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a b s t r a c t

A new regression model for recurrent events from repairable systems is proposed. The ef-
fectiveness of each repair in Kijimamodels I and II is regressed on repair-specific covariates.
By modeling effective age in a flexible way, the model allows a spectrum of heterogeneous
repairs besides ‘‘good as new’’ and ‘‘good as old’’ repairs. The density for the baseline haz-
ard ismodeled nonparametricallywith a tailfree process prior which is centered atWeibull
and yet allows substantial data-driven deviations from the centering family. Linearity in
the predictors is relaxed using a B-spline transformation. The method is illustrated using
simulations as well as two real data analyses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Repairable systems have beenwidely studied in the literature. Systems fail, get repaired upon failure, and these recurrent
events (failures, repairs) are observed. The event process generating the repeated events is closely related to the intensity
function, denoted as λ(t|H(t)) and formally defined in Section 2.1, which describes the probability of an instantaneous new
failure, given the history of maintenances and failures H(t). In general, recurrent event modeling methods can be divided
into categories based on the type of repairs a system receives. Renewal processes are used if all the repairs bring the system
to the ‘‘good as new’’ state and Poisson processes are used if all the maintenances bring the system to a ‘‘good as old’’ state.
Kijima (1989) introduced two classes of models using the notion of ‘‘effective age’’ (also known as ‘‘virtual age’’) of the
system to allow for a spectrum of repairs between ‘‘good as old’’ and ‘‘good as new’’. Consider a system observed over [0, τ ].
Assume the repair times for the system are 0 < t1 < t2 < · · · < tn, and denote ε(t) as the effective age of the system at
time t . Suppose that the intensity λ(t|H(t)) is related to the unknown hazard, or failure rate, of a new system r(t) through
λ(t|H(t)) = r{ε(t)}. Poissonmodels assume ε(t) = t and renewal models assume ε(t) = t − sN(t−) where sN(t−) is the time
at which the last repair occurred. Kijima models introduce an age reduction factor Di for each repair, occurring at calendar
time ti. Define ε(ti) = ε(ti−1) + [ti − ti−1]Di for the Kijima type I model and ε(ti) = [ε(ti−1) + ti − ti−1]Di for the Kijima
type II model. Assume ε(t) = ε(ti−1) + t − ti−1 for t ∈ (ti−1, ti). Note that Di = 1 implies a Poisson process in models I and
II, and Di = 0 implies a renewal process in type II.

Lindqvist (2006) provides a review of the modeling of effective age. Dorado et al. (1997) generalize Kijima’s models that
allow for repairs of varying degree by including known ‘‘life supplements’’ — numbers between zero and one indicating the
degrees of the repairs. There is very limited literature dealing with unknown effective age processes. Doyen and Gaudoin
(2004) studied a class of Kijima’s models where the repairs reduce the effective ages by one overall effectiveness scalar
q. Recently, Veber et al. (2008) propose an EM-algorithm to estimate q and use Weibull mixtures for the baseline failure
time distribution. Using one scalar is inappropriate for systems where repairs of varying effectiveness occur. For example,
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different maintenance types, or levels of experience in those carrying out the repairs, can have drastic differences in repair
effectiveness. Very recently, Yuan and Uday (2012) extend the single scalar parameter q to a time-dependent function,
e.g. q(t) = exp(−et) where e is estimated, and assume the baseline distribution to be a parametric power-law distribution.
In this work, we regress the effectiveness of each repair on covariates, e.g. materials used or the technician, and relax the
parametric assumption of the baseline distribution using nonparametric priors in a Bayesian framework. Time trends in
the effectiveness of repairs, characteristics of each repair, and association among repairs within each system can be flexibly
coded into the covariate process. Specifically, the effectiveness measure Di is regressed on a vector of covariates wi; let
Di = exp{β′wi}/{1+exp(β′wi)} orDi = exp(β′wi). The associations between the covariates and the effective age reduction
are characterized byβ. When the hazard of the system ismonotone increasing, a repair with covariates resulting in a smaller
age reduction factor Di tends to be more effective than other repairs performed at the same effective age of the system.

