Outline

1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
Stationarity

Definition

If \(\{y_t\} \) is a strong stationary time series, then for all \(s \), the distribution of \((y_t, \ldots, y_{t+s})\) does not depend on \(t \).

A *strong stationary series* is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term
A stationary series or weak stationary series is:

- roughly horizontal
- constant variance
- no patterns predictable in the long-term
Stationary?
Stationary?
Stationary?

![Graph showing the number of strikes over years (1950-1980). The y-axis represents the number of strikes ranging from 4000 to 6000, and the x-axis represents the years 1950 to 1980. The graph indicates a trend with peaks in 1960, 1970, and 1980, and a general increase over the years.]
Sales of new one−family houses, USA

<table>
<thead>
<tr>
<th>Year</th>
<th>Total sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
</tr>
</tbody>
</table>

Stationary?
Price of a dozen eggs in 1993 dollars
Stationary?

Number of pigs slaughtered in Victoria

Year
thousands
2010 2012 2014 2016 2018

60
80
100
11
Annual Canadian Lynx Trappings
Stationary?

Australian quarterly beer production

Year

megalitres

1995 2000 2005 2010

13
Stationarity

Transformations help to stabilize the variance.
For ARIMA modelling, we also need to stabilize the mean.
Non-stationarity in the mean

Identifying non-stationary series

- time plot.
- The ACF of stationary data drops to zero relatively quickly.
- The ACF of non-stationary data decreases slowly.
- For non-stationary data, the value of r_1 is often large and positive.
Example: Google stock price
Example: Google stock price
Example: Google stock price
Example: Google stock price
Differencing helps to stabilize the mean.

The differenced series is the change between each observation in the original series:

\[y_t' = y_t - y_{t-1}. \]

The differenced series will have only \(T - 1 \) values since it is not possible to calculate a difference \(y_1' \) for the first observation.
Occasionally the differenced data will not appear stationary and it may be necessary to difference the data a second time:

\[y''_t = y'_t - y'_{t-1} \]

\[= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) \]

\[= y_t - 2y_{t-1} + y_{t-2}. \]

- \(y''_t \) will have \(T - 2 \) values.
- In practice, it is almost never necessary to go beyond second-order differences.
A seasonal difference is the difference between an observation and the corresponding observation from the previous year.

\[y_t' = y_t - y_{t-m} \]

where \(m \) = number of seasons.

- For monthly data \(m = 12 \).
- For quarterly data \(m = 4 \).
Electricity production

```r
usmelec %>% autoplot(
  Generation
)
```
Electricity production

```
usmelec %>% autoplot(
  log(Generation)
)
```
Electricity production

```
usmelec %>% autoplot(
  log(Generation) %>% difference(12)
)
```
Electricity production

```r
usmelec %>% autoplot(
  log(Generation) %>% difference(12) %>% difference()
)
```
Electricity production

- Seasonally differenced series is closer to being stationary.
- Remaining non-stationarity can be removed with further first difference.

If \(y'_t = y_t - y_{t-12} \) denotes seasonally differenced series, then twice-differenced series is

\[
y^*_t = y'_t - y'_{t-1} \\
= (y_t - y_{t-12}) - (y_{t-1} - y_{t-13}) \\
= y_t - y_{t-1} - y_{t-12} + y_{t-13}.
\]
Seasonal differencing

When both seasonal and first differences are applied...

- it makes no difference which is done first—the result will be the same.
- If seasonality is strong, we recommend that seasonal differencing be done first because sometimes the resulting series will be stationary and there will be no need for further first difference.

It is important that if differencing is used, the differences are interpretable.
Interpretation of differencing

- first differences are the change between one observation and the next;
- seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a model which cannot be sensibly interpreted.
Unit root tests

Statistical tests to determine the required order of differencing.

1. Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.

2. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal.

3. Other tests available for seasonal data.
KPSS test

google_2018 %>%
 features(Close, unitroot_kpss)

A tibble: 1 x 3
Symbol kpss_stat kpss_pvalue
<chr> <dbl> <dbl>
1 GOOG 0.573 0.0252

google_2018 %>%
 features(Close, unitroot_ndiffs)

A tibble: 1 x 2
Symbol ndiffs
<chr> <int>
1 GOOG 1
Automatically selecting differences

STL decomposition: \(y_t = T_t + S_t + R_t \)

Seasonal strength \(F_s = \max(0, 1 - \frac{\text{Var}(R_t)}{\text{Var}(S_t + R_t)}) \)

If \(F_s > 0.64 \), do one seasonal difference.

```r
usmelec %>% mutate(log_gen = log(Generation)) %>%
  features(log_gen, list(unitroot_nsdiffs, feat_stl))
```

```
# A tibble: 1 x 10
## nsdiffs trend_strength seasonal_strength seasonal_peak_year
## <int>       <dbl>        <dbl>            <dbl>
##  1          1            0.994             0.941
##  7
```

... with 6 more variables: seasonal_trough_year <dbl>,
spikiness <dbl>, linearity <dbl>, curvature <dbl>,
stl_e_acf1 <dbl>, stl_e_acf10 <dbl>
Automatically selecting differences

usmelec %>% mutate(log_gen = log(Generation)) %>%
 features(log_gen, unitroot_nsdiffs)

A tibble: 1 x 1
nsdiffs
<int>
1 1

usmelec %>% mutate(d_log_gen = difference(log(Generation), 12)) %>%
 features(d_log_gen, unitroot_ndiffs)

A tibble: 1 x 1
ndiffs
<int>
1 1
For the tourism dataset, compute the total number of trips and find an appropriate differencing (after transformation if necessary) to obtain stationary data.
A very useful notational device is the backward shift operator, B, which is used as follows:

$$By_t = y_{t-1}$$

In other words, B, operating on y_t, has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2 y_t = y_{t-2}$$

