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Stationarity

Definition
If {yt} is a strong stationary time series, then for all
s, the distribution of (yt , . . . , yt+s) does not depend
on t.

A strong stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationarity

A stationary series or weak stationary series is:

roughly horizontal
constant variance
no patterns predictable in the long-term
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Stationarity

Transformations help to stabilize the variance.

For ARIMA modelling, we also need to stabilize the
mean.
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Non-stationarity in the mean

Identifying non-stationary series

time plot.
The ACF of stationary data drops to zero
relatively quickly
The ACF of non-stationary data decreases
slowly.
For non-stationary data, the value of r1 is often
large and positive.
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Example: Google stock price
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Example: Google stock price
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Example: Google stock price
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Example: Google stock price
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Differencing

Differencing helps to stabilize the mean.
The differenced series is the change between
each observation in the original series:
y ′t = yt − yt−1.
The differenced series will have only T − 1
values since it is not possible to calculate a
difference y ′1 for the first observation.
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Second-order differencing

Occasionally the differenced data will not appear
stationary and it may be necessary to difference the
data a second time:

y ′′t = y ′t − y ′t−1
= (yt − yt−1)− (yt−1 − yt−2)
= yt − 2yt−1 + yt−2.

y ′′t will have T − 2 values.
In practice, it is almost never necessary to go
beyond second-order differences.
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Seasonal differencing

A seasonal difference is the difference between an
observation and the corresponding observation from
the previous year.

y ′t = yt − yt−m

where m = number of seasons.

For monthly data m = 12.
For quarterly data m = 4.
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Electricity production

usmelec %>% autoplot(
Generation
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Electricity production

usmelec %>% autoplot(
log(Generation)

)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12)
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Electricity production

usmelec %>% autoplot(
log(Generation) %>% difference(12) %>% difference()

)
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Electricity production

Seasonally differenced series is closer to being
stationary.
Remaining non-stationarity can be removed with
further first difference.

If y ′t = yt − yt−12 denotes seasonally differenced
series, then twice-differenced series is

y ∗t = y ′t − y ′t−1
= (yt − yt−12)− (yt−1 − yt−13)
= yt − yt−1 − yt−12 + yt−13 .
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Seasonal differencing

When both seasonal and first differences are
applied. . .

it makes no difference which is done first—the
result will be the same.
If seasonality is strong, we recommend that
seasonal differencing be done first because
sometimes the resulting series will be stationary
and there will be no need for further first
difference.

It is important that if differencing is used, the
differences are interpretable. 28



Interpretation of differencing

first differences are the change between one
observation and the next;
seasonal differences are the change between one
year to the next.

But taking lag 3 differences for yearly data, for
example, results in a model which cannot be sensibly
interpreted.
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Unit root tests

Statistical tests to determine the required order of
differencing.

1 Augmented Dickey Fuller test: null hypothesis is
that the data are non-stationary and
non-seasonal.

2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test:
null hypothesis is that the data are stationary
and non-seasonal.

3 Other tests available for seasonal data.
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KPSS test

google_2018 %>%
features(Close, unitroot_kpss)

## # A tibble: 1 x 3
## Symbol kpss_stat kpss_pvalue
## <chr> <dbl> <dbl>
## 1 GOOG 0.573 0.0252

google_2018 %>%
features(Close, unitroot_ndiffs)

## # A tibble: 1 x 2
## Symbol ndiffs
## <chr> <int>
## 1 GOOG 1
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Automatically selecting differences

STL decomposition: yt = Tt + St + Rt

Seasonal strength Fs = max
(
0, 1− Var(Rt)

Var(St+Rt)
)

If Fs > 0.64, do one seasonal difference.
usmelec %>% mutate(log_gen = log(Generation)) %>%

features(log_gen, list(unitroot_nsdiffs, feat_stl))

## # A tibble: 1 x 10
## nsdiffs trend_strength seasonal_streng~ seasonal_peak_y~
## <int> <dbl> <dbl> <dbl>
## 1 1 0.994 0.941 7
## # ... with 6 more variables: seasonal_trough_year <dbl>,
## # spikiness <dbl>, linearity <dbl>, curvature <dbl>,
## # stl_e_acf1 <dbl>, stl_e_acf10 <dbl>
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Automatically selecting differences

usmelec %>% mutate(log_gen = log(Generation)) %>%
features(log_gen, unitroot_nsdiffs)

## # A tibble: 1 x 1
## nsdiffs
## <int>
## 1 1

usmelec %>% mutate(d_log_gen = difference(log(Generation), 12)) %>%
features(d_log_gen, unitroot_ndiffs)

## # A tibble: 1 x 1
## ndiffs
## <int>
## 1 1

33



Your turn

For the tourism dataset, compute the total number
of trips and find an appropriate differencing (after
transformation if necessary) to obtain stationary data.
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Backshift notation

A very useful notational device is the backward shift
operator, B, which is used as follows:

Byt = yt−1

In other words, B, operating on yt , has the effect of
shifting the data back one period.
Two applications of B to yt shifts the data back
two periods:

B(Byt) = B2yt = yt−2

For monthly data, if we wish to shift attention to
“the same month last year”, then B12 is used, and the
notation is B12yt = yt−12. 35



Backshift notation

The backward shift operator is convenient for
describing the process of differencing.
A first difference can be written as

y ′t = yt − yt−1 = yt − Byt = (1− B)yt

Note that a first difference is represented by (1− B).