Other generalizations of renewal and Poisson processes allowing for covariates also assume the effective age process
ε(t) is known, including for example, modulated renewal processes (Cox, 1972), point-process models incorporating
renewals and time trends (Lawless and Thiagarajah, 1996), and a general class of semiparametric models (Peña et al., 2007)
which simultaneously accommodates the effects of increasing numbers of events, covariates, interventions (repairs), and
association among the interevent times within a system. This literature encompasses a rich and widely used family of
reliability models. However, it is difficult to assume that the effective age process is known. There might even be inter-
play among the effective age process and history-dependent covariates and the baseline hazard function, as noted in Peña
et al. (2007). Moreover, understanding the performance of repairs is often crucial to decision-making and even predictions.

A parametric analysis of our proposed model can be performed by choosing an appropriate distribution family,
e.g.Weibull, for r(t). In thiswork,we seek amore flexible approachwhere the entire density, the cumulative hazard function,
or the hazard is assigned a nonparametric prior distribution. Bayesian nonparametric priors have achieved prominent
success due to their flexibility in modeling unknown distributions; examples include the Dirichlet process (Ferguson,
1973), Polya tree priors (Lavine, 1992), Dirichlet process mixtures (Escobar and West, 1995), etc. However, the use of these
nonparametric priors in recurrent eventmodels has beenquite limited. Very recently, Taddy andKottas (2012) usedDirichlet
process mixtures for the interfailure density in Poisson process models. Priors on the cumulative hazard R(t) =

 t
0 r(s)ds

include the beta and gamma processes (Lo, 1992; Kuo and Ghosh, 1997) which are discrete and not readily used in our
context. The weighted gamma process (Ishwaran and James, 2004) is centered at one unique baseline intensity and is also
not appropriate for a model that involves a factor in the argument of the intensity. Our proposed framework uses tailfree
priors (Freedman, 1963; Ferguson, 1974; Jara and Hanson, 2011), on the space of densities, centered at the Weibull family,
but allows for substantial data-driven deviations from the centering families. A special case of the tailfree prior, the Polya
tree prior, has been widely used for models that warp the baseline r; see Hanson (2006), Walker and Mallick (1999), and
Hanson and Yang (2007) for applications involving the accelerated failure time model and the proportional odds model.
Like the Dirichlet process, tailfree priors also have desirable consistency and large support properties (Jara and Hanson,
2011). The general framework proposed herein allows model comparisons using the goodness-of-fit measures LPML and
DIC so that comparisons among renewal processes, Poisson processes and Kijima models are readily made. We develop a
full, automated MCMC sampling scheme to fit our proposed model and illustrate our method using simulations as well as
on real data.

This paper is organized as follows: Section 2 presents a description of our model and an introduction to tailfree priors.
Section 3 provides the MCMC algorithm and an approach to relax linearity in the linear predictor, and Section 4 presents
simulation results. Section 5 summarizes the results for two real dataset analyses and in Section 6 we provide some
concluding remarks.

2. Model development

2.1. Likelihood construction

Consider a system starting from new. Suppose the system gets repaired at times ti, i = 1, . . . , n and 0 < t1 < t2 <
· · · < tn < τ where τ is the time when data collection stops. We assume τ is independent of the failure process. If a repair
is performed without an accompanying failure, the observation of event time is right censored. Let the indicator δi take the
value 1 if the system fails at time ti and 0 otherwise. Further we assume a d-dimensional covariate vector for each repair,
independent of the failure process, i.e. wi = (wi0, wi1, . . . , wi,d−1) for the repair at time ti. This vector may incorporate
information concerning technician skills, repair type, materials used, time trend, etc. Let the counting process {N(t), t ≥ 0}
record the cumulative number of failures over time and H(t) = {N(s) : 0 ≤ s < t} be the history of the process at time t .
The intensity function for an event process is defined as

