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The article develops a Bayesian nonparametric reliability model for recurrent events where failure and
truncated time-to-failure density shape is regressed on past maintenance decisions: perfect repair and
minimal repair. By comparing the system interfailure lifetime distributions after minimal and perfect
repair, we are able to test the minimal repair assumption of “good as old.” Interfailure hazard functions
after perfect and minimal repairs are estimated, shedding light on departures from minimal repair. The
method is illustrated both on simulated data as well as failure time data from air-conditioning units at the
South Texas Nuclear Operating Company near Bay City, Texas. This article has supplementary material
online.
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1. INTRODUCTION

Repairable systems have been widely studied in the reliabil-
ity literature. Systems fail and upon each failure, a system gets
repaired. The distribution of interfailure times between system
failures is commonly of interest. In general, recurrent event
modeling methods can be divided into categories based on the
type of maintenance a system receives. Renewal processes are
commonly used if all the maintenance repairs bring the sys-
tem to a “good as new” state (commonly known as perfect
repair). One example of this kind of repair would be a complete
overhaul of the system. Nonhomogenous Poisson processes are
used if all repairs bring the system to the “good as old” state
(commonly known as minimal repair), for example, replacing a
failed sub-component of a system. Some authors have proposed
models that allow for a combination of perfect and minimal
repairs, see Block, Borges, and Savits (1985) and Whitaker
and Samaniego (1989). However, the basic assumption of a
consistently “minimal” repair is questionable; usually several
types of maintenance, with varying degrees of repair, are un-
dertaken throughout the lifetime of the system. Kijima (1989)
proposed a general model that includes perfect, minimal, and
in-between repairs by introducing the “effective age” of the
system after each repair, essentially measuring how successful
the repair was. Following Kijima (1989), Dorado, Hollander,
and Sethuraman (1997) allowed for repairs of varying degree
by including so-called “life supplements”—numbers between
zero and one indicating the degree of the repair between perfect
and minimal—and assumed the life supplements are known.
Recently, Veber, Nagode, and Fajdiga (2008) assumed one life

supplement that is unknown, that is, each repair reduces the ef-
fective age of the system by the same fraction q, and proposed
an expectation–maximization (EM) algorithm to estimate q and
the unknown failure distribution F. As an extension to a com-
mon q, Rigdon and Pan (2009) allowed the repair effectiveness
parameter to vary from system to system. Presnell, Hollander,
and Sethuraman (1994) proposed a test for the minimal repair
assumption in a particular model that Block, Borges, and Sav-
its (1985) proposed; if the null hypothesis where minimal repair
assumption holds is rejected, the question remains as to whether
“minimal repair” brings the system better or worse than min-
imal; in many application scenarios this distinction is crucial.
If one ignores maintenance decisions, Cooper, de Mello, and
Kleywegt (2006) pointed out that decisions based on the in-
correct assumption of minimal repairs can lead to a so-called
“spiral down” effect, where system reliability gets worse than
the predicted level after repair cycles (i.e., more failures than
predicted); this happens because the assumed minimal repairs
are actually often worse than “good as old.”

Consider a brand new system; denote the cumulative distri-
bution function (CDF) for the first failure s as F0(s). After a
perfect repair at failure time s, which sets the system clock back
to zero, the distribution governing the next failure is F0(t − s),
where t > s. A minimal repair brings the system to the exact
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state it was in right before failure; this implies that the inten-
sity function, formally defined below in (1), does not change
after a minimal repair. After successive minimal repairs, if a
minimal repair is newly performed at failure time s (time since
new condition), the CDF for the next failure is F0, but trun-
cated to be larger than s, that is, [F0(t) − F0(s)]/S0(s), where
S0(s) = 1 − F0(s) is the reliability (also termed survival) func-
tion and t > s. We propose to relax this assumption by allowing
the intensity to change after the minimal repair: the distribution
for the next failure is instead [F1(t) − F1(s)]/S1(s). The as-
sumption of a static intensity function is given by H0 : F0 = F1,
providing an intuitive test of the minimal repair assumption. If
H0 is rejected in favor of H1 : F0 �= F1, estimated hazard func-
tions h0(t) = f0(t)/S0(t) and h1(t) = f1(t)/S1(t) enable us to
find when system performs actually worse (or better) than the
expected condition under the minimal repair assumption. Our
framework can be easily generalized to include known life sup-
plements (as in Dorado, Hollander, and Sethuraman 1997) and
subsequently test for this assumption.

The hypothesis testing in this article involves two unknown
distributions. A parametric approach assumes particular distri-
bution families for F0 and F1, for example, Weibull is commonly
used for nonhomogenous Poisson or renewal process models.
We propose a Bayesian nonparametric model that generalizes
the Weibull assumption on F0 and F1, termed a “tailfree prior.”
The tailfree approach we use augments the standard Weibull
family indexed by θ with additional parameters {π (ε)} that
change the shape of the Weibull density in successive layers.
These additional parameters add flexibility beyond the Weibull
shape, much like adding detail to an initially washed canvas;
each new layer or “level” allows more refined detail to be ac-
commodated. The Bayesian approach simply places a prior on
the additional parameters {π (ε)}.

In general, Bayesian nonparametric methods model distri-
butions as random CDFs F (s), either directly or indirectly
(e.g., through the hazard). Technically, a random CDF F (s) is
a stochastic process indexed by s, so {F (s) : s > 0} describes a
random function from R+ to [0, 1], and for any fixed s, F (s) is
a random variable. These processes include the Dirichlet pro-
cess (Ferguson 1973), Polya tree priors (Lavine 1992), Dirichlet
process mixtures (Escobar and West 1995), and neutral to the
right processes (Ferguson and Phadia 1979). Taddy and Kot-
tas (2012) used Dirichlet process mixtures for the interfailure
density in Poisson process models. Priors on the space of cu-
mulative hazard functions include gamma processes, weighted
gamma processes, beta processes; see Lo (1992), Kuo and
Ghosh (1997), and Ishwaran and James (2004). Often, the ran-
dom CDF F (s) is centered at a parametric distribution Gθ in
the sense that E{F (s)} = Gθ (s) for all s > 0, that is, Gθ is the
“prior mean” of F. Our proposed framework uses tailfree priors
(Fabius 1964; Ferguson 1974; Jara and Hanson 2011) to model
F centered at the Weibull family, E{F (s)} = 1 − e−(s/γ )α given
(α, γ ), but allows for substantial data-driven deviations from
Weibull. Our approach naturally tests whether Weibull is ade-
quate, as well as incorporating maintenances where no failure
has actually occurred (i.e., censored failures). Few existing non-
parametric approaches make use of information from censored
system failure times, although in practice, maintenance sched-
ules are common.

