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Fitted values

ŷt|t−1 is the forecast of yt based on observations
y1, . . . , yt .
We call these “fitted values”.
Sometimes drop the subscript: ŷt ≡ ŷt|t−1.
Often not true forecasts since parameters are
estimated on all data.

For example:
ŷt = ȳ for average method.
ŷt = yt−1 + (yT − y1)/(T − 1) for drift method.
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Forecasting residuals

Residuals in forecasting: difference between
observed value and its fitted value: et = yt − ŷt|t−1.

Assumptions
1 {et} uncorrelated. If they aren’t, then information

left in residuals that should be used in computing
forecasts.

2 {et} have mean zero. If they don’t, then forecasts
are biased.

Useful properties (for prediction intervals)
3 {et} have constant variance.
4 {et} are normally distributed.
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Assumptions
1 {et} uncorrelated. If they aren’t, then information

left in residuals that should be used in computing
forecasts.

2 {et} have mean zero. If they don’t, then forecasts
are biased.

Useful properties (for prediction intervals)
3 {et} have constant variance.
4 {et} are normally distributed.

5



Forecasting residuals

Residuals in forecasting: difference between
observed value and its fitted value: et = yt − ŷt|t−1.
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Example: Google stock price

google_2015 <- tsibbledata::gafa_stock %>%
filter(Symbol == "GOOG", year(Date) == 2015) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index = trading_day, regular = TRUE)

## # A tsibble: 252 x 9 [1]
## # Key: Symbol [1]
## Symbol Date Open High Low Close
## <chr> <date> <dbl> <dbl> <dbl> <dbl>
## 1 GOOG 2015-01-02 526. 528. 521. 522.
## 2 GOOG 2015-01-05 520. 521. 510. 511.
## 3 GOOG 2015-01-06 512. 513. 498. 499.
## 4 GOOG 2015-01-07 504. 504. 497. 498.
## 5 GOOG 2015-01-08 495. 501. 488. 500.
## 6 GOOG 2015-01-09 502. 502. 492. 493.
## 7 GOOG 2015-01-12 492. 493. 485. 490.
## 8 GOOG 2015-01-13 496. 500. 490. 493.
## 9 GOOG 2015-01-14 492. 500. 490. 498.
## 10 GOOG 2015-01-15 503. 503. 495. 499.
## # ... with 242 more rows, and 3 more variables:
## # Adj_Close <dbl>, Volume <dbl>,
## # trading_day <int>
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Example: Google stock price

google_2015 %>%
autoplot(Close) +
xlab("Day") + ylab("Closing Price (US$)") +
ggtitle("Google Stock (daily ending 6 December 2013)")
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Example: Google stock price

Naïve forecast:

ŷt|t−1 = yt−1

et = yt − yt−1

Note: et are one-step-forecast residuals
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Example: Google stock price

fit <- google_2015 %>% model(NAIVE(Close))
augment(fit)

## # A tsibble: 252 x 6 [1]
## # Key: Symbol, .model [1]
## Symbol .model trading_day Close .fitted .resid
## <chr> <chr> <int> <dbl> <dbl> <dbl>
## 1 GOOG NAIVE~ 1 522. NA NA
## 2 GOOG NAIVE~ 2 511. 522. -10.9
## 3 GOOG NAIVE~ 3 499. 511. -11.8
## 4 GOOG NAIVE~ 4 498. 499. -0.855
## 5 GOOG NAIVE~ 5 500. 498. 1.57
## 6 GOOG NAIVE~ 6 493. 500. -6.47
## 7 GOOG NAIVE~ 7 490. 493. -3.60
## 8 GOOG NAIVE~ 8 493. 490. 3.61
## 9 GOOG NAIVE~ 9 498. 493. 4.66
## 10 GOOG NAIVE~ 10 499. 498. 0.915
## # ... with 242 more rows
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Example: Google stock price

augment(fit) %>%
ggplot(aes(x = trading_day)) +

geom_line(aes(y = Close, colour = "Data")) +
geom_line(aes(y = .fitted, colour = "Fitted")) +
xlab("Day") + ylab("Closing Price (US$)") +
ggtitle("Google Stock (daily ending 6 December 2013)")
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Example: Google stock price

augment(fit) %>%
autoplot(.resid) + xlab("Day") + ylab("") +

ggtitle("Residuals from naïve method")
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Example: Google stock price

augment(fit) %>%
ggplot(aes(x = .resid)) +

geom_histogram(bins = 30) +
ggtitle("Histogram of residuals")
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Example: Google stock price

augment(fit) %>% ACF(.resid) %>%
autoplot() + ggtitle("ACF of residuals")