Similarly, if second-order differences (i.e., first
differences of first differences) have to be computed,
then:

y ′′t = yt − 2yt−1 + yt−2 = (1− B)2yt
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Backshift notation

Second-order difference is denoted (1− B)2.
Second-order difference is not the same as a
second difference, which would be denoted
1− B2;
In general, a dth-order difference can be written
as

(1− B)dyt

A seasonal difference followed by a first
difference can be written as

(1− B)(1− Bm)yt
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Backshift notation

The “backshift” notation is convenient because the
terms can be multiplied together to see the combined
effect.

(1− B)(1− Bm)yt = (1− B − Bm + Bm+1)yt

= yt − yt−1 − yt−m + yt−m−1.

For monthly data, m = 12 and we obtain the same
result as earlier.
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Autoregressive models

Autoregressive (AR) models:

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt ,

where εt is white noise. This is a multiple regression
with lagged values of yt as predictors.
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AR(1) model

yt = 2− 0.8yt−1 + εt

εt ∼ N(0, 1), T = 100.

8

10

12

0 25 50 75 100
idx [1]

AR(1)

41



AR(1) model

yt = c + φ1yt−1 + εt

When φ1 = 0, yt is equivalent to WN
When φ1 = 1 and c = 0, yt is equivalent to a
RW
When φ1 = 1 and c 6= 0, yt is equivalent to a
RW with drift
When φ1 < 0, yt tends to oscillate between
positive and negative values.
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AR(2) model

yt = 8 + 1.3yt−1 − 0.7yt−2 + εt

εt ∼ N(0, 1), T = 100.
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Stationarity conditions

We normally restrict autoregressive models to
stationary data, and then some constraints on the
values of the parameters are required.
General condition for stationarity
Complex roots of 1− φ1z − φ2z2 − · · · − φpzp lie
outside the unit circle on the complex plane.

For p = 1: −1 < φ1 < 1.
For p = 2:
−1 < φ2 < 1 φ2 + φ1 < 1 φ2 − φ1 < 1.
More complicated conditions hold for p ≥ 3.
Estimation software takes care of this.
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Moving Average (MA) models

Moving Average (MA) models:

yt = c + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q,

where εt is white noise. This is a multiple regression
with past errors as predictors. Don’t confuse this
with moving average smoothing!
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Moving Average (MA) models
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MA(1) model

yt = 20 + εt + 0.8εt−1

εt ∼ N(0, 1), T = 100.
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MA(2) model

yt = εt − εt−1 + 0.8εt−2

εt ∼ N(0, 1), T = 100.
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MA(∞) models

It is possible to write any stationary AR(p) process as
an MA(∞) process.
Example: AR(1)

yt = φ1yt−1 + εt

= φ1(φ1yt−2 + εt−1) + εt

= φ21yt−2 + φ1εt−1 + εt

= φ31yt−3 + φ21εt−2 + φ1εt−1 + εt

. . .

Provided −1 < φ1 < 1:
yt = εt + φ1εt−1 + φ21εt−2 + φ31εt−3 + · · · 49



Invertibility

Any MA(q) process can be written as an AR(∞)
process if we impose some constraints on the
MA parameters.
Then the MA model is called “invertible”.
Invertible models have some mathematical
properties that make them easier to use in
practice.
Invertibility of an ARIMA model is equivalent to
forecastability of an ETS model.
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Invertibility

General condition for invertibility
Complex roots of 1 + θ1z + θ2z2 + · · ·+ θqzq lie
outside the unit circle on the complex plane.

For q = 1: −1 < θ1 < 1.
For q = 2:
−1 < θ2 < 1 θ2 + θ1 > −1 θ1 − θ2 < 1.
More complicated conditions hold for q ≥ 3.
Estimation software takes care of this.
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Inverting MA(1)
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ARIMA models

Autoregressive Moving Average models:

yt = c + φ1yt−1 + · · ·+ φpyt−p

+ θ1εt−1 + · · ·+ θqεt−q + εt .

Predictors include both lagged values of yt

and lagged errors.
Conditions on coefficients ensure stationarity.
Conditions on coefficients ensure invertibility.
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Autoregressive Integrated Moving Average
models

Combine ARMA model with differencing.
(1− B)dyt follows an ARMA model.
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ARIMA models

Autoregressive Integrated Moving Average models
ARIMA(p, d , q) model
AR: p = order of the autoregressive part

I: d = degree of first differencing involved
MA: q = order of the moving average part.