Table 1. Counts of perfect/minimal by response to
“failure”/“censored” for the air conditioners

Failure Censored

Perfect 86 1175
Minimal 1085 14

The proposed estimation procedure is applied to historical
data from the South Texas project nuclear operating company
located in Bay City, Texas. The system of interest is the essential
chillers, which is a group of six 300-ton air conditioners, three
for each nuclear reactor unit. They provide chilled water for
air handling units to provide a suitable environment for person-
nel and equipment located in the electrical auxiliary building,
mechanical auxiliary building, and fuel handling building. An
essential chiller provides chilled water for the cooling coils of
various safety related air handling units during normal, faulted,
and upset conditions. All three chilled water system trains are
automatically started up if particular emergency situations are
detected, such as safety injection signal, loss of offsite power
from the switchyard, or a combination of both, to supply cool-
ing to many essential safety systems. Those air conditioners
are repairable systems. Maintenances to the air conditioners in-
clude replacement of subcomponents (oil pump, vane controller,
solenoid valves, etc.) in response to failures and overhauls, typ-
ically upon inspection, which involves a major rework on parts,
for example, compressor vane and renewing soft materials (gas-
kets, refrigerant, lubrication—grease, oil) when excessive wear
or other degraded conditions are noted. In our analysis, over-
hauls are categorized into perfect repairs while replacement of
subcomponents is grouped into minimal repairs. For repairs that
are not in response to a failure, yielding right-censored failure
times, we do not differentiate scheduled repairs and responses to
apparent degradation (but not failure), and further assume that
the times for those repairs are independent of the system failure
processes. The dataset is comprised of two groups of observa-
tions for the two nuclear reactor units with the first group of
1274 events and the second group of 1092 events. All air con-
ditioners are assumed to work independently. Each observation
consists of an event time, associated maintenance decision, and
indicator of censoring for whether a failure occurred at the event
time, that is, (ti , di, δi). Most minimal repairs were in response
to failure, and perfect repairs were performed without an ac-
companying failure (Table 1). It is assumed in this data analysis
that those perfect repairs bring the system to the “good as new”
condition and our main interest is that whether those minimal
repairs bring the system to the “good as old” state.

Section 2 describes the model, introduces tailfree priors, and
outlines the Markov chain Monte Carlo (MCMC) algorithm
used to fit the model. Section 3 presents simulation results for
testing the minimal repair assumption and accompanying den-
sity estimation. Section 4 applies the method to the South Texas
project data. Section 5 concludes the article with a discussion.

2. MODEL DEVELOPMENT

Consider a general repairable system framework: up to the
present time tmax we observe a series of repairs and main-
tenance decisions made at each repair. The times for re-
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pairs are recorded as 0 = t0 < t1 < t2 < · · · < tn = tmax. The
corresponding repair at event time ti is denoted as di with
di = 1 if minimal repair was performed and di = 0 if perfect re-
pair was performed; we assume d0 = 0. Denote the last perfect
repair time prior to decision di as t∗i = max{tj : j < i, dj = 0}.
If maintenance (random or planned) is performed at time ti with-
out an accompanying failure, the failure time stemming from the
previous decision is censored, indicated by δi = 0 and 1 other-
wise. For simplicity, we assume that δi is independent of the
failure process. Since repairs must occur after failures, and can
also occur without a failure event, the set of failure times is a
subset of {t1, . . . , tn}. Full data are D = {(ti , δi , di)}ni=1. For data
observed over the window [0, tmax], the event time tn = tmax is
the time at which data collection stops and δn = 0. We assume
that maintenance decisions are observable where perfect repairs
bring the system to “good as new” state and minimal repairs
otherwise. Furthermore, we assume that the time for repair is
negligible, that is, there is no “down” time during the repair.

Let the counting process {N (t), t ≥ 0} record the cumulative
number of failures over time and H (t) = {N (s) : 0 ≤ s < t} de-
note the history of the process at time t. Then the intensity
function is defined as

φ(t |H (t)) = lim
�→0+

Pr{N (t + �) − N (t) = 1|H (t)}
� . (1)

The intensity function describes the instantaneous probability
of a failure occurring at t, conditioning on the process history.
Let F0(t) be the probability that the system lasts less than t
time units since a perfect repair and S0(t) = 1 − F0(t) be the
survival probability; denote the density as f0(t) and hazard as
h0(t). A previous perfect repair di−1 = 0 brings the system to
“good as new” status, that is, resets the system clock to zero.
A failure ti right after perfect repair di−1 = 0 at ti−1 has like-
lihood contribution f0(ti − ti−1). If instead, a minimal repair
di−1 = 1 restores the system to the exact state it was in right
before failure at ti−1, then the system has aged ti − t∗i units
since the last perfect repair, truncated at ti−1 − t∗i , yielding the
likelihood contribution f0(ti − t∗i )/S0(ti−1 − t∗i ). This above as-
sumption is commonly referred to as “minimal repair assump-
tion” and it implies that the underlying intensity function for
the recurrent events does not change after minimal repairs,
φ(t |H (t)) = h0(t − t∗i ) over [t∗i , ti), regardless of the minimal
repairs preceding ti . In our framework, we do not make the min-
imal repair assumption, and simply allow the intensity function
to change after the first minimal repair on the renewed system.
The intensity function is then φ(t |H (t)) = h1(t − t∗i ), for hazard
h1(t) = f1(t)/S1(t) and S1(t) = ∫ ∞

t
f1(s)ds, and the likelihood

contribution is f1(ti − t∗i )/S1(ti−1 − t∗i ). Note that subsequent
minimal repairs do not further change the intensity function. The
resulting model can be viewed as a generalization to a two-state
Poisson process. Given substantially more data, a multistate
Poisson process (Cook and Lawless 2007) could be fit, assum-
ing φ(t |H (t)) = hk(t), N(t−) = k, k ∈ {0, 1, 2, . . .} following
each perfect repair.

Denote H0 : F0 = F1 as the hypothesis assuming the minimal
repair assumption holds and H1 : F0 �= F1 as the hypothesis
allowing departure from this assumption. Under H0 we put one
tailfree prior (to be elaborated in Section 2.1) on F0; under

H1 we place two conditionally independent priors on F0 and F1.
Under H0, the likelihood is

L(f0) =
n∏

i=1

[f0(ti − ti−1)δi S0(ti − ti−1)1−δi ]1−di−1

×
[
f0(ti − t∗i )δi S0(ti − t∗i )1−δi

S0(ti−1 − t∗i )

]di−1

. (2)

Under H1, the likelihood is

L(f0, f1) =
n∏

i=1

[f0(ti − ti−1)δi S0(ti − ti−1)1−δi ]1−di−1

×
[
f1(ti − t∗i )δi S1(ti − t∗i )1−δi

S1(ti−1 − t∗i )

]di−1

. (3)

In terms of interfailure hazard functions h0, the likelihood
under H1 is

L(h0, h1) =
n∏

i=1

[
h0(ti −ti−1)δi exp

{
−

∫ ti−ti−1

0
h0(s)ds

}]1−di−1

×
[
h1(ti − t∗i )δi exp

{
−

∫ ti

ti−1

h1(s − t∗i )ds

}]di−1

.