λ(t|H(t)) = lim
△→0

P{N(t + △) − N(t) = 1|H(t)}
△

+
. (1)

The Kijima models for the event data assume λ(t|H(t)) = r{ε(t)} where ε(t) is the effective age. A Kijima type I model has
ε(ti) = ε(ti−1) + [ti − ti−1]Di and the type II model has ε(ti) = [ε(ti−1) + ti − ti−1]Di where ti − ti−1 is the time since
last repair. Denote the effective age right before ti as ε(ti−). The ith repair at ti reduces the effective age right before ti by
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a fraction of the time since last repair, that is, (ti − ti−1)(1 − Di) in the type I model and a proportion of the effective age,
i.e. ε(ti−)(1 − Di) in the type II model. Note that Di = 0 sets the clock back to the status right after last repair in the type I
model and to a new status in the type II model.

We propose to model Di as a function ofwi through the regression coefficient β. Let Di = exp(β′wi) or Di = logit(β′wi).
Let wi0 = 1 be an intercept. When the link function is the CDF of a logistic distribution, Di ∈ (0, 1) for all repairs, i.e. all
repairs are between ‘‘good as new’’ and ‘‘bad as old’’. If the link is exponential; thenDi ∈ (0, +∞). An interesting casewould
be Di > 1 where the system actually gets worse than ‘‘bad as old’’ after the repair. When the baseline hazard is monotone
nondecreasing or nonincreasing, β can be interpreted directly with respect to effectiveness of repairs, i.e. if the baseline
hazard is nondecreasing and βj is positive, one may conclude that an increase in wj results in less effective repairs overall.

We refer to Lindqvist (2006) in deriving the likelihood of observing a system with failures at 0 < t1 < t2 < · · · < tn <
τ (δi = 1, i = 1, . . . , n):

L =

n
i=1

r(ε(ti−1) + xi) exp


−

n
i=1

 xi

0
r(ε(ti−1 + u))du −

 τ−tn

0
r(ε(tn + u))du


, (2)

where xi = ti − ti−1. The likelihood is equivalent to

L =

n
i=1

f (ε(ti−1) + xi)
S(ε(ti−1))

·
S(ε(tn) + τ − tn)

S(ε(tn))
,

where S and f are the unique survival and density functions corresponding to r . Denote F as the cumulative distribution
function for r . Now suppose we observe m identical systems. Denote tij as the event time for the ith repair of system j,wij
as the covariate vector and δij as the censoring indicator. Let τj be the termination time for observing system j. Conditional
on the collection of observables data =


tij, τj,wij, δij, i = 1, 2, . . . , nj, j = 1, 2, . . . ,m


, the likelihood of observing m

independent event processes is then

L =

m
j=1

nj
i=1


f (ε(ti−1,j) + xij)

δij

S(ε(ti−1,j) + xij)

1−δij

S(ε(ti−1,j))
·

m
j=1

S(ε(tnj,j) + τj − tnj)

S(ε(tnj,j))
, (3)

where xij = tij − ti−1,j.

2.2. Prior specifications

2.2.1. Tailfree process prior on F
We place a tailfree process prior on F , centered at the Weibull family. Denote Gθ as the cumulative distribution function

for Weibull, Gθ(t) = 1 − exp(−(t/η)α) for t ≥ 0 and θ = (log(α), log(η))′. Let Πj =

Bϵ1···ϵj : ϵi ∈ {0, 1}


be a partition of

the positive reals R+ and each set in Πj be split into two sets in Πj+1, e.g. {B0, B1} at the first level; {B00, B01, B10, B11}

at the second level, and so on. Following Lavine (1992), the sets are given by quantiles of the centering family; if m is
the base-10 representation of the binary number ϵ1 · · · ϵj, then Bϵ1···ϵj is the interval (G−1

θ (m/2j),G−1
θ ((m + 1)/2j)]. Let

Π =

Πj, j = 1, 2, . . .