For monthly data, if we wish to shift attention to “the same month last year”, then B^{12} is used, and the notation is $B^{12}y_t = y_{t-12}$.
The backward shift operator is convenient for describing the process of differencing. A first difference can be written as

$$y_t' = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$

Note that a first difference is represented by $$(1 - B)$$. Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:

$$y_t'' = y_t - 2y_{t-1} + y_{t-2} = (1 - B)^2y_t$$
Backshift notation

- Second-order difference is denoted \((1 - B)^2\).
- *Second-order difference* is not the same as a *second difference*, which would be denoted \(1 - B^2\);
- In general, a \(d\)th-order difference can be written as
 \[
 (1 - B)^d y_t
 \]
- A seasonal difference followed by a first difference can be written as
 \[
 (1 - B)(1 - B^m)y_t
 \]
The “backshift” notation is convenient because the terms can be multiplied together to see the combined effect.

\[(1 - B)(1 - B^m)y_t = (1 - B - B^m + B^{m+1})y_t\]

\[= y_t - y_{t-1} - y_{t-m} + y_{t-m-1}.\]

For monthly data, \(m = 12\) and we obtain the same result as earlier.
Outline

1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
Autoregressive models

Autoregressive (AR) models:

\[y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \epsilon_t, \]

where \(\epsilon_t \) is white noise. This is a multiple regression with \textbf{lagged values} of \(y_t \) as predictors.
AR(1) model

\[y_t = 2 - 0.8y_{t-1} + \varepsilon_t \]

\[\varepsilon_t \sim N(0,1), \quad T = 100. \]
AR(1) model

\[y_t = c + \phi_1 y_{t-1} + \varepsilon_t \]

- When \(\phi_1 = 0 \), \(y_t \) is equivalent to WN
- When \(\phi_1 = 1 \) and \(c = 0 \), \(y_t \) is equivalent to a RW
- When \(\phi_1 = 1 \) and \(c \neq 0 \), \(y_t \) is equivalent to a RW with drift
- When \(\phi_1 < 0 \), \(y_t \) tends to oscillate between positive and negative values.
AR(2) model

\[y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + \varepsilon_t \]

\[\varepsilon_t \sim N(0, 1), \quad T = 100. \]
Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For $p = 1$: $-1 < \phi_1 < 1$.
- For $p = 2$:
 - $-1 < \phi_2 < 1$
 - $\phi_2 + \phi_1 < 1$
 - $\phi_2 - \phi_1 < 1$.
- More complicated conditions hold for $p \geq 3$.
- Estimation software takes care of this.
Moving Average (MA) models:

\[y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q}, \]

where \(\varepsilon_t \) is white noise. This is a multiple regression with past errors as predictors. Don’t confuse this with moving average smoothing!
Moving Average (MA) models

MA(1)

MA(2)
MA(1) model

\[y_t = 20 + \varepsilon_t + 0.8\varepsilon_{t-1} \]

\[\varepsilon_t \sim \mathcal{N}(0, 1), \quad T = 100. \]
MA(2) model

\[y_t = \varepsilon_t - \varepsilon_{t-1} + 0.8\varepsilon_{t-2} \]

\[\varepsilon_t \sim N(0, 1), \quad T = 100. \]
MA(∞) models

It is possible to write any stationary AR(p) process as an MA(∞) process.

Example: AR(1)

\[y_t = \phi_1 y_{t-1} + \varepsilon_t \]

\[= \phi_1 (\phi_1 y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \]

\[= \phi_1^2 y_{t-2} + \phi_1 \varepsilon_{t-1} + \varepsilon_t \]

\[= \phi_1^3 y_{t-3} + \phi_1^2 \varepsilon_{t-2} + \phi_1 \varepsilon_{t-1} + \varepsilon_t \]

\[\ldots \]

Provided \(-1 < \phi_1 < 1\):

\[y_t = \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 \varepsilon_{t-2} + \phi_1^3 \varepsilon_{t-3} + \cdots \]
Invertibility

- Any MA\((q)\) process can be written as an AR\((\infty)\) process if we impose some constraints on the MA parameters.
- Then the MA model is called “invertible”.
- Invertible models have some mathematical properties that make them easier to use in practice.
- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.
Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For $q = 1$: $-1 < \theta_1 < 1$.
- For $q = 2$:

 $-1 < \theta_2 < 1 \quad \theta_2 + \theta_1 > -1 \quad \theta_1 - \theta_2 < 1$.

- More complicated conditions hold for $q \geq 3$.
- Estimation software takes care of this.
Inverting MA(1)
ARIMA models

Autoregressive Moving Average models:

\[y_t = c + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q} + \varepsilon_t. \]

- Predictors include both lagged values of \(y_t \) and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.
Autoregressive Integrated Moving Average models

- Combine ARMA model with **differencing**.
- $(1 - B)^d y_t$ follows an ARMA model.
ARIMA models

Autoregressive Integrated Moving Average models

ARIMA\((p, d, q)\) model

AR: \(p = \) order of the autoregressive part

I: \(d = \) degree of first differencing involved

MA: \(q = \) order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- AR\((p)\): ARIMA\((p,0,0)\)
- MA\((q)\): ARIMA\((0,0,q)\)
Backshift notation for ARIMA

- **ARMA model:**

 \[y_t = c + \phi_1 B y_t + \cdots + \phi_p B^p y_t + \varepsilon_t + \theta_1 B \varepsilon_t + \cdots + \theta_q B^q \varepsilon_t \]
 or \((1 - \phi_1 B - \cdots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \cdots + \theta_q B^q) \varepsilon_t \)