It is straightforward to interpret F0 as the failure time distri-
bution of a new system. Let t∗ be the time at which the last
perfect repair was made. Since our alternative model assumes
φ(t |H (t)) = h1(t − t∗) after minimal repairs, an estimate of
h1 averages the intensities over time after the first minimal
repair in each renewed cycle. When the system performs better
(or worse) than an expected level at time t under the minimal
repair assumption, then h1(t) will be lower (higher) than h0(t).
We perform a simulation in Section 3 to illustrate this point.

2.1 Tailfree Process Priors on F0 and F1

We place tailfree process priors on F0 and F1. The use of
the term “tailfree” dates to Freedman (1963), who considered
conditions for consistency of Bayesian probability measures on
the positive integers; the main condition has to do with the
shape of the tail of the density, that is, the integers stretching
off to infinity. Fabius (1964) extended Freedman’s notion of
“tailfree” to continuous measures with densities; however the
requirements for consistency no longer deal with the tails of the
distribution. The construction that follows is a modest reworking
of Fabius (1964).

Let Gθ denote the Weibull CDF parameterized as Gθ (t) =
1 − exp{−(t/γ )α} for t ≥ 0, where θ = (log(α), log(γ ))′. Let
gθ (t) be the corresponding density. The tailfree prior augments
the Weibull family indexed by θ with additional parameters
{π (ε)} (ε is a binary number, described below), which change
the shape of the Weibull density on successive levels; this “more
flexible Weibull” CDF is denoted as F (t). Before delving into
the definition, we can get the flavor of the approach through a
preliminary look at Figure 1. Panel (a) shows a Weibull density
for a particular θ ; let T be drawn from this Weibull density. Panel
(b) adjusts the shape of the density by adding one parameter
π (0) that changes the probability of T being less than the median
of the Weibull density from 0.5 to 0.45, but leaves the shape
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(a)

1 6000 111001 110010 101011 100

00 1101 10

0 1

(b)

1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.5 0.50.5 0.5

0.45 0.55

(c)

1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.50.3 0.5

0.45 0.55

(d)

1 60.5 0.50.5 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

(e)

1 60.8 0.50.2 0.50.5 0.50.5 0.5

0.7 0.40.3 0.6

0.45 0.55

(f)

1 60.8 0.50.2 0.50.7 0.50.3 0.5

0.7 0.40.3 0.6

0.45 0.55

(g)

1 60.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

(h)

1 60.8 0.450.2 0.550.7 0.60.3 0.4

0.7 0.40.3 0.6

0.45 0.55

Figure 1. (a) Weibull (α, γ ) with α = 4 and γ = 4; (b)–(g) tailfree densities, centered at (a) with conditional probabilities specified up to

J = 3; and (h) mixture of tailfree processes assuming α, γ
ind.∼ N (4, 0.052).

of the density the same—this is the first level. Panels (c) and
(d) add two more parameters, π (00) and π (10) successively,
which modify the shape of the density on smaller sets in the
second level, but leave the density shape the same on these
smaller sets. Panels (e)–(g) add four more parameters on the
third level. The Bayesian approach simply places priors on the
parameters {π (ε)}, in addition to θ , yielding a random CDF F
and corresponding density f . Let T ∼ F . The prior is chosen so
that, given θ , the probability PF (a < T < b) = ∫ b

a
f (s)ds has

expectation
∫ b

a
gθ (s)ds, for example, E{F (s)} = Gθ (s) for any

s > 0. In this sense, the “prior mean” of F is Gθ .

We now present a technical specification of the nonpara-
metric prior. Let ε1 . . . εj be a j-digit binary number where
εi ∈ {0, 1} for i = 1, 2, . . . , j . Each ε = ε1 . . . εj indexes a
set Bθ (ε) ⊂ [0,∞). Following Lavine (1992), these sets are
intervals with endpoints that are quantiles of the center-
ing family: if m is the base-10 representation of the bi-
nary number ε = ε1 . . . εj ∈ {0, 1}j , then Bθ (ε) is the interval
(G−1

θ (m/2j ),G−1
θ ((m + 1)/2j )]. Note then that at each level

j, the class {Bθ (ε) : ε ∈ {0, 1}j } forms a partition of the posi-
tive reals and furthermore Bθ (ε) = Bθ (ε0) ∪ Bθ (ε1). Figure 1(a)
shows the first three partitions for a Weibull(4,4) centering
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distribution, for example, θ = (log(4), log(4)). Note that
[0,∞) = Bθ (0) ∪ Bθ (1), [0,∞) = Bθ (00) ∪ Bθ (01) ∪ Bθ (10)
∪ Bθ (11), etc. For a specific ε0, the parameter π (ε0) approx-
imately follows a beta(cj 2, cj 2) density, where j is the num-
ber of digits in ε0; more details are presented below. Walker
et al. (1999) suggested thinking of a “ . . . particle cascad-
ing through these partitions.” The particle, say T ∼ F , ini-
tially moves into Bθ (0) with probability π (0) or into Bθ (1) with
probability π (1) = 1 − π (0). From then on, at any level j with
index ε = ε1 . . . εj , if the particle is in Bθ (ε), it moves into
Bθ (ε0) with probability π (ε0) or into Bθ (ε1) with probability
π (ε1) = 1 − π (ε0). When the particle finally makes its way
into a set Bθ (ε1 . . . εJ ) in the finest partition at level J, it sim-
ply follows the base CDF Gθ restricted to Bθ (ε1 . . . εJ )—this
does not depend on the {π (ε)}. That is, for an interval (a, b) ⊂
Bθ (ε1 . . . εJ ) and T ∼ F ,

P {a < T < b|T ∈ Bθ (ε1 . . . εJ )} =
∫ b

a
gθ (s)ds∫

Bθ (ε1...εJ ) gθ (s)ds
. (4)

The definition of a tailfree prior uses a binary partitioning
tree. Although most authors have used binary splits, other parti-
tioning schemes could be implemented, for example, Mauldin,
Sudderth, and Williams (1992).