be the sequence of partitions. We also refer to Π as the partition tree and j = 1, 2, . . . as the tree

levels.
Define F(A) to be the probability of any set A for distribution F ; note that F(A) is a random variable. The tailfree prior for F

is constructed from the sequence of partitionsΠ and their associated pairwise conditional probabilities (Yϵ1···ϵj−10, Yϵ1···ϵj−11),
assuming Yϵ1···ϵj−10 = 1 − Yϵ1···ϵj−11 = F{Bϵ1···ϵj−10|Bϵ1···ϵj−1}. Let Y = {Yϵ1···ϵj−10, j = 1, 2, . . .}. Further, the tailfree prior
assumes the random probabilities in Y are mutually independent, and the randommeasure F is related to the probabilities
through the relation: F{Bϵ1···ϵj} =

j
i=1 Yϵ1···ϵi . Let λϵ1···ϵj−10 be the logit transformation of Yϵ1···ϵj−10. By assuming λϵ1···ϵj−10

has the normal prior N (0, 2/[cρ(j)]) , Yϵ1···ϵj−10 approximately follows the beta(cρ(j), cρ(j)) distribution (Jara and Hanson,
2011). That is,

logit{Yϵ1···ϵj−10} = λϵ1···ϵj−10, λϵ1···ϵj−10 ∼ N

0,

2
cρ(j)


. (4)

The sequence of partitions Π forms a generator of the Borel σ -field of R+ and hence for any measurable set A ∈ R+, F(A) is
defined.

The infinite number of levels in the partition treeΠ is usually capped off by some fixed level J , typically 4 ≤ J ≤ 8, which
yields partitions up to level J , say Π J . Furthermore, on partition sets Bϵ1···ϵJ ∈ Π J at level J we assume F follows the base
measure Gθ , i.e. for all measurable A ⊂ Bϵ1···ϵJ ,

F{A|Bϵ1···ϵJ } = Gθ(A)/Gθ{Bϵ1···ϵJ }. (5)
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We use TF J(c, ρ(·),Gθ) to denote this finite tailfree prior on F with level J . For F ∼ TF J(c, ρ(·),Gθ), the survival function
S(t) = 1 − F(t) is given by

S(t) = p{s(t)}

s(t) − 2JGθ(t)


+

2J
j=s(t)+1

p(j), (6)

where s(t) = ⌈2JGθ(t)⌉, ⌈·⌉ is the ceiling function. Here p(j), j = 1, . . . , 2J is defined as

p(j + 1) = F{Bϵ1···ϵJ } =

J
i=1

Yϵ1···ϵi , (7)

where ϵ1 · · · ϵJ is the base-2 representation of j. Formula (6) can be obtained from (5) and (7) and

F(A) = F{Bϵ1···ϵJ }Gθ(A)/Gθ{Bϵ1···ϵJ }

for A ⊂ B(ϵ1 · · · ϵJ). By differentiating (6), the density with respect to F is given by

f (t) = 2Jp{s(t)}gθ(t), (8)

where gθ(·) is the density corresponding to Gθ .
A common choice for ρ(j) is j2. The parameter c is a precision parameter; lower values of c allowmass of F tomove easily

from the centering distribution Gθ . As c → 0+, E{F(·)} tends to the empirical CDF of the data (Hanson and Johnson, 2002);
as c → ∞, all conditional probabilities π(ϵ) go to 0.5 and hence F(A) → Gθ(A) a.s. for all measurable sets. We assign c
a gamma prior c ∼ Γ (ac, bc); typically a = 5 or 10 and b = 1. Alternatively, some authors simply set c as small values,
e.g. c = 1.