White noise model: ARIMA(0,0,0)
Random walk: ARIMA(0,1,0) with no constant
Random walk with drift: ARIMA(0,1,0) with const.
AR(p): ARIMA(p,0,0)
MA(q): ARIMA(0,0,q) 55



Backshift notation for ARIMA

ARMA model:
yt = c + φ1Byt + · · ·+ φpBpyt + εt + θ1Bεt + · · ·+ θqBqεt

or (1− φ1B − · · · − φpBp)yt = c + (1 + θ1B + · · ·+ θqBq)εt

ARIMA(1,1,1) model:

(1− φ1B) (1− B)yt = c + (1 + θ1B)εt

↑ ↑ ↑
AR(1) First MA(1)

difference
Written out:

yt = c + yt−1 + φ1yt−1 − φ1yt−2 + θ1εt−1 + εt 56



Two forms

Intercept form
(1− φ1B − · · · − φpBp)y ′t = c + (1 + θ1B + · · ·+ θqBq)εt

Mean form
(1− φ1B − · · · − φpBp)(y ′t − µ) = (1 + θ1B + · · ·+ θqBq)εt

y ′t = (1− B)dyt

µ is the mean of y ′t .
c = µ(1− φ1 − · · · − φp).
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Two forms

R uses mean form
fable uses intercept form
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Parameter redundancy in ARIMA

Consider the following lines of thought:
xt = εt

xt − .5xt−1 = εt − .5xt−1

xt − .5xt−1 = εt − .5εt−1

xt = .5xt−1 + εt − .5εt−1

This looks like an ARMA(1, 1), but we know
that xt is just white noise.
Solution: remove the common factor of φ(z)
and θ(z).
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Example on redundancy, stationarity, and
invertibility.

Consider the process
xt = 0.4xt−1 + 0.45xt−2 + εt + εt−1 + 0.25εt−2 for
parameter redundancy, stationarity, and invertibility.
In some cases, use ‘polyroot’ function in R to
calculate roots. If complex roots are obtained, use
‘Mod’ function in R to find the module of complex
numbers.
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Australian household expenditure

us_change <- read_csv(
"https://otexts.com/fpp3/extrafiles/us_change.csv") %>%
mutate(Time = yearquarter(Time)) %>%
as_tsibble(index = Time)
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US personal consumption

fit <- us_change %>% model(arima = ARIMA(Consumption ~ PDQ(0,0,0)))
report(fit)

## Series: Consumption
## Model: ARIMA(1,0,3) w/ mean
##
## Coefficients:
## ar1 ma1 ma2 ma3 constant
## 0.5885 -0.3528 0.0846 0.1739 0.3067
## s.e. 0.1541 0.1658 0.0818 0.0843 0.0383
##
## sigma^2 estimated as 0.3499: log likelihood=-164.8
## AIC=341.6 AICc=342.1 BIC=361

ARIMA(1,0,3) model:
yt = 0.307 + 0.589yt−1 +−0.353εt−1 + 0.0846εt−2 + 0.174εt−2 + εt ,

where εt is white noise with a standard deviation of 0.592 =
√

0.350.
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US personal consumption

fit %>% forecast(h=10) %>%

autoplot(slice(us_change, (n()-80):n()))
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Understanding ARIMA models

If c = 0 and d = 0, the long-term forecasts will
go to zero.
If c = 0 and d = 1, the long-term forecasts will
go to a non-zero constant.
If c = 0 and d = 2, the long-term forecasts will
follow a straight line.
If c 6= 0 and d = 0, the long-term forecasts will
go to the mean of the data.
If c 6= 0 and d = 1, the long-term forecasts will
follow a straight line.
If c 6= 0 and d = 2, the long-term forecasts will
follow a quadratic trend. 64



Understanding ARIMA models

Forecast variance and d
The higher the value of d , the more rapidly the
prediction intervals increase in size.
For d = 0, the long-term forecast standard
deviation will go to the standard deviation of the
historical data.

Cyclic behaviour
For cyclic forecasts, p ≥ 2 and some restrictions
on coefficients are required.
If p = 2, we need φ21 + 4φ2 < 0. Then average
cycle of length

(2π)/ [arc cos(−φ1(1− φ2)/(4φ2))] . 65
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Mean of the time series

Mean of the time series, denoted by µt is defined as:

µt = E (yt)

For stationary time series, mean is a constant.
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Mean of ARMA (p, q)

For AR(p),
µt = c

1− φ1 − φ2 − · · · − φp

For MA (q),
µt = c

For ARMA (p, q),
µt = c

1− φ1 − φ2 − · · · − φp
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Variance of the time series

Variance of the time series, denoted by σ2t is defined
as:

σ2t = Var(yt)

For stationary time series, variance is a constant.
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Variance of ARMA (p, q)

For AR(1),

σ2t = σ2ε
1− φ21

where σ2ε is the variance of the error term.
For AR(2),

σ2t = 1− φ2
1 + φ2

∗ σ2ε
(1− φ2)2 − φ21

For MA (q),
σ2t = σ2ε(1 + θ21 + θ22 + · · ·+ θ2q)
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Procedure of finding variance for ARMA
(p, q)

Assume that φ(B)yt = c + θ(B)εt is stationary
where the roots of φ(z) are outside the unit
cycle.
Write

yt = c
φ(B) + θ(B)

φ(B)εt =
∞∑

j=0
ψjεt−j + c∗

Variance of the time series is
σ2t = σ2ε

∞∑
j=0

ψ2
j
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ACF

Autocorrelation of stationary time series, denoted by
ρh is defined as:

ρh = cor(yt , yt−h)

For nonstationary time series, ACF cannot be
defined.
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ACF

For AR (1):
ρh = φh

1.

For MA (1):
ρ1 = θ1/(1 + θ21)

and ρh = 0 for h ≥ 2.
For ARMA (p, q):

ρh =
∑∞

j=0 ψjψj+h∑∞
j=0 ψ

2
j

.
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Sample ACF rh

White noise: For large n,
rh ∼ AN(0, 1n)

for h = 1, 2, . . .. This explains why ±2/
√
n

serve as approximate margin of error bounds for
rh. Values of rh outside these bounds would be
“unusual” under the white noise model
assumption.