If all of the conditional probabilities are equal to one-half, that
is, π (ε) = 0.5 for all ε, then the density f (s) is simply gθ (s), the
corresponding Weibull density. The tailfree prior simply takes
the expectation of these conditional probabilities to be one-half,
E{π (ε)} = 0.5 for all ε; then E{f (s)} = gθ (s). For a given set of
conditional probabilities {π (ε)}, this construction builds a den-
sity f (s) that has jumps at the quantiles of Gθ , G−1

θ (m/2J ), and
the values of {π (ε)} determine the jump size. Figure 1(a) takes
all π (ε) = 0.5. Figure 1(b) then sets π (0) = 0.45. Figure 1(c)
further sets π (00) = 0.7, then Figure 1(d) sets π (10) = 0.6. Pan-
els (e)–(g) successively set π (000) = 0.8, π (010) = 0.7, and
π (100) = 0.4 and π (110) = 0.55. Already with only three lev-
els, we obtain quite interesting possibilities. Typically, the num-
ber of levels is higher, usually 5 ≤ J ≤ 8, allowing for more re-
fined shapes. The original Fabius (1964) construction deals with
J = ∞. Figure 1(h) averages tailfree densities that have these

conditional probabilities over the prior α, γ
ind.∼ N (4, 0.052),

yielding a smooth mixture of tailfree densities.
Tailfree prior densities are essentially a weighted average

between a parametric density and a histogram, with bin locations
coming from the parametric density. The histogram takes the
shape of the parametric density over bin intervals, and there are
jumps at the bin endpoints as usual. By taking θ to be random,
as in Figure 1(h), the bin locations are “jittered” or shifted, and
the resulting density is smoothed, and is in fact differentiable
(Hanson 2006, Proposition 1). The resulting density model is
similar to the “averaged shifted histogram” of Scott (1985).
However, Scott’s approach does not make use of a parametric
family. The tailfree density has a pronounced nonparametric
flavor where data are plentiful and unlike a Weibull density
(e.g., multimodal), but retains the shape of the centering Weibull
density where data are sparse and/or data approximately follow
a Weibull distribution.

Define p = (p(1), . . . , p(2J ))′ to be the vector of random
probabilities of the 2J sets in the finest partition at level J. Pairs

of conditional probabilities {(π (ε0), π (ε1))} are assumed to be
mutually independent, implying

p(l + 1) = P {T ∈ Bθ (ε1 . . . εJ )} =
J∏

i=1

π (ε1 . . . εi), (5)

where ε1 . . . εJ is the base-2 representation of l, l = 0, . . . , 2J −
1. For example, say J = 3. Then to obtain P {T ∈ Bθ (110)}, one
computes

P {T ∈ Bθ (110)} = P {T ∈ Bθ (110)|T ∈ Bθ (11)}
×P {T ∈ Bθ (11)|T ∈ Bθ (1)}P {T ∈ Bθ (1)}

= π (110)π (11)π (1).

We require the survival function S(t) = 1 − F (t). Let T ∼ F .
For a given t > 0, let tl and tr be the left and right end-
points of the partition interval at level J that contains t.
That is, tl < t < tr , where tl = G−1

θ (m/2J ), tr = G−1
θ ((m +

1)/2J ), and m is such that G−1
θ (m/2J ) < t < G−1

θ ((m +
1)/2J ). Then P (T > t) = P (t < T ≤ tr ) + P (T > tr ). Using
(4) and (5), P (t < T ≤ tr ) = pm

∫ tr
t

gθ (s)ds/
∫ tr
tl

gθ (s)ds =
pm[Gθ (tr ) − Gθ (t)]/2−J and P (T > tr ) = ∑2J

j=sθ (t)+1 p(j ),
where sθ (t) = m = �2J Gθ (t)� and �·� is the ceiling function.
These results imply that the survival function with respect to F is

S(t) = 1 − F (t) = p{sθ (t)}{sθ (t) − 2J Gθ (t)} +
2J∑

l=sθ (t)+1

p(l),

(6)

where p(l) is given by (5). By differentiating (6), the density
with respect to F is given by

f (t) =
2J∑
l=1

2J p(l)gθ (t)IBθ {εJ (l−1)}(t) = 2J p{sθ (t)}gθ (t), (7)

where εJ (i) is the binary representation ε1 . . . εJ of the integer
i. Recall that Figure 1(b)–1(g) plots the density (7) centered at
Gθ =Weibull(4,4), J = 3, for different sets of {π (ε)}.

Now introduce the subscript k to make clear we are defining
two tailfree processes Fk where k = 0, 1 for perfect and minimal
repair, respectively. Let the random variable λk(ε0) be the logit
transformation of πk(ε0), that is,

λk(ε0) = logit{πk(ε0)}. (8)

The priors on {(λ0(ε0), λ1(ε0))} are given by

λ0(ε0), λ1(ε0)
ind.∼ N

(
0,

2

cρ(j )

)
, (9)

where j is the number of digits in ε0. The N (0, 2/cρ(j )) prior on
λk(ε0) mimics a beta(cρ(j ), cρ(j )) prior for Polya tree condi-
tional probabilities {πk(ε0)} (Jara and Hanson 2011). A common
choice that we adopt is ρ(j ) = j 2. The parameter c acts much
like the precision in a Dirichlet process (Ferguson 1973). As
c → 0+, E{Fk(·)} tends to the empirical CDF of the data (Han-
son and Johnson 2002); as c → ∞, all conditional probabilities
πk(ε) go to 0.5 and hence Fk(t) → Gθ k

(t) with probability one
for all t > 0. We assign c a gamma prior c ∼ �(a, b); typi-
cally a = 10 or 5 and b = 1; motivation for these priors is pro-
vided in Hanson, Kottas, and Branscum (2008) using the prior
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L1 distance between Fk and Gθ k
. For c ∼ �(5, 1), the median

L1 distance of the random tailfree density from the centering
distribution is 0.28 with 95% probability interval (0.11,0.76);
for c ∼ �(10, 1) these values are 0.19 and (0.08,0.51). So
�(5, 1) typically allows about 30% more mass to be moved than
�(10, 1), as we would expect. The model under the alternative
hypothesis H1 is summarized in terms of interfailure times as

ti − ti−1|di−1 = 0
ind.∼ F0(·),

ti − t∗i |di−1 = 1
ind.∼ F1(·)

S1(ti−1 − t∗i )
,

F0|θ0, c ∼ TFJ (c, ρ,Gθ0 ),

F1|θ1, c ∼ TFJ (c, ρ,Gθ1 ),

where TFJ (c, ρ,Gθ k
) is shorthand for the random tailfree

Fk given through (6)–(9) up to level J. The model under null
hypothesis H0 simply replaces F1 by F0 and θ1 by θ0 above.
The two models are referred to as M1 and M0 with respect to
H1 and H0.

