	2015-01-06	499. 3	1
##	4	2015-01-02	522. 1	2
##	5	2015-01-05	511. 2	2
##	6	2015-01-06	499. 3	2
##	7	2015-01-07	498. 4	2

Estimate RW w/ drift models for each window.

```
fit_cv <- google_2015_stretch %>%
  model(RW(Close ~ drift()))
```

##	#	A mable: 249	х З
##	#	Key: .id,	, Symbol [249]
##		.id Symbol	RW(Close ~ drift()
##		<int> <chr></chr></int>	<model></model>
##	1	1 GOOG	<rw drift="" w=""></rw>
##	2	2 G00G	<rw drift="" w=""></rw>
##	3	3 GOOG	<rw drift="" w=""></rw>
##	4	4 G00G	<rw drift="" w=""></rw>
##	#	with 245	more rows

Produce one step ahead forecasts from all models.

```
fc_cv <- fit_cv %>%
forecast(h=1)
```

##	#	A fabl	le: 249	x 5 [[1]			
##	#	Key:	.id	, Symb	ol [24	9]		
##		.id	Symbol	tradi	ing_day	Close	.distr	ibutior
##		<int></int>	<chr></chr>		<dbl></dbl>	<dbl></dbl>	<dist></dist>	
##	1	1	GOOG		4	488.	N(488,	0.47)
##	2	2	GOOG		5	490.	N(490,	37)
##	3	3	GOOG		6	494.	N(494,	47)
##	4	4	GOOG		7	488.	N(488,	35)
##	#	w-	ith 245	more	rows			

```
# Cross-validated
fc_cv %>% accuracy(google_2015)
# Training set
google_2015 %>% model(NAIVE(Close)) %>% accuracy()
```

	RMSE	MAE	MAPE
Cross-validation	11.26819	7.261240	1.194024
Training	11.18958	7.127985	1.170985

A good way to choose the best forecasting model is to find the model with the smallest RMSE computed using time series cross-validation.