It is well known that fixing θ results in ‘‘jumpy’’ densities as f defined in (8) has discontinuities at each partition interval
endpoint. Placing a continuous prior on θ smooths out the posterior density and hazard curves, yielding amixture of tailfree
processes for F (Jara and Hanson, 2011). For the Kijima models, we suggest an empirical approach: an easily-fit special case
of the model, e.g. a renewal process or the Poisson process, coupled with the underlying parametric Weibull family Gθ is
fitted to obtain the maximum likelihood estimate µθ and the inverse information matrix Vθ associated with µθ . A Gaussian
prior N2(µθ,Vθ) is placed on θ. For example, in the first data analysis in Section 5, on the reliability of valve seats, many
authors have fit Poisson processes; a Poisson process could be used to center θ. Without such prior knowledge, the first
failures of all systems (i.i.d. samples) can be used for a parametric inference on θ.

Note that there is little difference between the standard Polya tree prior and the tailfree process prior for the distribution
function of the baseline hazard. Since we use adaptive updating of the logit-transformed conditional probabilities
(Section 3.1), it is slightly easier to fit the tailfree version rather than the Polya tree version.

2.2.2. Priors on β

We recommend Zellner’s g-prior (Zellner, 1983) on β, a ‘‘reference informative prior’’. g-Prior can be used to take
into account the correlation among the predictor covariates and has many advantages, as commonly seen in variable
selection and linear or nonlinear regressions (Bové and Held, 2011; Marin and Robert, 2007; Fouskakis et al., 2009). Let
Wj = (w′

j1, . . . ,w
′

jnj
) andWm∗×d = (W′

1, . . . ,W
′
m)′ where m∗

=
m

j=1 nj. g-Prior for β is then

π(β) ∼ Nd

0, gm∗(W′W)−1 .

To avoid choosing g , one can assign g−1 a gamma prior Γ (ag , bg). When ag = bg = 1/2, the prior on β is a multivariate
Cauchy distribution (Zellner and Siow, 1980).

In our simulations, we use a g-prior for the logistic link and obtained excellent performance. We found that the g-prior
improves the overall mixing of MCMC chain for both links, but an uninformative prior (π(β) ∝ 1) for the logistic link leads
to extremely poor MCMC mixing in many data sets. For the exponential link function, we found that uninformative prior
shows pretty good and stable performance.

3. Posterior inferences

3.1. MCMC computing

MCMC is used to obtain posterior inferences. The likelihood L is defined in (3) and the prior on β is discussed in
Section 2.2.2. Recall that we propose a mixture of tailfree processes prior on F with partitions capped off by J . The prior
on θ is defined at the end of Section 2.2.1; the prior on c is Γ (ac, bc), and the prior on g−1 is Γ (ag , bg). Let E0 = {ϵ =

ϵ1 · · · ϵj−10, j = 1, . . . , J}. Each λϵ is assigned a normal prior as detailed in (4). The posterior is then proportional to

π(β, λϵ, c, g, θ|data) ∝ L · π(β)Γ (c|ac, bc)Γ (g−1
|ag , bg)π(θ)


ϵ∈E0

N


λϵ|0,
2
cj2


. (9)
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Parameters {β, λ(ϵ), ϵ ∈ E0, θ} are updated using random-walk Metropolis–Hastings updates (Tierney, 1994). We build
two blocks to update these parameters. Let b1 be a vector of all {λϵ, ϵ ∈ E0}with dimension 2J

−1 and b2 = (β, θ). Gaussian
random-walk proposals are used for the two blocks

b′

1 ∼ N(b∗

1,V1) and b′

2 ∼ N(b∗

2,V2),

where b∗

1 and b∗

2 are the latest accepted values for b1 and b2. We have found automatic tuning of V1 and V2 to work
very well in practice (Haario et al., 2005) leading to proposal acceptance rates in the 20%–50% range as typically desired.
Specifically, let the sequence b(1)

1 , b(2)
1 , . . . be the states of the Markov chain for b1. When deciding the t-th state b1, we

sample b∗

1 ∼ N(b(t−1)
1 ,V(t)

1 ) with

V(t)
1 =


V(0)
1 , t < t0

sVar

b(1)
1 , . . . , b(t−1)

1


+ s0Ip, t > t0

where p is the dimension of b1, s is recommended to be 2.42/p, s0 is a small constant, V(0)
1 is the initial covariance of the

proposal distribution and Ip is an identity matrix. A similar automatic tuning procedure applies to b2. The parameter c is
updated through the full conditional distribution

p(c|λ) ∼ Γ

(ac + 2J−1
− 1/2), bc +


ϵ1ϵ2···ϵj∈E0

λ2
ϵ1ϵ2···ϵj

j2/4

 .