- **ARIMA(1,1,1) model:**

 \[(1 - \phi_1 B) (1 - B) y_t = c + (1 + \theta_1 B) \varepsilon_t \]

 \[\uparrow \quad \uparrow \quad \uparrow \]

 AR(1) First difference MA(1)

Written out:

\[y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 \varepsilon_{t-1} + \varepsilon_t \]
Two forms

Intercept form

\[(1 - \phi_1 B - \cdots - \phi_p B^p)y'_t = c + (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t\]

Mean form

\[(1 - \phi_1 B - \cdots - \phi_p B^p)(y'_t - \mu) = (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t\]

- \(y'_t = (1 - B)^d y_t\)
- \(\mu\) is the mean of \(y'_t\).
- \(c = \mu(1 - \phi_1 - \cdots - \phi_p)\).
Two forms

- R uses mean form
- fable uses intercept form
Consider the following lines of thought:

\[x_t = \varepsilon_t \]
\[x_t - 0.5x_{t-1} = \varepsilon_t - 0.5\varepsilon_{t-1} \]
\[x_t - 0.5x_{t-1} = \varepsilon_t - 0.5\varepsilon_{t-1} \]
\[x_t = 0.5x_{t-1} + \varepsilon_t - 0.5\varepsilon_{t-1} \]

This looks like an ARMA(1, 1), but we know that \(x_t \) is just white noise.

Solution: remove the common factor of \(\phi(z) \) and \(\theta(z) \).
Example on redundancy, stationarity, and invertibility.

Consider the process
\[x_t = 0.4x_{t-1} + 0.45x_{t-2} + \varepsilon_t + \varepsilon_{t-1} + 0.25\varepsilon_{t-2} \]

for parameter redundancy, stationarity, and invertibility. In some cases, use ‘polyroot’ function in R to calculate roots. If complex roots are obtained, use ‘Mod’ function in R to find the module of complex numbers.
Australian household expenditure

us_change <- read_csv("https://otexts.com/fpp3/extrafiles/us_change.csv") %>%
 mutate(Time = yearquarter(Time)) %>%
as_tsibble(index = Time)

US consumption

Quarterly percentage change

Year

US personal consumption

```r
fit <- us_change %>% model(arima = ARIMA(Consumption ~ PDQ(0,0,0)))
report(fit)
```

Series: Consumption
Model: ARIMA(1,0,3) w/ mean
##
Coefficients:
ar1 ma1 ma2 ma3 constant
0.5885 -0.3528 0.0846 0.1739 0.3067
s.e. 0.1541 0.1658 0.0818 0.0843 0.0383
##
sigma^2 estimated as 0.3499: log likelihood=-164.8
AIC=341.6 AICc=342.1 BIC=361

ARIMA(1,0,3) model:

\[y_t = 0.307 + 0.589y_{t-1} - 0.353\varepsilon_{t-1} + 0.0846\varepsilon_{t-2} + 0.174\varepsilon_{t-2} + \varepsilon_t, \]

where \(\varepsilon_t\) is white noise with a standard deviation of \(0.592 = \sqrt{0.350}\).
US personal consumption

```r
fit %>% forecast(h=10) %>%
autoplot(slice(us_change, (n()-80):n()))
```
If $c = 0$ and $d = 0$, the long-term forecasts will go to zero.

If $c = 0$ and $d = 1$, the long-term forecasts will go to a non-zero constant.

If $c = 0$ and $d = 2$, the long-term forecasts will follow a straight line.

If $c \neq 0$ and $d = 0$, the long-term forecasts will go to the mean of the data.

If $c \neq 0$ and $d = 1$, the long-term forecasts will follow a straight line.

If $c \neq 0$ and $d = 2$, the long-term forecasts will follow a quadratic trend.
Understanding ARIMA models

Forecast variance and d

- The higher the value of d, the more rapidly the prediction intervals increase in size.
- For $d = 0$, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, $p \geq 2$ and some restrictions on coefficients are required.
- If $p = 2$, we need $\phi_1^2 + 4\phi_2 < 0$. Then average cycle of length

\[
\frac{(2\pi)}{[\text{arc cos}(-\phi_1(1 - \phi_2)/(4\phi_2))]}.
\]
Mean of the time series, denoted by μ_t is defined as:

$$\mu_t = E(y_t)$$

For stationary time series, mean is a constant.
Mean of ARMA \((p, q)\)

- For AR\((p)\),
 \[\mu_t = \frac{c}{1 - \phi_1 - \phi_2 - \cdots - \phi_p}\]

- For MA \((q)\),
 \[\mu_t = c\]

- For ARMA \((p, q)\),
 \[\mu_t = \frac{c}{1 - \phi_1 - \phi_2 - \cdots - \phi_p}\]
Variance of the time series, denoted by σ_t^2 is defined as:

$$\sigma_t^2 = \text{Var}(y_t)$$

- For stationary time series, variance is a constant.
Variance of ARMA \((p, q)\)

- For AR(1),
 \[\sigma_t^2 = \frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}\]
 where \(\sigma_{\varepsilon}^2\) is the variance of the error term.

- For AR(2),
 \[\sigma_t^2 = \frac{1 - \phi_2}{1 + \phi_2} \cdot \frac{\sigma_{\varepsilon}^2}{(1 - \phi_2)^2 - \phi_1^2}\]

- For MA \((q)\),
 \[\sigma_t^2 = \sigma_{\varepsilon}^2(1 + \theta_1^2 + \theta_2^2 + \cdots + \theta_q^2)\]
Assume that $\phi(B)y_t = c + \theta(B)\varepsilon_t$ is stationary where the roots of $\phi(z)$ are outside the unit cycle.