74



Sample ACF

AR (1): For large n,
rh ∼ AN(ρh, σ

2
rh

)
where

σ2rh
= 1

n

(1 + φ21)(1− φ2h
1 )

1− φ21
− 2hφ2h

1

 .
MA (q): For large n,

rq+k ∼ AN
0, 1n

1 + 2
q∑

j=1
ρ2j


for k = 1, 2, . . ..
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Sample ACF

For other cases, results are usually much more
complicated. General results can be found in
Shumway and Stoffer’s book Time Series
Analysis and its application.

\end{itemize}
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ARIMA models

Mean is not a constant.
Variance is not a constant and may approach
infinity as t →∞.
ACF does not exist as ACF is defined only for
stationary time series.
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PACF

Partial autocorrelations measure relationship
between yt and yt−h, when the effects of other
time lags — 1, 2, 3, . . . , h − 1 — are removed.
For a time series with Normality assumption of
the error process, the partial autocorrelation
between yt and yt−h is defined as the conditional
correlation between yt and yt−h, conditional on
yt−h+1, . . . , yt−1, the set of observations that
come between the time points t and t − h.
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PACF

The 1st order partial autocorrelation is defined
to equal the 1st order autocorrelation.
The 2nd order (lag) partial autocorrelation is

Covariance(yt , yt−2|yt−1)
std.Deviation(yt |yt−1)std.Deviation(yt−2|yt−1)
The two variances in the denominator will equal
each other in a stationary series.

79



PACF

The 3rd order (lag) partial autocorrelation is
Covariance(yt , yt−3|yt−1, yt−2)

std.Deviation(yt |yt−1, yt−2)std.Deviation(yt−3|yt−1, yt−2)
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PACF of AR (1) model
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PACF of MA (1) model
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PACF

Under the hypothesis that an AR(p) is correct,
the sample partial autocorrelations at lags
greater than p are approximately normally
distributed with zero means and variances 1/n
(n is sample size).
For h > p, ±2/

√
n can be used as critical limits

on φ̂hh to test the null hypothesis that φhh = 0.
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Maximum likelihood estimation

Having identified the model order, we need to
estimate the parameters c , φ1, . . . , φp, θ1, . . . , θq.

MLE is very similar to least squares estimation
obtained by minimizing

T∑
t−1

e2t

The ARIMA() model allows CLS or MLE
estimation.
Non-linear optimization must be used in either
case.
Different software will give different estimates. 85



Partial autocorrelations

Partial autocorrelations measure relationship
between yt and yt−k , when the effects of other time lags
— 1, 2, 3, . . . , k − 1 — are removed.

αk = kth partial autocorrelation coefficient
= equal to the estimate of φk in regression:

yt = c + φ1yt−1 + φ2yt−2 + · · ·+ φkyt−k .

Varying number of terms on RHS gives αk for
different values of k .
There are more efficient ways of calculating αk .
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Example: Mink trapping
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Example: Mink trapping

p1 <- mink %>% ACF(value) %>% autoplot()
p2 <- mink %>% PACF(value) %>% autoplot()
gridExtra::grid.arrange(p1,p2,nrow=1)
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Example: Mink trapping

mink %>% gg_tsdisplay(value)
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ACF and PACF interpretation

AR(1)
ρk = φk

1 for k = 1, 2, . . . ;
α1 = φ1 αk = 0 for k = 2, 3, . . . .

So we have an AR(1) model when

autocorrelations exponentially decay
there is a single significant partial
autocorrelation.
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ACF and PACF interpretation

AR(p)

ACF dies out in an exponential or damped
sine-wave manner
PACF has all zero spikes beyond the pth spike

So we have an AR(p) model when

the ACF is exponentially decaying or sinusoidal
there is a significant spike at lag p in PACF, but
none beyond p
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ACF and PACF interpretation

MA(1)
ρ1 = θ1 ρk = 0 for k = 2, 3, . . . ;
αk = −(−θ1)k

So we have an MA(1) model when

the PACF is exponentially decaying and
there is a single significant spike in ACF
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ACF and PACF interpretation

MA(q)

PACF dies out in an exponential or damped
sine-wave manner
ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

the PACF is exponentially decaying or sinusoidal
there is a significant spike at lag q in ACF, but
none beyond q
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Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2 log(L) + 2(p + q + k + 1),

where L is the likelihood of the data,
k = 1 if c 6= 0 and k = 0 if c = 0.

Corrected AIC:
AICc = AIC + 2(p+q+k+1)(p+q+k+2)

T−p−q−k−2 .
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Information criteria

Bayesian Information Criterion:
BIC = AIC + [log(T )− 2](p + q + k − 1).

Good models are obtained by minimizing either the
AIC, AICc or BIC. Our preference is to use the AICc.
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Outline

1 Stationarity and differencing

2 Non-seasonal ARIMA models

3 Mean, Variance, ACF, PACF

4 Estimation and order selection

5 ARIMA modelling in R

6 Forecasting

7 Seasonal ARIMA models

8 ARIMA vs ETS
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Modelling procedure with ARIMA-choose
your own model

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.
3 If the data are non-stationary: take first differences of the

data until the data are stationary.
4 Examine the ACF/PACF: Is an AR(p) or MA(q) model

appropriate?
5 Try your chosen model(s), and use the AICc to search for

a better model.
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Modelling procedure with ARIMA-choose
your own model

6 Check the residuals from your chosen model by plotting
the ACF of the residuals, and doing a portmanteau test of
the residuals. If they do not look like white noise, try a
modified model.