The full conditional distribution for g−1 given the remaining parameters is Γ (ag + 1, bg + β′W′Wβ/2m∗
+ bg). FORTRAN

90 codes for fitting the models in this paper are available from the first author, upon request.

3.2. Model comparison

We compare models using log pseudo-marginal likelihood (LPML) (Geisser and Eddy, 1979), a measure of a model’s
predictive ability and the deviance information criterion (DIC) (Spiegelhalter et al., 2002), amodel selection criterion related
to AIC but for use with Bayesian models. Both are easy to compute based on the MCMC output.

Let 2 = (λ, θ, β) and tnj+1,j = τj. By definition,

LPML =

m
j=1

nj+1
i=1

log{p(tij|t−ij)},

where p(tij|t−ij) is the predictive density (δij = 1) or survival probability (δij = 0) for tij based on the remaining data, p(·|t−ij),
evaluated at tij. This is called the ij-th conditional predictive ordinate (CPO) statistic, and measures how well tij is predicted
from the remaining t−ij through the model. For system j that has events at 0 < t1j < t2j < · · · < tnj+1,j, we compute the
predictive density or survival at tij based on failure and maintenance history for this system during time periods (0, ti−1,j]

and [ti+1,j, τj], plus partial information during (ti−1,j, ti+1,j) that a certain repair was performed at tij, plus the information
from other systems. That is, to predict p(tij|t−ij), a repair is still assumed to be done at tij. The LPML simply aggregates the log
of these. For this type of prediction, we are able to share the same form of computing as recommended by Gelfand and Dey
(1994). As stated in Section 3.1, the likelihood contribution of failure at tij depends on repair times and their effectivenesses
before tij for system i, i.e. tik,Dik, k = 1, . . . , j − 1. Conditional on Θ , the joint likelihood is

m
j=1

nj+1
i=1 p(tij|t1:i−1,j, Θ).

Following Gelfand and Dey (1994), we have

p(tij|t−ij) =


p(tij|t−ij, Θ)π(Θ|t−ij)dΘ

=


p(tij|t1:i−1,j, Θ) ·


l≠j

nl+1
k=1

p(tkl|t1:k−1,l, Θ) ×

nj+1
k≠i

p(tkj|t1:k−1,j, Θ)π(Θ)

 
l≠j

nl+1
k=1

p(tkl|t1:k−1,l, Θ) ×

nj+1
k≠i

p(tkj|t1:k−1,j, Θ)π(Θ)dΘ

dΘ

=


1

p(tij|t1:i−1,j, Θ)
π(Θ|t)dΘ

−1

.

The LPML is then estimated from the MCMC iterates by

LPML = −

m
j=1

nj+1
i=1

log


1
s

s
k=1

1
p(tij|t1:i−1,j, 2(k))


, (10)

where 2(k)
= {λ(k), θ(k), β(k), k = 1, 2, . . . , s} are iterates from MCMC outputs of all the parameters.
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By definition,

DIC = 2E[D(2|y)] − D(2),

where D(2) = −2 log[L(2)] + C, L(2) is the likelihood and C is a constant canceled in model comparison. Conditional
expectation E[D(2|y)] is typically estimated by averages of D(2) over posterior samples of 2; 2 in D(2) is commonly
chosen as the posterior mean of 2.

3.3. Relaxing the linearity assumption

In this section, we generalize the linear predictor to a flexible additive structure. For simplicity, consider three covariates
in the regression: an intercept, a discrete covariate wij1, and a continuous covariate wij2. A generalized additive model with
the exponential link assumes

log(Dij) = β0 + β1wij1 + h(wij2), i = 1, . . . , ni, j = 1, . . . ,m.