Write

$$y_t = \frac{c}{\phi(B)} + \frac{\theta(B)}{\phi(B)}\varepsilon_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} + c^*$$

Variance of the time series is

$$\sigma_t^2 = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j^2$$
Autocorrelation of stationary time series, denoted by ρ_h is defined as:

$$\rho_h = \text{cor}(y_t, y_{t-h})$$

For nonstationary time series, ACF cannot be defined.
ACF

- For AR (1):
 \[\rho_h = \phi_1^h. \]

- For MA (1):
 \[\rho_1 = \theta_1 / (1 + \theta_1^2) \]
 and \(\rho_h = 0 \) for \(h \geq 2. \)

- For ARMA \((p, q)\):
 \[\rho_h = \frac{\sum_{j=0}^{\infty} \psi_j \psi_{j+h}}{\sum_{j=0}^{\infty} \psi_j^2}. \]
White noise: For large n,

$$r_h \sim \mathcal{N}(0, \frac{1}{n})$$

for $h = 1, 2, \ldots$. This explains why $\pm 2/\sqrt{n}$ serve as approximate margin of error bounds for r_h. Values of r_h outside these bounds would be “unusual” under the white noise model assumption.
Sample ACF

- **AR (1):** For large n,
 \[r_h \sim AN(\rho_h, \sigma_{r_h}^2) \]
 where
 \[
 \sigma_{r_h}^2 = \frac{1}{n} \left[\frac{(1 + \phi_1^2)(1 - \phi_1^{2h})}{1 - \phi_1^2} - 2h\phi_1^{2h} \right].
 \]

- **MA (q):** For large n,
 \[r_{q+k} \sim AN \left[0, \frac{1}{n} \left(1 + 2 \sum_{j=1}^{q} \rho_j^2 \right) \right] \]
 for $k = 1, 2, \ldots$.
For other cases, results are usually much more complicated. General results can be found in Shumway and Stoffer's book *Time Series Analysis and its application*.
ARIMA models

- Mean is not a constant.
- Variance is not a constant and may approach infinity as $t \to \infty$.
- ACF does not exist as ACF is defined only for stationary time series.
Partial autocorrelations measure relationship between y_t and y_{t-h}, when the effects of other time lags — $1, 2, 3, \ldots, h-1$ — are removed.

For a time series with Normality assumption of the error process, the partial autocorrelation between y_t and y_{t-h} is defined as the conditional correlation between y_t and y_{t-h}, conditional on $y_{t-h+1}, \ldots, y_{t-1}$, the set of observations that come between the time points t and $t-h$.
The 1st order partial autocorrelation is defined to equal the 1st order autocorrelation.

The 2nd order (lag) partial autocorrelation is
\[
\frac{\text{Covariance}(y_t, y_{t-2}|y_{t-1})}{\text{std.Deviation}(y_t|y_{t-1})\text{std.Deviation}(y_{t-2}|y_{t-1})}
\]

The two variances in the denominator will equal each other in a stationary series.
The 3rd order (lag) partial autocorrelation is

\[
\frac{\text{Covariance}(y_t, y_{t-3}|y_{t-1}, y_{t-2})}{\text{std.Deviation}(y_t|y_{t-1}, y_{t-2})\text{std.Deviation}(y_{t-3}|y_{t-1}, y_{t-2})}
\]
PACF of AR (1) model
PACF of MA (1) model
Under the hypothesis that an AR(p) is correct, the sample partial autocorrelations at lags greater than p are approximately normally distributed with zero means and variances $1/n$ (n is sample size).

For $h > p$, $\pm 2/\sqrt{n}$ can be used as critical limits on $\hat{\phi}_{hh}$ to test the null hypothesis that $\phi_{hh} = 0$.
1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
Having identified the model order, we need to estimate the parameters \(c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q \).

- MLE is very similar to least squares estimation obtained by minimizing
 \[
 \sum_{t=1}^{T} e_t^2
 \]

- The ARIMA() model allows CLS or MLE estimation.

- Non-linear optimization must be used in either case.

- Different software will give different estimates.
Partial autocorrelations measure relationship between y_t and y_{t-k}, when the effects of other time lags — 1, 2, 3, ..., $k-1$ — are removed.

$$\alpha_k = \text{kth partial autocorrelation coefficient}$$

$$= \text{equal to the estimate of } \phi_k \text{ in regression:}$$

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}.$$
Example: Mink trapping

Annual number of minks trapped

Minks trapped (thousands)

Year

1860 1880 1900
Example: Mink trapping

```r
p1 <- mink %>% ACF(value) %>% autoplot()
p2 <- mink %>% PACF(value) %>% autoplot()
gridExtra::grid.arrange(p1, p2, nrow = 1)
```
Example: Mink trapping

```
mink %>% gg_tsdisplay(value)
```
ACF and PACF interpretation

AR(1)

\[\rho_k = \phi_1^k \quad \text{for } k = 1, 2, \ldots ; \]
\[\alpha_1 = \phi_1 \quad \alpha_k = 0 \quad \text{for } k = 2, 3, \ldots . \]

So we have an AR(1) model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.
ACF and PACF interpretation

AR(ρ)

- ACF dies out in an exponential or damped sine-wave manner
- PACF has all zero spikes beyond the ρth spike

So we have an AR(ρ) model when

- the ACF is exponentially decaying or sinusoidal
- there is a significant spike at lag ρ in PACF, but none beyond ρ
MA(1)

\[\rho_1 = \theta_1 \quad \rho_k = 0 \quad \text{for } k = 2, 3, \ldots; \]

\[\alpha_k = -(-\theta_1)^k \]

So we have an MA(1) model when

- the PACF is exponentially decaying and
- there is a single significant spike in ACF
MA(\(q\))

- PACF dies out in an exponential or damped sine-wave manner
- ACF has all zero spikes beyond the \(q\)th spike

So we have an MA(\(q\)) model when

- the PACF is exponentially decaying or sinusoidal
- there is a significant spike at lag \(q\) in ACF, but none beyond \(q\)
Akaike’s Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,
$k = 1$ if $c \neq 0$ and $k = 0$ if $c = 0$.