7 Once the residuals look like white noise, calculate
forecasts.
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Automated ARIMA()

A non-seasonal ARIMA process

φ(B)(1− B)dyt = c + θ(B)εt

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

Select no. differences d and D via KPSS test
and seasonal strength measure.
Select p, q by minimising AICc.
Use stepwise search to traverse model space.
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How does automated ARIMA() work?

AICc = −2 log(L) + 2(p + q + k + 1)
[
1 + (p+q+k+2)

T−p−q−k−2

]
.

where L is the maximised likelihood fitted to the differenced
data, k = 1 if c 6= 0 and k = 0 otherwise.

Step1: Select current model (with smallest AICc) from:
ARIMA(2, d , 2)
ARIMA(0, d , 0)
ARIMA(1, d , 0)
ARIMA(0, d , 1)

Step 2: Consider variations of current model:
vary one of p, q, from current model by ±1;
p, q both vary from current model by ±1;
Include/exclude c from current model.

Model with lowest AICc becomes current model.
Repeat Step 2 until no lower AICc can be found. 100



Automatic modelling procedure with ARIMA

1 Plot the data. Identify any unusual observations.
2 If necessary, transform the data (using a Box-Cox

transformation) to stabilize the variance.

3 Use ARIMA to automatically select a model.

6 Check the residuals from your chosen model by plotting
the ACF of the residuals, and doing a portmanteau test of
the residuals. If they do not look like white noise, try a
modified model.

7 Once the residuals look like white noise, calculate
forecasts.
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Modelling procedure
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Seasonally adjusted electrical equipment

elec_equip <- as_tsibble(fpp2::elecequip)
elec_dcmp <- elec_equip %>%

model(STL(value ~ season(window="periodic"))) %>%
components() %>% select(-.model) %>% as_tsibble()

elec_dcmp %>%autoplot(season_adjust)
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Seasonally adjusted electrical equipment

1 Time plot shows sudden changes, particularly
big drop in 2008/2009 due to global economic
environment. Otherwise nothing unusual and no
need for data adjustments.

2 No evidence of changing variance, so no
Box-Cox transformation.

3 Data are clearly non-stationary, so we take first
differences.
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Seasonally adjusted electrical equipment

elec_dcmp %>%
gg_tsdisplay(difference(season_adjust), plot_type='partial')
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Seasonally adjusted electrical equipment

4 PACF is suggestive of AR(3). So initial
candidate model is ARIMA(3,1,0). No other
obvious candidates.

5 Fit ARIMA(3,1,0) model along with variations:
ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1),
etc. ARIMA(3,1,1) has smallest AICc value.
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Seasonally adjusted electrical equipment

fit <- elec_dcmp %>%
model(

arima = ARIMA(season_adjust ~ pdq(3,1,1) + PDQ(0,0,0))
)

report(fit)

## Series: season_adjust
## Model: ARIMA(3,1,1)
##
## Coefficients:
## ar1 ar2 ar3 ma1
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
## sigma^2 estimated as 9.577: log likelihood=-492.7
## AIC=995.4 AICc=995.7 BIC=1012 107



Seasonally adjusted electrical equipment

6 ACF plot of residuals from ARIMA(3,1,1) model
look like white noise.

−10

−5

0

5

10

2000 2005 2010
index

.r
es

id

−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

6 12 18
lag [1M]

ac
f

0

10

20

30

40

−10 −5 0 5 10
.resid

co
un

t

108



Seasonally adjusted electrical equipment

## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima 24.0 0.241
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Seasonally adjusted electrical equipment

fit %>% forecast() %>% autoplot(elec_dcmp)
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Roots checking

The three red dots correspond to the roots of the polynomials
φ(B) (left) and θ(B) (right)of the ARIMA(3,1,1) model.

gg_arma(fit)
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Roots checking

They are all inside the unit circle, as we would
expect because R ensures the fitted model is
both stationary and invertible.
Any roots close to the unit circle may be
numerically unstable, and the corresponding
model will not be good for forecasting.
The ARIMA() function will never return a model
with inverse roots outside the unit circle.
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Point forecasts

1 Rearrange ARIMA equation so yt is on LHS.
2 Rewrite equation by replacing t by T + h.
3 On RHS, replace future observations by their

forecasts, future errors by zero, and past errors
by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, . . ..
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Point forecasts

ARIMA(3,1,1) forecasts: Step 1

(1− φ1B − φ2B2 − φ3B3)(1− B)yt = (1 + θ1B)εt ,

[
1− (1 + φ1)B + (φ1 − φ2)B2 + (φ2 − φ3)B3 + φ3B4] yt

= (1 + θ1B)εt ,

yt − (1 + φ1)yt−1 + (φ1 − φ2)yt−2 + (φ2 − φ3)yt−3
+ φ3yt−4 = εt + θ1εt−1.

yt = (1 + φ1)yt−1 − (φ1 − φ2)yt−2 − (φ2 − φ3)yt−3
− φ3yt−4 + εt + θ1εt−1.
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Point forecasts (h=1)

yt = (1 + φ1)yt−1 − (φ1 − φ2)yt−2 − (φ2 − φ3)yt−3
− φ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+1 = (1 + φ1)yT − (φ1 − φ2)yT−1 − (φ2 − φ3)yT−2

− φ3yT−3 + εT+1 + θ1εT .