We approximate the unknown function h(x) using B-splines, i.e.

h(x) =

M
l=1

blBl(x),

where {Bl(·)} are quadratic B-spline basis functions, defined in De Boor (2001), with support (a, b), the observed range of
wij2. Since the space spanned by these functions includes the constant term, we let one B-spline coefficient be zero (Gray,
1992) – we choose bM = 0 – under which h(x) equals the constant zero if and only if all the B-spline coefficients are equal
to zero. In the following, define b = (b1, . . . , bM−1)

′. Note then h(x) =
M−1

l=1 blBl(x). Define β = (β0, b1, . . . , bM−1)
′. The

g-prior on β is β ∼ NM(0, ng(X′X)−1) where X is the design matrix. The above extension can be fit using the algorithm
developed in Section 3.

For equally-spaced knots,
M−1

l=1 blBl(x) = β1x for some β1 when bl−1 + bl+1 − 2bl = 0 for l = 2, . . . ,M − 2. Define
1 = (b1+b3−2b2, b2+b4−2b3, . . . , bM−3+bM−1−2bM−2) = 8bwhere8 is a (M−3)×(M−1)matrix. SupposeMCMC
iterates for b are b(k), k = 1, . . . , s. To test whether h(x) is linear in x is equivalent to testing the point null H0 : 8b = 0.
Bayes factors against the null hypothesis can be computed using the Savage–Dickey ratio (Verdinelli andWasserman, 1995),

BF ≈
NM−3(0|0, ng8(X′X)−18′)

NM−3(0|m,V)
,

where m = s−1 s
k=1 8b(k) and V = s−1 s

k=1(8b(k)
− m)(8b(k)

− m)′. A larger BF value indicates stronger evidence
against the null hypothesis.

4. Simulations

We perform simulations to examine the proposed models and the Bayesian nonparametric method. Supposem systems
are included in each simulated sample and each system is maintained up to its 5th failure, yielding a total number of events
m∗

= 5m. The associated event (failure) times are recorded as tij, i = 1, 2, . . . , 5, j = 1, 2, . . . ,m. At each event time, a
type of repair is performed with effectiveness according to the Kijima type I or type II model. The degree of effectiveness Dij
is logit(β′wij) or exp(β′wij) wherewij includes wij0 = 1, wij1 a Bernoulli (0.5) and wij2 simulated so that Dij follows uniform
(0, 1). The true baseline distribution is 0.5 Weibull(2, 2) + 0.5 Weibull(2, 4) for simulations in Tables 1 and 3 and has a
corresponding hazard exp(t2/3+ t/3) for simulations in Table 2. Coefficients are set to β = (−1, 1, 1) or (1, −1, 1) and the
sample size is m∗

= 300 or 500. For each setup, 300 datasets are simulated and fitted with the following model and prior
specifications. The baseline distribution F is given the tailfree prior with J = 5, c ∼ Γ (5, 1), and θ ∼ N(µθ,Vθ)whereµθ is
themaximum likelihood estimate of θ based on a parametricWeibull fit of the first failures of all systems and Vθ the inverse
information matrix associated with µθ . Optimization routines in R or SAS give θ and Vθ . For the logistic link, regression
parameter β is given the g-prior N3


0, gn(W′W)−1


with g−1

∼ Exp(1). For the exponential link, the flat prior π(β) ∝ 1 is
used. Following algorithms in Section 3.1, we run 30000 iterations for each MCMC chain and thin the posterior samples by
taking every fifth of them after a burn-in of 10000 iterates. Each chain takes a few minutes with a 3.00 GHz processor.