Corrected AIC:

$$AICc = AIC + \frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}.$$
Bayesian Information Criterion:

\[\text{BIC} = \text{AIC} + \left[\log(T) - 2 \right] (p + q + k - 1). \]

Good models are obtained by minimizing either the AIC, AICc or BIC. Our preference is to use the AICc.
Modelling procedure with ARIMA—choose your own model

1. Plot the data. Identify any unusual observations.
2. If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
3. If the data are non-stationary: take first differences of the data until the data are stationary.
4. Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
5. Try your chosen model(s), and use the AICc to search for a better model.
Modelling procedure with ARIMA—choose your own model

6 Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.

7 Once the residuals look like white noise, calculate forecasts.
A non-seasonal ARIMA process

\[\phi(B)(1 - B)^d y_t = c + \theta(B) \varepsilon_t \]

Need to select appropriate orders: \(p, q, d \)

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences \(d \) and \(D \) via KPSS test and seasonal strength measure.
- Select \(p, q \) by minimising AICc.
- Use stepwise search to traverse model space.
How does automated ARIMA() work?

\[
\text{AICc} = -2 \log(L) + 2(p + q + k + 1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right].
\]

where \(L\) is the maximised likelihood fitted to the differenced data, \(k = 1\) if \(c \neq 0\) and \(k = 0\) otherwise.

Step 1: Select current model (with smallest AICc) from:
- ARIMA(2, d, 2)
- ARIMA(0, d, 0)
- ARIMA(1, d, 0)
- ARIMA(0, d, 1)

Step 2: Consider variations of current model:
- vary one of \(p, q\), from current model by \(\pm 1\);
- \(p, q\) both vary from current model by \(\pm 1\);
- Include/exclude \(c\) from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.
1. Plot the data. Identify any unusual observations.
2. If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
3. Use ARIMA to automatically select a model.
6. Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
7. Once the residuals look like white noise, calculate forecasts.
Modelling procedure

1. Plot the data. Identify unusual observations. Understand patterns.
2. If necessary, use a Box-Cox transformation to stabilise the variance.
3. If necessary, difference the data until it appears stationary. Use unit-root tests if you are unsure.
4. Plot the ACF/PACF of the differenced data and try to determine possible candidate models.
5. Try your chosen model(s) and use the AICc to search for a better model.
6. Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals.
7. Calculate forecasts.

Do the residuals look like white noise?

no

Use ARIMA() to automatically find the best ARIMA model for your time series.

yes
Seasonally adjusted electrical equipment

elec_equip <- \texttt{as_tsibble}(fpp2::elecequip)
elec_dcmp <- elec_equip %>%
model(\texttt{STL(value \sim season(window="periodic")))} %>%
components() %>% select(-.model) %>% \texttt{as_tsibble()}
elec_dcmp %>% \texttt{autoplot(season_adjust)
1. Time plot shows sudden changes, particularly big drop in 2008/2009 due to global economic environment. Otherwise nothing unusual and no need for data adjustments.

2. No evidence of changing variance, so no Box-Cox transformation.

3. Data are clearly non-stationary, so we take first differences.
Seasonally adjusted electrical equipment

elec_dcmp %>%
 gg_tsdisplay(difference(season_adjust), plot_type='partial')
Seasonally adjusted electrical equipment

4. PACF is suggestive of AR(3). So initial candidate model is ARIMA(3,1,0). No other obvious candidates.

5. Fit ARIMA(3,1,0) model along with variations: ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc. ARIMA(3,1,1) has smallest AICc value.
Seasonally adjusted electrical equipment

```r
fit <- elec_dcmp %>%
    model(
        arima = ARIMA(season_adjust ~ pdq(3,1,1) + PDQ(0,0,0))
    )
report(fit)
```

```
## Series: season_adjust
## Model: ARIMA(3,1,1)
##
## Coefficients:
##      ar1  ar2  ar3   ma1
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
## sigma^2 estimated as 9.577:  log likelihood=-492.7
## AIC=995.4   AICc=995.7   BIC=1012
```
Seasonally adjusted electrical equipment

6 ACF plot of residuals from ARIMA(3,1,1) model look like white noise.
Seasonally adjusted electrical equipment

```r
## # A tibble: 1 x 3
## #  .model lb_stat lb_pvalue
## 1 arima  24.0  0.241
```
Seasonally adjusted electrical equipment

```r
fit %>% forecast() %>% autoplot(elec_dcmp)
```
The three red dots correspond to the roots of the polynomials $\phi(B)$ (left) and $\theta(B)$ (right) of the ARIMA(3,1,1) model.
Roots checking

- They are all inside the unit circle, as we would expect because R ensures the fitted model is both stationary and invertible.
- Any roots close to the unit circle may be numerically unstable, and the corresponding model will not be good for forecasting.
- The `ARIMA()` function will never return a model with inverse roots outside the unit circle.
Outline

1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
Point forecasts

1. Rearrange ARIMA equation so y_t is on LHS.
2. Rewrite equation by replacing t by $T + h$.
3. On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with $h = 1$. Repeat for $h = 2, 3, \ldots$.
Point forecasts