ARIMA(3,1,1) forecasts: Step 3
ŷT+1|T = (1 + φ1)yT − (φ1 − φ2)yT−1 − (φ2 − φ3)yT−2

− φ3yT−3 + θ1eT .
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Point forecasts (h=2)

yt = (1 + φ1)yt−1 − (φ1 − φ2)yt−2 − (φ2 − φ3)yt−3
− φ3yt−4 + εt + θ1εt−1.

ARIMA(3,1,1) forecasts: Step 2
yT+2 = (1 + φ1)yT+1 − (φ1 − φ2)yT − (φ2 − φ3)yT−1

− φ3yT−2 + εT+2 + θ1εT+1.

ARIMA(3,1,1) forecasts: Step 3
ŷT+2|T = (1 + φ1)ŷT+1|T − (φ1 − φ2)yT − (φ2 − φ3)yT−1

− φ3yT−2.
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Prediction intervals

95% prediction interval

ŷT+h|T ± 1.96√vT+h|T
where vT+h|T is estimated forecast variance.

Multi-step prediction intervals for
ARIMA(0,0,q):

yt = εt +
q∑

i=1
θiεt−i .

vT |T+h = σ̂2
1 +

h−1∑
i=1

θ2i

 , for h = 2, 3, . . . .

AR(1): Rewrite as MA(∞) and use above result.
Other models beyond scope of this subject. 118



Prediction intervals

Prediction intervals increase in size with
forecast horizon.
Prediction intervals can be difficult to calculate
by hand
Calculations assume residuals are uncorrelated
and normally distributed.
Prediction intervals tend to be too narrow.

I the uncertainty in the parameter estimates has not
been accounted for.

I the ARIMA model assumes historical patterns will
not change during the forecast period.

I the ARIMA model assumes uncorrelated future errors119



Your turn

For the United States GDP data (from
global_economy):

if necessary, find a suitable Box-Cox
transformation for the data;
fit a suitable ARIMA model to the transformed
data;
check the residual diagnostics;
produce forecasts of your fitted model. Do the
forecasts look reasonable?
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Seasonal ARIMA models

ARIMA (p, d , q)︸ ︷︷ ︸ (P,D,Q)m︸ ︷︷ ︸
↑ ↑

Non-seasonal part Seasonal part of
of the model of the model

where m = number of observations per year.
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Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)
(1− φ1B)(1−Φ1B4)(1− B)(1− B4)yt = (1 + θ1B)(1 + Θ1B4)εt .

6 6 6 6 6 6(
Non-seasonal

AR(1)

)
(
Seasonal
AR(1)

)
(
Non-seasonal
difference

)
(
Seasonal
difference

)
(
Non-seasonal

MA(1)

)
(
Seasonal
MA(1)

)
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Seasonal ARIMA models

E.g., ARIMA(1, 1, 1)(1, 1, 1)4 model (without constant)
(1− φ1B)(1−Φ1B4)(1− B)(1− B4)yt = (1 + θ1B)(1 + Θ1B4)εt .

All the factors can be multiplied out and the general model written
as follows:

yt = (1 + φ1)yt−1 − φ1yt−2 + (1 + Φ1)yt−4

− (1 + φ1 + Φ1 + φ1Φ1)yt−5 + (φ1 + φ1Φ1)yt−6

− Φ1yt−8 + (Φ1 + φ1Φ1)yt−9 − φ1Φ1yt−10

+ εt + θ1εt−1 + Θ1εt−4 + θ1Θ1εt−5.
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Common ARIMA models

The US Census Bureau uses the following models
most often:

ARIMA(0,1,1)(0,1,1)m with log transformation
ARIMA(0,1,2)(0,1,1)m with log transformation
ARIMA(2,1,0)(0,1,1)m with log transformation
ARIMA(0,2,2)(0,1,1)m with log transformation
ARIMA(2,1,2)(0,1,1)m with no transformation

125



Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal
lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)12 will show:

a spike at lag 12 in the ACF but no other significant spikes.
The PACF will show exponential decay in the seasonal lags;
that is, at lags 12, 24, 36, . . . .

ARIMA(0,0,0)(1,0,0)12 will show:

exponential decay in the seasonal lags of the ACF
a single significant spike at lag 12 in the PACF.
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European quarterly retail trade

eu_retail %>% autoplot(value) +
xlab("Year") + ylab("Retail index")
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European quarterly retail trade

eu_retail %>% gg_tsdisplay(
value %>% difference(4), plot_type='partial')
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European quarterly retail trade

eu_retail %>% gg_tsdisplay(
value %>% difference(4) %>% difference(1),plot_type='partial')
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European quarterly retail trade

d = 1 and D = 1 seems necessary.
Significant spike at lag 1 in ACF suggests
non-seasonal MA(1) component.
Significant spike at lag 4 in ACF suggests
seasonal MA(1) component.
Initial candidate model: ARIMA(0,1,1)(0,1,1)4.
We could also have started with
ARIMA(1,1,0)(1,1,0)4.
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European quarterly retail trade

fit <- eu_retail %>%
model(arima = ARIMA(value ~ pdq(0,1,1) + PDQ(0,1,1)))

augment(fit) %>% gg_tsdisplay(.resid, plot_type = "hist")
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European quarterly retail trade

augment(fit) %>%
features(.resid, ljung_box, lag = 8, dof = 2)

## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima 10.7 0.0997
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European quarterly retail trade

ACF and PACF of residuals show significant
spikes at lag 2, and maybe lag 3.
AICc of ARIMA(0,1,1)(0,1,1)4 model is 75.72
AICc of ARIMA(0,1,2)(0,1,1)4 model is 74.27.
AICc of ARIMA(0,1,3)(0,1,1)4 model is 68.39.
AICc of ARIMA(0,1,4)(0,1,1)4 model is 70.73.
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European quarterly retail trade

fit <- eu_retail %>%
model(

arima013011 = ARIMA(value ~ pdq(0,1,3) + PDQ(0,1,1))
)

report(fit)

## Series: value
## Model: ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
## ma1 ma2 ma3 sma1
## 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65 134



European quarterly retail trade

augment(fit) %>%
gg_tsdisplay(.resid, plot_type = "hist")
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European quarterly retail trade

augment(fit) %>%
features(.resid, ljung_box, lag = 8, dof = 4)

## # A tibble: 1 x 3
## .model lb_stat lb_pvalue
## <chr> <dbl> <dbl>
## 1 arima013011 0.511 0.972
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European quarterly retail trade

fit %>% forecast(h = "3 years") %>%
autoplot(eu_retail)
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European quarterly retail trade

eu_retail %>% model(ARIMA(value)) %>% report()

## Series: value
## Model: ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
## ma1 ma2 ma3 sma1
## 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65
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European quarterly retail trade

eu_retail %>% model(ARIMA(value, stepwise = FALSE,
approximation = FALSE)) %>% report()

## Series: value
## Model: ARIMA(0,1,3)(0,1,1)[4]
##
## Coefficients:
## ma1 ma2 ma3 sma1
## 0.2630 0.3694 0.4200 -0.6636
## s.e. 0.1237 0.1255 0.1294 0.1545
##
## sigma^2 estimated as 0.156: log likelihood=-28.63
## AIC=67.26 AICc=68.39 BIC=77.65
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Cortecosteroid drug sales
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Cortecosteroid drug sales
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Cortecosteroid drug sales

Choose D = 1 and d = 0.
Spikes in PACF at lags 12 and 24 suggest
seasonal AR(2) term.
Spikes in PACF suggests possible non-seasonal
AR(3) term.
Initial candidate model: ARIMA(3,0,0)(2,1,0)12.
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Cortecosteroid drug sales

.model AICc

ARIMA(3,0,1)(0,1,2)[12] -485.5
ARIMA(3,0,1)(1,1,1)[12] -484.3
ARIMA(3,0,1)(0,1,1)[12] -483.7
ARIMA(3,0,1)(2,1,0)[12] -476.3
ARIMA(3,0,0)(2,1,0)[12] -475.1
ARIMA(3,0,2)(2,1,0)[12] -474.9
ARIMA(3,0,1)(1,1,0)[12] -463.4
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Cortecosteroid drug sales

fit <- h02 %>%
model(best = ARIMA(log(Cost) ~ 0 + pdq(3,0,1) + PDQ(0,1,2)))

report(fit)

## Series: Cost
## Model: ARIMA(3,0,1)(0,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ar2 ar3 ma1 sma1 sma2
## -0.1602 0.5481 0.5678 0.3826 -0.5222 -0.1769
## s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872
##
## sigma^2 estimated as 0.004289: log likelihood=250.1
## AIC=-486.1 AICc=-485.5 BIC=-463.3
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Cortecosteroid drug sales

augment(fit) %>%
gg_tsdisplay(.resid, lag_max=36, plot_type = "hist")
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Cortecosteroid drug sales

augment(fit) %>%

features(.resid, ljung_box, lag = 36, dof = 6)

## # A tibble: 1 x 3

## .model lb_stat lb_pvalue

## <chr> <dbl> <dbl>

## 1 best 50.5 0.0109
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Cortecosteroid drug sales

fit <- h02 %>% model(auto = ARIMA(log(Cost)))
report(fit)

## Series: Cost
## Model: ARIMA(2,1,0)(0,1,1)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ar2 sma1
## -0.8491 -0.4207 -0.6401
## s.e. 0.0712 0.0714 0.0694
##
## sigma^2 estimated as 0.004399: log likelihood=245.4
## AIC=-482.8 AICc=-482.6 BIC=-469.8
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Cortecosteroid drug sales

augment(fit) %>%
gg_tsdisplay(.resid, lag_max = 36, plot_type = "hist")
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Cortecosteroid drug sales

augment(fit) %>%

features(.resid, ljung_box, lag = 36, dof = 5)

## # A tibble: 1 x 3

## .model lb_stat lb_pvalue

## <chr> <dbl> <dbl>

## 1 auto 57.5 0.00260
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Cortecosteroid drug sales

fit <- h02 %>%
model(best = ARIMA(log(Cost), stepwise = FALSE,

approximation = FALSE,
order_constraint = p + q + P + Q <= 9))

report(fit)