The model with a common Weibull centering distribution
θ0 = θ1 is a linear dependent tailfree process (Jara and Hanson
2011) regressed on a binary predictor (maintenance decisions),
albeit with a likelihood involving truncated observations, for ex-
ample, F1(·)/S1(ti−1 − t∗i ) for di−1 = 1 under H1. This model
generalizes the Polya tree in the same spirit as De Iorio et al.
(2004) generalized the celebrated Dirichlet process through an
analysis of variance (ANOVA)-type structure. Under this model,
the eλ1(ε)−λ0(ε) are interpreted as how the odds of failing in the
time interval Bθ (ε) change from minimal to perfect repair; this
information can be useful for finding time intervals Bθ (ε) where
minimal repair fixes the problem in a manner substantially worse
than F0 would allow. Under the model where θ0 = θ1, if each
pair of λ0(ε0), λ1(ε0) are assigned identical and independent pri-
ors, then E{F0(t)} = E{F1(t)} = Gθ (t) for all t > 0 and hence
the null model M0 is formally nested in the alternative model
M1. From many simulations (beyond what is included in this
article), allowing distinct θ0 and θ1 increases discriminatory
ability, but also inflates Type I error.

2.2 Testing H0 Versus H1

As stated in the introduction, the test for the assumption of
“minimal repair” is of interest, and so it is important to choose a
measure to compare the models. As H0 is formally nested in H1,
a likelihood-ratio-type test could be considered, or a Bayes’ fac-
tor (the Bayesian equivalent). However, computing the Bayes’
factor with the truncated data likelihoods (2) and (3) is challeng-
ing and existing methods are unstable (Hanson 2006). Instead
we consider an alternative measure, termed the log pseudo-
marginal likelihood (LPML; Geisser and Eddy 1979), a measure
of a model’s predictive ability. The LPML is easy to compute
based on MCMC output (Gelfand and Dey 1994). By definition,

LPML =
n∑

i=1

log{fi(ti |t−i)}.

Here, fi(ti |t−i) is the predictive density for ti based on the re-
maining data t−i = {tj : j �= i}, fi(·|t−i), evaluated at ti . This is

called the ith conditional predictive ordinate (CPO) statistic, and
measures how well ti is predicted from the remaining t−i through
the model. In our context, we compute the predictive density
(δi = 1) or survival (δi = 0) at ti based on the failure times, re-
pair times, and repair decisions during [0; ti−1] and [ti+1, tmax],
plus partial information during (ti−1, ti+1) that a certain type
of repair was performed at ti . The LPML simply aggregates
the log of these. The difference in LPML measures between
H1 and H0 can be exponentiated giving the pseudo Bayes’ fac-
tor BF10 for the two models. Common interpretations for Bayes’
factors apply, for example, 3 < BF10 < 20 indicates “positive”
evidence toward H1; 20 < BF10 < 150 indicates “strong” evi-
dence, and BF10 > 150 indicates “very strong” evidence (Kass
and Raftery 1995). Under mild conditions, the LPML converges
to the posterior score and so the pseudo Bayes’ factor is related
to Aitkin’s posterior Bayes’ factor (Aitkin 1991) as well. In
simulations, we find the LPML to work well in differentiating
H1 from H0.

The LPML is approximated by

LPML = −
n∑

i=1

log

{
1

s

s∑
k=1

1

pi(ti |D, τ k)

}
, (10)

where pi is the likelihood contribution of event at time ti ,
D is the observed data, and (2) and (3) define the model
under H0 and H1, respectively, {τ k, k = 1, 2, . . . , s} are it-
erates from MCMC outputs of all the parameters, that is,
{λk

0,λ
k
1, c

k, k = 1, 2, . . . , s} under H1.

2.3 Model Fitting

Following the discussion at the end of Section 2.1, for the pur-
poses of testing H0 : F0 = F1 we suggest that F0 and F1 have the
same prior mean Weibull distribution in fitting M1, for example,
θ0 = θ1 = θ . In simulations, we fix θ0 = θ1 = θ̂ , where θ̂ is the
maximum likelihood estimate (MLE) assuming minimal repair
holds, and Weibull reliability, that is, F0(t) = F1(t) = Gθ (t) (the
Weibull is obtained under the tailfree prior when c → ∞).
A similar practice is recommended by Berger and Guglielmi
(2001) and Hanson, Branscum, and Gardner (2008) in simpler
situations.

Upon rejecting H0, we suggest refitting M1, allowing dis-
tinct θ0 and θ1. It is known in the literature that fixing θ0 and
θ1 results in “jumpy” densities as each of f0 and f1 has discon-
tinuities at each partition interval endpoint, as Figure 1 shows.
For the purposes of estimating the interfailure hazard functions
ĥ0(t) and ĥ1(t), we suggest an empirical Bayes’ approach: place
normal priors on θ0 and θ1 derived from their large-sample
asymptotic distributions under the underlying Weibull assump-
tion (c → ∞):

θ k
ind.∼ N2(̂θ k,�k), (11)

where �k is the large-sample covariance matrix under a frequen-
tist Weibull fit (̂θ k and �k are easily obtained using optimization
procedures in R or SAS); noninformative priors (p(θ k) ∝ 1) for
θ k can also be used. Placing priors on θ0 and θ1 smooths out
the estimated density and hazard curves, yielding a mixture of
tailfree processes for F0 and F1.
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MCMC computing requires full specification of the likeli-
hoods and priors. The likelihoods (2) and (3) under H0 and
H1 are functions of f0 and (f0, f1), respectively. Let E =
{ε = ε1 . . . εj , j = 1, . . . , J − 1}. Conditioning on {π k(ε0)} for
ε ∈ E , the densities (f0 and f1) and reliability functions (S0 and
S1) are given by (7) and (6) in terms of probability vectors pk ,
functions of π k(ε0) defined in (5). Note that π k(ε0) is a function
of λk through (8). The posterior under H1 is proportional to

p(λ, θ0, θ1, c|D) ∝ L(f0, f1)p(θ0, θ1)�(c|a, b)

×
1∏

k=0

∏
ε∈E

N

(
λk(ε0)|0,

2

cj 2

)
,

where λ = {λ0(ε0),λ1(ε0)},L(f0, f1) is defined in Equation (3)
and p(θ0, θ1) are product of independent priors for θ0 and θ1.
The posterior under H0 is similar.