ARIMA(3,1,1) forecasts: Step 1

\[(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t,\]

\[
[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3 B^4]y_t
\]

\[= (1 + \theta_1 B)\varepsilon_t,\]

\[y_t - (1 + \phi_1)y_{t-1} + (\phi_1 - \phi_2)y_{t-2} + (\phi_2 - \phi_3)y_{t-3}
\]

\[+ \phi_3 y_{t-4} = \varepsilon_t + \theta_1 \varepsilon_{t-1}.\]

\[y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3}
\]

\[- \phi_3 y_{t-4} + \varepsilon_t + \theta_1 \varepsilon_{t-1}.\]
Point forecasts \((h=1)\)

\[
y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}.
\]

ARIMA\((3,1,1)\) forecasts: Step 2

\[
y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T.
\]

ARIMA\((3,1,1)\) forecasts: Step 3

\[
\hat{y}_{T+1|T} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \theta_1\varepsilon_T.
\]
Point forecasts (h=2)

$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}.$

ARIMA(3,1,1) forecasts: Step 2

$y_{T+2} = (1 + \phi_1)y_{T+1} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1}$

$- \phi_3y_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$

ARIMA(3,1,1) forecasts: Step 3

$\hat{y}_{T+2|T} = (1 + \phi_1)\hat{y}_{T+1|T} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1}$

$- \phi_3y_{T-2}.$
Prediction intervals

95% prediction interval

\[\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}} \]

where \(v_{T+h|T} \) is estimated forecast variance.

- Multi-step prediction intervals for ARIMA(0,0,q):
 \[y_t = \varepsilon_t + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i}. \]
 \[v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \ldots. \]
- AR(1): Rewrite as MA(\(\infty \)) and use above result.
- Other models beyond scope of this subject.
Prediction intervals

- Prediction intervals **increase in size with forecast horizon**.
- Prediction intervals can be difficult to calculate by hand.
- Calculations assume residuals are **uncorrelated** and **normally distributed**.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors...
For the United States GDP data (from global_economy):

- if necessary, find a suitable Box-Cox transformation for the data;
- fit a suitable ARIMA model to the transformed data;
- check the residual diagnostics;
- produce forecasts of your fitted model. Do the forecasts look reasonable?
1 Stationarity and differencing
2 Non-seasonal ARIMA models
3 Mean, Variance, ACF, PACF
4 Estimation and order selection
5 ARIMA modelling in R
6 Forecasting
7 Seasonal ARIMA models
8 ARIMA vs ETS
Seasonal ARIMA models

\[
\text{ARIMA } \underbrace{(p, d, q)} \quad \underbrace{(P, D, Q)_m} \\
\uparrow \quad \uparrow \\
\text{Non-seasonal part} \quad \text{Seasonal part of} \\
\text{of the model} \quad \text{of the model}
\]

where \(m = \text{number of observations per year.} \)
Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)_4 model (without constant)

\[(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)\varepsilon_t.\]

- Non-seasonal AR(1)
- Seasonal AR(1)
- Non-seasonal difference
- Seasonal difference
- Non-seasonal MA(1)
- Seasonal MA(1)
Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)_4 model (without constant)

\[(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)\varepsilon_t.\]

All the factors can be multiplied out and the general model written as follows:

\[y_t = (1 + \phi_1) y_{t-1} - \phi_1 y_{t-2} + (1 + \Phi_1) y_{t-4} - (1 + \phi_1 + \Phi_1 + \phi_1 \Phi_1) y_{t-5} + (\phi_1 + \phi_1 \Phi_1) y_{t-6} - \Phi_1 y_{t-8} + (\Phi_1 + \phi_1 \Phi_1) y_{t-9} - \phi_1 \Phi_1 y_{t-10} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \Theta_1 \varepsilon_{t-4} + \theta_1 \Theta_1 \varepsilon_{t-5}.\]
The US Census Bureau uses the following models most often:

- **ARIMA (0,1,1)(0,1,1)_m** with log transformation
- **ARIMA (0,1,2)(0,1,1)_m** with log transformation
- **ARIMA (2,1,0)(0,1,1)_m** with log transformation
- **ARIMA (0,2,2)(0,1,1)_m** with log transformation
- **ARIMA (2,1,2)(0,1,1)_m** with no transformation
The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)_{12} will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

ARIMA(0,0,0)(1,0,0)_{12} will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.
European quarterly retail trade

```
eu_retail %>% autoplot(value) +
  xlab("Year") + ylab("Retail index")
```
European quarterly retail trade

eu_retail %>% gg_tsdisplay(
 value %>% difference(4), plot_type='partial')
European quarterly retail trade

eu_retail %>% gg_tsdisplay(
 value %>% difference(4) %>% difference(1), plot_type='partial')
- $d = 1$ and $D = 1$ seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)_4.
- We could also have started with ARIMA(1,1,0)(1,1,0)_4.
European quarterly retail trade

```r
fit <- eu_retail %>%
  model(arima = ARIMA(value ~ pdq(0,1,1) + PDQ(0,1,1)))
augment(fit) %>% gg_tsdisplay(.resid, plot_type = "hist")
```
European quarterly retail trade

```r
augment(fit) %>%
  features(.resid, ljung_box, lag = 8, dof = 2)
```

```
## # A tibble: 1 x 3
##     .model lb_stat lb_pvalue
##   <chr>    <dbl>    <dbl>
## 1   arima   10.7  0.0997
```

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 arima 10.7 0.0997
ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.