## Series: Cost
## Model: ARIMA(4,1,1)(2,1,2)[12]
## Transformation: log(.x)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1 sar1
## -0.0426 0.2097 0.2016 -0.2273 -0.7423 0.6213
## s.e. 0.2167 0.1814 0.1144 0.0810 0.2075 0.2421
## sar2 sma1 sma2
## -0.3832 -1.2018 0.4958
## s.e. 0.1185 0.2492 0.2136
##
## sigma^2 estimated as 0.004061: log likelihood=254.3
## AIC=-488.6 AICc=-487.4 BIC=-456.1 150



Cortecosteroid drug sales

augment(fit) %>%
gg_tsdisplay(.resid, lag_max = 36, plot_type = "hist")
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Cortecosteroid drug sales

augment(fit) %>%

features(.resid, ljung_box, lag = 36, dof = 9)

## # A tibble: 1 x 3

## .model lb_stat lb_pvalue

## <chr> <dbl> <dbl>

## 1 best 35.1 0.136
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Cortecosteroid drug sales

Training data: July 1991 to June 2006

Test data: July 2006–June 2008

fit <- h02 %>%
filter_index(~ "2006 Jun") %>%
model(
ARIMA(log(Cost) ~ pdq(3, 0, 0) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ pdq(3, 0, 1) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ pdq(3, 0, 2) + PDQ(2, 1, 0)),
ARIMA(log(Cost) ~ pdq(3, 0, 1) + PDQ(1, 1, 0))
# ... #

)

fit %>%
forecast(h = "2 years") %>%
accuracy(h02 %>% filter_index("2006 Jul" ~ .))

## # A tibble: 4 x 9
## .model .type ME RMSE MAE MPE MAPE MASE
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ARIMA~ Test -62365. 93103. 82203. -7.14 9.41 NaN
## 2 ARIMA~ Test -43617. 80786. 68800. -4.86 7.80 NaN
## 3 ARIMA~ Test -65276. 94579. 83181. -7.46 9.53 NaN
## 4 ARIMA~ Test NaN NaN NaN NaN NaN NaN
## # ... with 1 more variable: ACF1 <dbl>
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Cortecosteroid drug sales
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Cortecosteroid drug sales

.model RMSE

ARIMA(3,0,1)(1,1,1)[12] 61878
ARIMA(3,0,1)(0,1,2)[12] 62142
ARIMA(2,1,4)(0,1,1)[12] 62708
ARIMA(2,1,3)(0,1,1)[12] 62856
ARIMA(3,0,1)(0,1,1)[12] 62947
ARIMA(3,0,2)(0,1,1)[12] 62968
ARIMA(4,1,1)(2,1,2)[12] 63114
ARIMA(3,0,3)(0,1,1)[12] 63487
ARIMA(2,1,5)(0,1,1)[12] 63610
ARIMA(3,0,2)(2,1,0)[12] 65146
ARIMA(3,0,1)(2,1,0)[12] 65270
ARIMA(3,0,1)(1,1,0)[12] 66644
ARIMA(3,0,0)(2,1,0)[12] 66816
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Cortecosteroid drug sales

Models with lowest AICc values tend to give
slightly better results than the other models.
AICc comparisons must have the same orders of
differencing. But RMSE test set comparisons
can involve any models.
Use the best model available, even if it does not
pass all tests.
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Cortecosteroid drug sales

fit <- h02 %>%

model(ARIMA(Cost ~ 0 + pdq(3,0,1) + PDQ(1,1,1)))
fit %>% forecast %>% autoplot(h02) +

ylab("H02 Expenditure ($AUD)") + xlab("Year")
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ARIMA vs ETS

Myth that ARIMA models are more general than
exponential smoothing.
Linear exponential smoothing models all special
cases of ARIMA models.
Non-linear exponential smoothing models have
no equivalent ARIMA counterparts.
Many ARIMA models have no exponential
smoothing counterparts.
ETS models all non-stationary. Models with
seasonality or non-damped trend (or both) have
two unit roots; all other models have one unit root.159



Equivalences

ETS model ARIMA model Parameters

ETS(A,N,N) ARIMA(0,1,1) θ1 = α− 1
ETS(A,A,N) ARIMA(0,2,2) θ1 = α + β − 2

θ2 = 1− α
ETS(A,Ad ,N) ARIMA(1,1,2) φ1 = φ

θ1 = α + φβ − 1− φ
θ2 = (1− α)φ

ETS(A,N,A) ARIMA(0,0,m)(0,1,0)m

ETS(A,A,A) ARIMA(0,1,m + 1)(0,1,0)m

ETS(A,Ad ,A) ARIMA(1,0,m + 1)(0,1,0)m
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Your turn

For the fma::condmilk series:

Do the data need transforming? If so, find a suitable
transformation.
Are the data stationary? If not, find an appropriate
differencing which yields stationary data.
Identify a couple of ARIMA models that might be useful
in describing the time series.
Which of your models is the best according to their AIC
values?
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Your turn

Estimate the parameters of your best model and do
diagnostic testing on the residuals. Do the residuals
resemble white noise? If not, try to find another ARIMA
model which fits better.
Forecast the next 24 months of data using your preferred
model.
Compare the forecasts obtained using ets().
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