Parameters {λ, θ0, θ1} are updated using random-walk
Metropolis–Hastings updates (Tierney 1994). Gaussian
random-walk proposals are used for each element of {λk(ε0) :
k = 0, 1; ε ∈ E},

λk(ε0)∗ ∼ N (λk(ε0), vk(ε0)),

where λk(ε0)∗ is the latest accepted value for λk(ε0), and
vk(ε0) is tuned to get acceptance rates in the 20%–50% range.
Similarly, θ k ∼ N2(θ∗

k, Vk), where Vk needs to be tuned. We
have found automatic tuning of vk(ε) and Vk to proceed quickly
(Haario, Saksman, and Tamminen 2005). Specifically, let the
sequence λ1

k(ε0), λ2
k(ε0), . . . be the states of the Markov chain

for λk(ε0). When deciding the tth state λt
k(ε0), we sample

λk(ε0)∗ ∼ N (λt−1
k (ε0), vt

k(ε0)) with

vt
k(ε0) =

{
v0(ε0), t < t0

svar
{
λ1

k(ε0), . . . , λt−1
k (ε0)

} + s0, t > t0
,

where s is recommended to be 2.4, s0 is a small constant, and
v0

k (ε0) is an initial variance of the proposal distribution. A simi-
lar automatic procedure applies to θ k with V t

k being the empirical
covariance matrix after t0. The parameter c is updated through
posterior

p(c|λ, θ ,D)

∼ �

⎧⎨⎩(a + 2J − 1), b +
∑

ε1ε2...εj ∈E

1∑
k=0

λk(ε1ε2 . . . εj )2j 2/4

⎫⎬⎭ .

FORTRAN 90 code for fitting the data analysis in Section
4 is included in the online supplementary material for this
article.

3. SIMULATIONS

We conducted four simulations to see how well the pseudo
Bayes’ factor can discriminate between H0 and H1 and one
simulation to illustrate the estimation of the reliability func-
tions. Simulation I involves a sequence of increasing departures
of f1 from f0 according to our alternative model M1. Simula-
tion II considers a sequence of departures from H0 using the
effective age models. Simulation III investigates Type I error.
Simulation IV examines how the prior on c affects the test.
Simulation V estimates reliability functions F0 and F1. Sam-
ple sizes for simulated data are the total number of interfailure

times after perfect or minimal repair. Each dataset is comprised
of one-third interfailure times after perfect repair and two-thirds
interfailure times after minimal repair truncated from the accu-
mulated age since the most recent perfect repair. For simplicity,
all repairs occur in response to failures. For the hypothesis tests,
the unknown distributions are assigned finite tailfree priors with
the following specifications. We fix θ = θ̂ for F0 under M0 and
θ0 = θ1 = θ̂ for F0, F1 under M1, where θ̂ is an estimate for
θ under the Weibull null model; θ0 and θ1 each contain the
log of the Weibull shape and scale parameters; the level of the
partition tree is fixed at J = 5, and c is considered with prior
�(5, 1) for simulations I–III and priors �(5, 1) and �(10, 1) for
simulation IV. Based on our simulation experience, J = 5 is
sufficient for the sample sizes in our simulations and increasing
J changes the LPML negligibly. For each dataset, we run 4000
MCMC iterations and use the last 3000 MCMC samples for
inferences. We reject H0 in favor of H1 if the LPML for H1 is
greater than that for H0 by 3.5, otherwise we choose H0. For
estimating the reliability functions in simulation V, we place
the empirical Bayes’ priors as detailed in Section 2.3 on θ0 and
θ1, and assume c ∼ �(10, 1). After a burn-in of 10,000 iterates,
400,000 iterates were thinned to a sample of 4000 for inference.

Simulation I. Let W (w, α1, γ1, α2, γ2) be a mixture of two
Weibull distributions with weights w and 1 − w, shape param-
eters α1, α2, and scale parameters γ1, γ2. Table 2 reports the
results of simulation I testing H0 versus increasing departures
H1 according to our alternative model; f0 = W (0.5, 2, 3, 2, 6),
f1 = W (0.5, 2, 3, 2, γ2) with nine densities corresponding to
γ2 = {6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2}. The simulation involves
two sample sizes n = 200 or n = 500. For each condition,
200 datasets are simulated. The hazard functions for f0 (solid
thick line) and f1 (dashed thin lines) are plotted in the left
panel of Figure 2; Table 2 values are proportions rejecting H0.
The power is reasonably good in detecting this sequence of
departures.

Simulation II. We use the notion of imperfect repairs and ef-
fective age to introduce increasing departures from the minimal
repair assumption but using our proposed models M0 and M1 for
hypothesis testing. Effective age modeling in reliability has re-
ceived a lot of attention since introduced by Kijima (1989). A
spectrum of imperfect repairs can be modeled through effective
ages, generating event processes that include renewal processes
and Poisson processes as special cases. Following the notation
introduced in Section 2.1, the times for repairs are recorded as
0 = t0 < t1 < t2 < · · · < tn = tmax. The repair at ti is denoted as
di with di = 0 if perfect repair was performed and di = 1 other-
wise. Define z(t) as the effective age of the system at time t. We
still assume perfect repairs reset the effective age to zero but now

Table 2. Type I error and power for testing H0 versus H1 for
simulation I; 6.0–2.0 are nine values of γ2 in defining f1; tabled

values are the proportion out of 200 replications where H0 is rejected

γ2 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

Sample event
n = 200 0.00 0.01 0.04 0.14 0.39 0.58 0.85 0.94 0.96
n = 500 0.04 0.05 0.14 0.50 0.93 1.00 1.00 1.00 1.00
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Figure 2. Left panel plots the hazard h0 (solid and thick line) and eight choice for h1 (dashed and thin lines) versus time t for simulation
I; right panel plots the intensity of the system versus time t when failures occur at {3, 6, 9} for all q from 1 (solid and thick line) and 0.2–0.9
(dashed and thin lines) for simulation II.

repairs recorded as di = 1 multiply the effective age right before
the repair by a fraction q (known as Kijima Type II model). That
is, z(ti) = 0 if di = 0, z(ti) = {z(ti−1) + ti − ti−1}q if di = 1 and
z(t) = z(ti) + t − ti for ti < t < ti+1. This is only one departure
from the null model M0 that is different from our alternative
model M1 (Presnell, Hollander, and Sethuraman 1994). Note
that q = 1 implies that the minimal repair assumption holds
and q < 1 indicates repairs being better than “good as old.”
Suppose F0 defines the CDF of the first failure time for a sys-
tem; after repair at ti , the distribution for the time to next failure
is F0(z(ti) + t)/S(z(ti)), t > 0. In the following simulation, we
examine the power of the proposed test for a sequence of q using
two sample sizes n = 200 or n = 500. For each condition, 200
datasets are simulated.