- AICc of ARIMA(0,1,1)(0,1,1)₄ model is 75.72
- AICc of ARIMA(0,1,2)(0,1,1)₄ model is 74.27.
- AICc of ARIMA(0,1,3)(0,1,1)₄ model is 68.39.
- AICc of ARIMA(0,1,4)(0,1,1)₄ model is 70.73.
European quarterly retail trade

```r
fit <- eu_retail %>%
  model(
    arima013011 = ARIMA(value ~ pdq(0,1,3) + PDQ(0,1,1))
  )
report(fit)
```

```r
## Series: value
## Model: ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
##         ma1      ma2      ma3     sma1
##     0.2630  0.3694  0.4200 -0.6636
## s.e. 0.1237  0.1255  0.1294  0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26   AICc=68.39   BIC=77.65
```
European quarterly retail trade

```
augment(fit) %>%
gg_tsdisplay(.resid, plot_type = "hist")
```
European quarterly retail trade

```
augment(fit) %>%
  features(.resid, ljung_box, lag = 8, dof = 4)
```

A tibble: 1 x 3
A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 arima013011 0.511 0.972
European quarterly retail trade

```r
fit %>% forecast(h = "3 years") %>%
autoplot(eu_retail)
```
European quarterly retail trade

```
eu_retail %>% model(ARIMA(value)) %>% report()
```

Series: value
Model: ARIMA(0,1,3)(0,1,1)[4]
##
Coefficients:
ma1 ma2 ma3 sma1
0.2630 0.3694 0.4200 -0.6636
s.e. 0.1237 0.1255 0.1294 0.1545
##
sigma^2 estimated as 0.156: log likelihood=-28.63
AIC=67.26 AICc=68.39 BIC=77.65
European quarterly retail trade

eu_retail %>% model(ARIMA(value, stepwise = FALSE, approximation = FALSE)) %>% report()

Series: value
Model: ARIMA(0,1,3)(0,1,1)[4]
##
Coefficients:
ma1 ma2 ma3 sma1
0.2630 0.3694 0.4200 -0.6636
s.e. 0.1237 0.1255 0.1294 0.1545

sigma^2 estimated as 0.156: log likelihood=-28.63
AIC=67.26 AICC=68.39 BIC=77.65
Cortecosteroid drug sales

Cortecosteroid drug scripts (H02)

Year

1995
2000
2005

Cost

log(Cost)

13.0
13.5
14.0

1250000
1000000
750000
500000
1250000
1000000
750000
500000

Cost

log(Cost)
Cortecosteroid drug sales

![Graph showing cortecosteroid drug sales over time with autocorrelation (acf) and partial autocorrelation (pacf) plots.](image)

- **Month**
 - 1995
 - 2000
 - 2005

- **difference (log(Cost), 1)**
 - Values range from -0.4 to 0.4

- **lag [1M]**
 - Lags range from 6 to 36 months

- **acf and pacf plots**
 - Acf and pacf values are displayed for each lag, indicating the autocorrelation and partial autocorrelation at different lags.
Cortecosteroid drug sales

- Choose $D = 1$ and $d = 0$.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF suggests possible non-seasonal AR(3) term.
- Initial candidate model: ARIMA(3,0,0)(2,1,0)$_{12}$.
Cortecosteroid drug sales

<table>
<thead>
<tr>
<th>.model</th>
<th>AICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(3,0,1)(0,1,2)[12]</td>
<td>-485.5</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(1,1,1)[12]</td>
<td>-484.3</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(0,1,1)[12]</td>
<td>-483.7</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(2,1,0)[12]</td>
<td>-476.3</td>
</tr>
<tr>
<td>ARIMA(3,0,0)(2,1,0)[12]</td>
<td>-475.1</td>
</tr>
<tr>
<td>ARIMA(3,0,2)(2,1,0)[12]</td>
<td>-474.9</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(1,1,0)[12]</td>
<td>-463.4</td>
</tr>
</tbody>
</table>
Cortecosteroid drug sales

```r
fit <- h02 %>%
  model(best = ARIMA(log(Cost) ~ 0 + pdq(3,0,1) + PDQ(0,1,2)))
report(fit)
```

```r
## Series: Cost
## Model: ARIMA(3,0,1)(0,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
##     ar1    ar2    ar3     ma1    sma1    sma2
## -0.1602 0.5481 0.5678 0.3826 -0.5222 -0.1769
## s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872
##
## sigma^2 estimated as 0.004289: log likelihood=250.1
## AIC=-486.1   AICc=-485.5   BIC=-463.3
```
Cortecosteroid drug sales

```r
augment(fit) %>%
gg_tsdisplay(.resid, lag_max=36, plot_type = "hist")
```
Cortecosteroid drug sales

```r
augment(fit) %>%
features(.resid, ljung_box, lag = 36, dof = 6)
```

```
## # A tibble: 1 x 3
## #   .model lb_stat lb_pvalue
## 1  best   50.5     0.0109
```
Cortecosteroid drug sales

```r
fit <- h02 %>% model(auto = ARIMA(log(Cost)))
report(fit)
```

```
## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(.x)

## Coefficients:
##           ar1  ar2  sma1
## log(Cost) -0.8491 -0.4207 -0.6401
## s.e.      0.0712 0.0714 0.0694

## sigma^2 estimated as 0.004399: log likelihood=245.4
## AIC=-482.8  AICc=-482.6  BIC=-469.8
```
Cortecosteroid drug sales

```r
augment(fit) %>%
gg_tsdisplay(.resid, lag_max = 36, plot_type = "hist")
```
Cortecosteroid drug sales

```r
augment(fit) %>%
  features(.resid, ljung_box, lag = 36, dof = 5)

## # A tibble: 1 x 3
## #  .model  lb_stat  lb_pvalue
## <chr>    <dbl>    <dbl>
## 1 auto    57.5     0.00260
```