## Warning in mutate_impl(.data, dots, caller_env()):
## Vectorizing 'cf_lag' elements may not preserve
## their attributes
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ACF of residuals

We assume that the residuals are white noise
(uncorrelated, mean zero, constant variance). If
they aren’t, then there is information left in the
residuals that should be used in computing
forecasts.
So a standard residual diagnostic is to check the
ACF of the residuals of a forecasting method.
We expect these to look like white noise.
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Portmanteau tests

Consider a whole set of rk values, and develop a test
to see whether the set is significantly different from a
zero set.

Box-Pierce test

Q = T
h∑

k=1
r 2
k

where h is max lag being considered and T is number
of observations.

If each rk close to zero, Q will be small.
If some rk values large (positive or negative), Q
will be large.
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Portmanteau tests

Consider a whole set of rk values, and develop a test
to see whether the set is significantly different from a
zero set.
Ljung-Box test

Q∗ = T (T + 2)
h∑

k=1
(T − k)−1r 2

k

where h is max lag being considered and T is number
of observations.

My preferences: h = 10 for non-seasonal data,
h = 2m for seasonal data.
Better performance, especially in small samples. 16



Portmanteau tests

If data are WN, Q∗ has χ2 distribution with (h − K )
degrees of freedom where K = no. parameters in
model.
When applied to raw data, set K = 0.

# lag=h and fitdf=K
Box.test(augment(fit)$.resid,
lag = 10, fitdf = 0, type = "Lj")

##
## Box-Ljung test
##
## data: augment(fit)$.resid
## X-squared = 7.9141, df = 10, p-value =
## 0.6372 17



gg_tsdisplay function

augment(fit) %>%
gg_tsdisplay(.resid, plot_type = "histogram")
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Your turn

Compute seasonal naïve forecasts for quarterly
Australian beer production from 1992.
recent <- aus_production %>% filter(year(Quarter) >= 1992)
fit <- recent %>% model(SNAIVE(Beer))
fit %>% forecast() %>% autoplot(recent)
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Your turn

Test if the residuals are white noise.

Box.test(augment(fit)$.resid, lag=10, fitdf=0, type="Lj")
augment(fit) %>% gg_tsdisplay(.resid, plot_type = "hist")

What do you conclude?
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Training and test sets

time

Training data Test data

A model which fits the training data well will
not necessarily forecast well.
A perfect fit can always be obtained by using a
model with enough parameters.
Over-fitting a model to data is just as bad as
failing to identify a systematic pattern in the
data.
The test set must not be used for any aspect of
model development or calculation of forecasts.
Forecast accuracy is based only on the test set. 22



Forecast errors

Forecast “error”: the difference between an observed
value and its forecast.

eT+h = yT+h − ŷT+h|T ,

where the training data is given by {y1, . . . , yT}

Unlike residuals, forecast errors on the test set
involve multi-step forecasts.
These are true forecast errors as the test data is
not used in computing ŷT+h|T .
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Measures of forecast accuracy
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Measures of forecast accuracy

yT+h = (T + h)th observation, h = 1, . . . ,H
ŷT+h|T = its forecast based on data up to time T .

eT+h = yT+h − ŷT+h|T

MAE = mean(|eT+h|)
MSE = mean(e2

T+h)
RMSE =

√
mean(e2

T+h)
MAPE = 100mean(|eT+h|/|yT+h|)
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Measures of forecast accuracy

MAE, MSE, RMSE are all scale dependent.
MAPE is scale independent but is only sensible
if yt � 0 for all t, and y has a natural zero.
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Measures of forecast accuracy

Mean Absolute Scaled Error

MASE = mean(|eT+h|/Q)
where Q is a stable measure of the scale of the time
series {yt}.

Proposed by Hyndman and Koehler (IJF, 2006).
For non-seasonal time series,

Q = (T − 1)−1
T∑

t=2
|yt − yt−1|

works well. Then MASE is equivalent to MAE
relative to a naïve method.
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Measures of forecast accuracy

Mean Absolute Scaled Error

MASE = mean(|eT+h|/Q)
where Q is a stable measure of the scale of the time
series {yt}.