Table 3 reports the results of testing H0 versus H1; q takes
values from 1 to 0.2 by 0.1; f0 = Weibull(2, 4); the intensities
for a system with failures at {3, 6, 9} are plotted in the right
panel of Figure 2; the solid thick line corresponds to q = 1 and
dashed lines correspond to q < 1 from 0.9 to 0.2; the tabled
values are percentages of times rejecting H0. Even though the
Kijima departure is not in the realm of our model, our test
performs satisfactorily with power increasing to one as q gets

Table 3. Type I error and power for testing H0 versus H1 for
simulation II; 0.2–1.0 represent nine choices of q and 1.0 represents

no departure of minimal repair; tabled values are the proportion out of
200 replications where H0 is rejected

q 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Sample event
n = 200 0.01 0.02 0.03 0.04 0.11 0.20 0.29 0.53 0.72
n = 500 0.03 0.04 0.06 0.21 0.53 0.81 0.94 0.99 1.00

small for n = 500. According to additional simulations, not
included here, the power of our test increases when the slope of
the hazard increases in the Kijima models.

Simulation III. We perform a simulation to investigate Type I
error using three sample sizes n ∈ {1000, 1500, 2000}, and three
choices for f0. Table 4 reports the results of the third simula-
tion based on 200 datasets where data are simulated only from
M0; the three densities are W (0.5, 2, 3, 2, 6), Weibull(2, 4), and
Weibull(1, 4); the tabled values are proportions rejecting H0.
The Type I errors appear to be stable and are always less than
0.05 for these distributions and sample sizes. Tables 1 and 2
show that the LPML cutoff of 3.5 may be conservative for
smaller sample sizes.

Simulation IV . We also conduct a simulation to see how
the prior on c affects the test. One hundred different datasets
for each of three sample sizes n = 200, 500, 1000 (300
datasets total) were generated from model M0 with
f0 = W (0.5, 2, 3, 2, 5) where the minimal repair assumption
holds, as well as model M1 where F0 and F1 are different with
f0 = W (0.2, 2, 0.7, 2, 5), f1 = W (0.5, 2, 0.7, 2, 3). Now c is
considered with two priors, �(5, 1) and �(10, 1). Table 5
reports the results of testing H0 versus H1; the tabled values
are percentages of times rejecting H0. The �(5, 1) prior favors

Table 4. Type I error for testing H0 versus H1 for simulation III; 1–3
represents three choices of f0 described in the text

Density type 1 2 3

Sample event
n = 1000 0.03 0.04 0.04
n = 1500 0.03 0.05 0.03
n = 2000 0.04 0.05 0.04
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Table 5. Type I error and power for testing H0 versus H1 with two
sets of prior for c for simulation IV; tabled values are the proportion

out of 100 simulated datasets where H0 is rejected

H0 : F0 = F1 H1 : F0 �= F1

Sample
event c ∼ �(5, 1) c ∼ �(10, 1) c ∼ �(5, 1) c ∼ �(10, 1)

n = 200 0.00 0.00 0.75 0.60
n = 500 0.00 0.00 0.81 0.70
n = 1000 0.05 0.02 1.00 1.00

smaller values of c, yielding more modeling flexibility, and
hence increasing differentiability. This effect is more obvious
for smaller sample sizes.

Simulation V . The last simulation illustrates our approach
by estimating reliability functions after perfect and minimal re-
pairs for three simulated datasets. One dataset of 1000 events
was simulated from the above setting of M1. Two datasets of
1000 events were simulated from the Kijima Type II effective

age model with q = 0.2, 0.5 and f0 = Weibull(2, 4). For the
first dataset, the true reliability functions S0 and S1, and hazards
h0 and h1 are displayed in the left panels of Figure 3 with F0 plot-
ted using solid lines and F1 plotted using short-dashed lines. The
estimated survival and hazard (pointwise posterior means) are
plotted in the right panels of Figure 3, along with the 95% cred-
ible intervals for the estimates (long-dashed lines); we can see
that local features of the distributions are well captured. For
the other two datasets, we plot the estimated hazard functions
for h0 (solid black) and h1 (dashed black) in Figure 4, overlaid
with intensities (dashed gray) of 10 systems. We plot each in-
tensity function over time since the first minimal repair for the
corresponding system. For both datasets, our model’s h1 esti-
mates essentially average the true intensities of the 10 systems.
We can see a larger difference between h1 and h0 estimates for
q = 0.2 than that for q = 0.5, indicating better performances of
system when q = 0.2.

The computing time for running the above simulations mainly
depends on the number of MCMC iterates, sample size, and the
level of the partition tree J. For J = 5, 4000 MCMC iterates,
and a 3.00 GHz processor, it may take a few seconds for small
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Figure 3. Results of a simulated sample of n = 1000 events under H1; true (left) and estimated (right) survival and hazard estimates versus
time t; solid lines correspond to F0 and short-dashed lines correspond to F1; long-dashed lines correspond to 95% credible intervals.
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Figure 4. Results of two simulated samples of n = 1000 interfailure times under Kijima Type II model with q = 0.2 (left) and 0.5 (right);
hazard estimates of h0 (solid black) and h1 (dashed black) versus time t; dashed gray lines are intensities of 10 systems.
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| |Perfect repair Minimal repair

Figure 5. Calendar times of events for the six chillers (AC); for each chiller, vertical bars represent observed failures on the top line and
censored events on the bottom line; big (small) vertical bar denotes perfect (minimal) repair at the event time.
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sample sizes (e.g., 200, 500) to a couple of minutes for large
sample sizes (i.e., 2000). The computing times for longer chains
or higher levels of J are longer.

4. DATA ANALYSIS

We studied the dataset provided by South Texas Project Elec-
tric Generating Station for the essential chiller system. Details
on the chillers and maintenances are presented in the introduc-
tion. The original calendar time was recorded in days and we
divided the time by 30.4 to transform the units to months. Calen-
dar times of maintenance events in months are plotted in Figure 5
by chillers where vertical bars represent censored failure times
on the top line and observed failure times on the bottom line.
The size of the vertical bar indicates perfect or minimal repair
and the number of each type of repair per chiller is given in Table
6. We first investigate whether the six chillers are identical in
new condition. Chillers (AC 4–6) in group 2 tend to last longer
than Chillers (AC 1–3) in group 1 based on the Kaplan–Meier
estimates (Figure 6) using the first failures after perfect repairs.