A tibble: 1 x 3
.model lb_stat lb_pvalue
<chr> <dbl> <dbl>
1 auto 57.5 0.00260
Cortecosteroid drug sales

```r
fit <- h02 %>%
  model(best = ARIMA(log(Cost), stepwise = FALSE,
                     approximation = FALSE,
                     order_constraint = p + q + P + Q <= 9))
report(fit)
```

```
## Series: Cost
## Model: ARIMA(4,1,1)(2,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
##            ar1   ar2   ar3   ar4   ma1   sar1
##            -0.0426 0.2097 0.2016 -0.2273 -0.7423 0.6213
##            s.e.  0.2167 0.1814 0.1144  0.0810  0.2075  0.2421
##            sar2  sma1  sma2
##            -0.3832 -1.2018  0.4958
##            s.e.  0.1185  0.2492  0.2136
##
## sigma^2 estimated as 0.004061:  log likelihood=254.3
## AIC=-488.6   AICc=-487.4   BIC=-456.1
```
Corticosteroid drug sales

```
augment(fit) %>%
gg_tsdisplay(.resid, lag_max = 36, plot_type = "hist")
```
Cortecosteroid drug sales

```
augment(fit) %>%
  features(.resid, ljung_box, lag = 36, dof = 9)
```

```r
## # A tibble: 1 x 3
## #  .model lb_stat  lb_pvalue
## #   <chr> <dbl>    <dbl>
## 1 best  35.1     0.136
```
Corticosteroid drug sales

Training data: July 1991 to June 2006

Test data: July 2006–June 2008

```r
fit <- h02 %>%
  filter_index(~ "2006 Jun") %>%
  model(
    ARIMA(log(Cost) ~ pdq(3, 0, 0) + PDQ(2, 1, 0)),
    ARIMA(log(Cost) ~ pdq(3, 0, 1) + PDQ(2, 1, 0)),
    ARIMA(log(Cost) ~ pdq(3, 0, 2) + PDQ(2, 1, 0)),
    ARIMA(log(Cost) ~ pdq(3, 0, 1) + PDQ(1, 1, 0))
    # ... #
  )

fit %>%
  forecast(h = "2 years") %>%
  accuracy(h02 %>% filter_index("2006 Jul" ~ .))
```

Corticosteroid drug sales
Corticosteroid drug sales

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(3,0,1)(1,1,1)[12]</td>
<td>61878</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(0,1,2)[12]</td>
<td>62142</td>
</tr>
<tr>
<td>ARIMA(2,1,4)(0,1,1)[12]</td>
<td>62708</td>
</tr>
<tr>
<td>ARIMA(2,1,3)(0,1,1)[12]</td>
<td>62856</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(0,1,1)[12]</td>
<td>62947</td>
</tr>
<tr>
<td>ARIMA(3,0,2)(0,1,1)[12]</td>
<td>62968</td>
</tr>
<tr>
<td>ARIMA(4,1,1)(2,1,2)[12]</td>
<td>63114</td>
</tr>
<tr>
<td>ARIMA(3,0,3)(0,1,1)[12]</td>
<td>63487</td>
</tr>
<tr>
<td>ARIMA(2,1,5)(0,1,1)[12]</td>
<td>63610</td>
</tr>
<tr>
<td>ARIMA(3,0,2)(2,1,0)[12]</td>
<td>65146</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(2,1,0)[12]</td>
<td>65270</td>
</tr>
<tr>
<td>ARIMA(3,0,1)(1,1,0)[12]</td>
<td>66644</td>
</tr>
<tr>
<td>ARIMA(3,0,0)(2,1,0)[12]</td>
<td>66816</td>
</tr>
</tbody>
</table>
Models with lowest AICc values tend to give slightly better results than the other models.

AICc comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.

Use the best model available, even if it does not pass all tests.
Cortecosteroid drug sales

```r
fit <- h02 %>%
  model(ARIMA(Cost ~ 0 + pdq(3,0,1) + PDQ(1,1,1)))
fit %>% forecast %>% autoplot(h02) +
  ylab("H02 Expenditure ($AUD)") + xlab("Year")
```
1. Stationarity and differencing
2. Non-seasonal ARIMA models
3. Mean, Variance, ACF, PACF
4. Estimation and order selection
5. ARIMA modelling in R
6. Forecasting
7. Seasonal ARIMA models
8. ARIMA vs ETS
ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.
Equivalences

<table>
<thead>
<tr>
<th>ETS model</th>
<th>ARIMA model</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS(A,N,N)</td>
<td>ARIMA(0,1,1)</td>
<td>$\theta_1 = \alpha - 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS(A,A,N)</td>
<td>ARIMA(0,2,2)</td>
<td>$\theta_1 = \alpha + \beta - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta_2 = 1 - \alpha$</td>
</tr>
<tr>
<td>ETS(A,A_d,N)</td>
<td>ARIMA(1,1,2)</td>
<td>$\phi_1 = \phi$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta_1 = \alpha + \phi \beta - 1 - \phi$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta_2 = (1 - \alpha) \phi$</td>
</tr>
<tr>
<td>ETS(A,N,A)</td>
<td>ARIMA(0,0,m)$(0,1,0)_m$</td>
<td></td>
</tr>
<tr>
<td>ETS(A,A,A)</td>
<td>ARIMA(0,1,$m + 1$)$(0,1,0)_m$</td>
<td></td>
</tr>
<tr>
<td>ETS(A,A_d,A)</td>
<td>ARIMA(1,0,$m + 1$)$(0,1,0)_m$</td>
<td></td>
</tr>
</tbody>
</table>
For the fma::condmilk series:

- Do the data need transforming? If so, find a suitable transformation.
- Are the data stationary? If not, find an appropriate differencing which yields stationary data.
- Identify a couple of ARIMA models that might be useful in describing the time series.
- Which of your models is the best according to their AIC values?
Your turn

- Estimate the parameters of your best model and do diagnostic testing on the residuals. Do the residuals resemble white noise? If not, try to find another ARIMA model which fits better.
- Forecast the next 24 months of data using your preferred model.
- Compare the forecasts obtained using ets().