Proposed by Hyndman and Koehler (IJF, 2006).
For seasonal time series,

Q = (T −m)−1
T∑

t=m+1
|yt − yt−m|

works well. Then MASE is equivalent to MAE
relative to a seasonal naïve method.
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Measures of forecast accuracy
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Training set accuracy

recent_production <- aus_production %>%
filter(year(Quarter) >= 1992)

train <- recent_production %>% filter(year(Quarter) <= 2007)
beer_fit <- train %>%

model(
Mean = MEAN(Beer),
Naïve = NAIVE(Beer),
Seasonal naïve = SNAIVE(Beer),
Drift = RW(Beer ~ drift())

)
accuracy(beer_fit)

RMSE MAE MAPE MASE

Mean method 43.62858 35.23438 7.886776 2.463942
Naïve method 65.31511 54.73016 12.164154 3.827284
Seasonal naïve method 16.78193 14.30000 3.313685 1.000000
Drift method 65.31337 54.76795 12.178793 3.829927 30



Test set accuracy

beer_fc <- beer_fit %>%
forecast(h = 10)

accuracy(beer_fc, recent_production)

RMSE MAE MAPE MASE

Drift method 64.90129 58.87619 14.577487 4.1172161
Mean method 38.44724 34.82500 8.283390 2.4353147
Naïve method 62.69290 57.40000 14.184424 4.0139860
Seasonal naïve method 14.31084 13.40000 3.168503 0.9370629
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Poll: true or false?

1 Good forecast methods should have normally
distributed residuals.

2 A model with small residuals will give good
forecasts.

3 The best measure of forecast accuracy is MAPE.
4 If your model doesn’t forecast well, you should

make it more complicated.
5 Always choose the model with the best forecast

accuracy as measured on the test set.
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Time series cross-validation

Traditional evaluation
time

Training data Test data
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Time series cross-validation

Traditional evaluation
time

Training data Test data

Time series cross-validation
time

Forecast accuracy averaged over test sets.
Also known as “evaluation on a rolling
forecasting origin”
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Creating the rolling training sets

There are three main rolling types which can be used.

Stretch: extends a growing length window with new
data.
Slide: shifts a fixed length window through the data.
Tile: moves a fixed length window without overlap.

Three functions to roll a tsibble: stretch_tsibble(),
slide_tsibble(), and tile_tsibble().
For time series cross-validation, stretching windows are
most commonly used.
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Creating the rolling training sets
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Time series cross-validation

Stretch with a minimum length of 3, growing by 1 each step.

google_2015_stretch <- google_2015 %>%
stretch_tsibble(.init = 3, .step = 1) %>%
filter(.id != max(.id))

## # A tsibble: 31,623 x 4 [1]
## # Key: .id [249]
## Date Close trading_day .id
## <date> <dbl> <int> <int>
## 1 2015-01-02 522. 1 1
## 2 2015-01-05 511. 2 1
## 3 2015-01-06 499. 3 1
## 4 2015-01-02 522. 1 2
## 5 2015-01-05 511. 2 2
## 6 2015-01-06 499. 3 2
## 7 2015-01-07 498. 4 2
## # ... with 3.162e+04 more rows
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Time series cross-validation

Estimate RW w/ drift models for each window.

fit_cv <- google_2015_stretch %>%
model(RW(Close ~ drift()))

## # A mable: 249 x 3
## # Key: .id, Symbol [249]
## .id Symbol RW(Close ~ drift())
## <int> <chr> <model>
## 1 1 GOOG <RW w/ drift>
## 2 2 GOOG <RW w/ drift>
## 3 3 GOOG <RW w/ drift>
## 4 4 GOOG <RW w/ drift>
## # ... with 245 more rows
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Time series cross-validation

Produce one step ahead forecasts from all models.

fc_cv <- fit_cv %>%
forecast(h=1)

## # A fable: 249 x 5 [1]
## # Key: .id, Symbol [249]
## .id Symbol trading_day Close .distribution
## <int> <chr> <dbl> <dbl> <dist>
## 1 1 GOOG 4 488. N(488, 0.47)
## 2 2 GOOG 5 490. N(490, 37)
## 3 3 GOOG 6 494. N(494, 47)
## 4 4 GOOG 7 488. N(488, 35)
## # ... with 245 more rows
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Time series cross-validation

# Cross-validated
fc_cv %>% accuracy(google_2015)
# Training set
google_2015 %>% model(NAIVE(Close)) %>% accuracy()

RMSE MAE MAPE

Cross-validation 11.26819 7.261240 1.194024
Training 11.18958 7.127985 1.170985

A good way to choose the best forecasting model is to find the
model with the smallest RMSE computed using time series
cross-validation.
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