Table 6. Counts of perfect/minimal by response to
“failure”/“censored” for each chiller

AC1 AC2 AC3

Failure Censored Failure Censored Failure Censored

Perfect 17 217 18 199 15 202
Minimal 232 4 179 1 184 3

AC4 AC5 AC6

Failure Censored Failure Censored Failure Censored

Perfect 14 189 9 184 13 184
Minimal 160 1 167 2 163 3

Within each group, there appears no significant difference. The
log-rank tests for homogeneity of survival curves for the first
failures give a significant p-value of 0.03 across the two groups,
but nonsignificant 0.26 for chillers within the first group, and
0.78 for chillers within the second group. Therefore, we pool
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Figure 6. Kaplan–Meier estimates for survival functions using first failures after perfect repairs of the essential chillers system; groups 1 and
2 (top left ); AC 1–3 in group 1 (top right); AC 4– 6 in group 2 (bottom left); bottom right panel plots M1 estimates for S0 for groups 1 and 2.
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observations across chillers within each group and perform sep-
arate analyses for the two groups. From now on, the first group
is referred to as “group 1” and the second group as “group 2.”

It is of interest to test the minimal repair assumption, that is,
whether there is a significant difference between the reliability
distributions for the two types of maintenance decisions. We
first fit the proposed nonparametric test. For group 1, the
LPML for H0 is −770 and for H1 is −755. For group 2, the
LPML for H0 is −713 and for H1 is −695. Exponentiating the
LPML differences in the two groups (> 150) leads to strongly
rejecting H0 in both. We also fit parametric tests with Weibull
family assumption for F0 and F1. For group 1, the LPML for
H0 is −770 and for H1 is −760. For group 2, the LPML for
H0 is −714 and for H1 is −694. Note that the nonparametric
method yields greater difference in LPMLs for group 1 than
parametric method does. For group 2, there is not a significant
difference between the parametric and nonparametric method.
For estimating F0 and F1, we refit M1 using the nonparametric
method presented in Section 2.3, place noninformative priors

on θ0 and θ1 (p(θ k) ∝ 1), and assume c ∼ �(10, 1) for the
two groups. After a burn-in of 50,000 iterates, 4000 MCMC
samples were thinned from a total of 400,000 iterates. The
computing time was about 30 sec for hypotheses testing and
a few minutes for estimation in M1. We plot the estimated
pointwise posterior mean survival functions for F0 (solid lines)
and F1 (short-dashed lines) on the left panel of Figure 7. The
95% credible intervals for the survival functions are plotted with
long-dashed lines. The right panel of Figure 7 is the estimated
pointwise posterior mean hazard functions for F0 (solid lines)
and F1 (short-dashed lines) from both the nonparametric (less
smooth) and parametric (smooth) approach. The nonparametric
estimates for h0 and h1 for group 1 (top right panel) are close to
each other in the first 1 month, but after h1 is larger than h0. This
implies that the system performs “good as old” after minimal
repairs at a young cumulative age but worse at an older cumu-
lative age (the cumulative age is the time since the latest perfect
repair). The posterior mean estimate for h1 is always greater
than h0 for group 2 (bottom right panel) indicating the system
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Figure 7. This figure contains estimates of the survivor and hazard functions for groups 1 (top panels) and 2 (bottom panels) essential chiller
system when both parametric and nonparametric models are fitted for M1. Left panels plot nonparametric estimates of the survivor functions
corresponding to F0 (solid) and F1 (short-dashed) and their 95% credible intervals (long-dashed). Right panels plot the parametric (smooth) and
nonparametric (less smooth) estimates of the hazard functions corresponding to F0 (solid) and F1 (short-dashed).
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performs worse than expected after minimal repairs. Compared
to the estimates of h0 and h1 from the parametric method, the
nonparametric estimates exhibit much more flexibility in the
shape during the first few months where data are more plentiful,
but follow a Weibull shape as time increases and data are scarcer.

5. DISCUSSION

We proposed a flexible Bayesian nonparametric framework
to model recurrent events in a repairable system for the pur-
pose of generalizing and testing the common “minimal repair”
assumption. Upon system failure either a perfect or a mini-
mal repair is performed. Tailfree priors are assumed for the
unknown distributions F0 and F1 centered at the Weibull dis-
tribution. The Weibull serves to anchor inference and guide
density shape where data are scarce, but tailfree probabilities
change the Weibull shape when necessary in locations where
data are plentiful. The typical assumption that a minimal repair
brings the system back to the exact state it was in right before
failure is tested via pseudo Bayes’ factors. In simulations, the
test was found to have good power, and appropriate Type I error.
If the alternative model H1 : F0 �= F1 is preferred, we further
compare the estimated hazard functions, shedding light on how
minimal repairs perform relative to perfect repairs at different
ages of the system. This is particularly useful for managers to
schedule maintenance. If the null model is preferred, our model
becomes a Bayesian nonparametric generalization of Weibull
for modeling the failure times from nonhomogenous Poisson
processes. It is then typically of interest to obtain smooth esti-
mates for the density, hazard, and survival function. With slight
changes in the likelihood, our method can also be used to test
other repair assumptions, for example, a known life supplement
for a type of repair. We note that it is straightforward to include
time-dependent covariates into the model, such as operating
settings and the identity of the person making repairs.

We stress that perfect repairs are indeed assumed to bring the
system to as “good as new.” In practice, there may be several
types of maintenances pooled together, which are close to “per-
fect repairs.” If several identical systems are maintained in the
same way, maintenance records may be combined since identi-
cal systems have the same contribution as old systems that have
just received an overhaul. However, combining the records from
systems, which are very different, could result in confounding
between the actual effects of the maintenances and the reliability
of the system.

We also assume that the system after each minimal repair
depends on the preceding minimal repairs only through the
accumulated age (time since last perfect repair). The minimal
repairs are “good as old” repairs with respect to F1. That is, the
hazard function remains h1(t) over time after the first minimal
repair in each cycle. This simplification facilitates the testing
of H0 versus H1 and also allows comparison of maintenance
decisions over time. However, if H1 : F0 �= F1 is concluded, the
estimated h1 may not be the dynamic hazard for the system after
minimal repairs. The reason is that when minimal repairs are not
“good as old” repairs, the actual effects of maintenances could
aggregate, changing the hazard function after each repair. The
“effective age” modeling of the system (Kijima 1989) captures
a dynamically changing hazard. However, there is difficulty in

determining the degree of each repair and hence the effective
age for the system. It is one of our interests to model the dynamic
hazard using Bayesian nonparametric methods.

SUPPLEMENTARY MATERIALS

Data and code: The dataset studied in Section 4, with R code
for obtaining Weibull MLEs and fortran code implementing
the MCMC algorithm (zip file).
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