Simulation results are presented in Tables 1–3 including the average of the posteriormeans over 300 datasets, the sample
standard deviation SSD of the posterior means, the average of the estimated standard deviations ESE and 95% the coverage
probability CP. Based on the simulation results, the true parameters β are estimated with little bias. As the sample size
increases, both SSD and SSE decrease. We also get coverage probabilities close to the nominal level 0.95. For one simulation
setup posterior means for the baseline density and survival functions (gray lines) are plotted in Fig. 1, overlaid with the true
density or survival functions in black lines.

We also perform simulations to examine the additivemodel described in Section 3.3. AssumeDij = exp(β0+β1wij1−w2
ij2)

or logit(β0 + β1wij1 − w2
ij2) where wij1 is sampled from Bernoulli (0.5) and wij2 from uniform (−1, 1). Data are simulated
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Table 1
Summary of simulation studies: f = 0.5 Weibull(2, 2) + 0.5 Weibull(2, 4); link function is logistic.

True n = 300 n = 500
Point SSD ESE 95% CP Point SSD ESE 95% CP

Type I
β0 = −1 −0.92 1.10 1.17 0.95 −1.04 0.75 0.82 0.95
β1 = 1 1.05 1.44 1.69 0.95 1.04 1.03 1.19 0.96
β2 = 1 0.97 0.62 0.73 0.95 0.97 0.43 0.52 0.95
β0 = 1 1.06 1.24 1.56 0.95 1.02 1.07 1.22 0.93
β1 = −1 −0.95 1.30 1.72 0.96 −0.96 1.16 1.28 0.94
β2 = −1 −0.94 0.55 0.74 0.98 −1.01 0.51 0.60 0.95

Type II
β0 = −1 −0.98 0.81 0.89 0.94 −1.02 0.60 0.60 0.92
β1 = 1 0.97 1.19 1.26 0.95 1.00 0.89 0.87 0.93
β2 = 1 1.00 0.48 0.56 0.95 1.01 0.39 0.40 0.95
β0 = 1 1.02 1.01 1.14 0.95 0.96 0.85 0.80 0.93
β1 = −1 −1.08 1.11 1.27 0.96 −0.96 0.89 0.85 0.93
β2 = −1 −1.01 0.50 0.58 0.94 −0.99 0.41 0.40 0.94

Table 2
Summary of simulation studies: r(t) = exp(t2/3 + t/3); link function is logistic.

True n = 300 n = 500
Point SSD ESE 95% CP Point SSD ESE 95% CP

Type I
β0 = −1 −1.00 0.37 0.37 0.96 −1.01 0.29 0.29 0.94
β1 = 1 1.02 0.50 0.53 0.96 1.04 0.39 0.40 0.94
β2 = 1 1.03 0.27 0.28 0.96 1.02 0.20 0.20 0.95
β0 = 1 1.10 0.51 0.54 0.94 1.05 0.38 0.39 0.96
β1 = −1 −1.04 0.53 0.55 0.93 −1.02 0.38 0.40 0.95
β2 = −1 −1.05 0.26 0.29 0.95 −1.03 0.19 0.21 0.97

Type II
β0 = −1 −1.00 0.36 0.34 0.93 −1.02 0.29 0.27 0.93
β1 = 1 0.99 0.45 0.43 0.94 1.02 0.35 0.33 0.93
β2 = 1 1.01 0.22 0.22 0.95 1.02 0.18 0.17 0.94
β0 = 1 1.04 0.36 0.37 0.93 1.01 0.27 0.27 0.95
β1 = −1 −1.04 0.43 0.44 0.94 −1.03 0.31 0.33 0.96
β2 = −1 −1.03 0.21 0.22 0.96 −1.01 0.17 0.17 0.94

Table 3
Summary of simulation studies: f = 0.5 Weibull(2, 2) + 0.5 Weibull(2, 4); link function is exponential.

True n = 300 n = 500
Point SSD ESE 95% CP Point SSD ESE 95% CP

Type I
β0 = −1 −1.09 0.51 0.49 0.92 −1.01 0.37 0.34 0.92
β1 = 1 1.02 0.66 0.75 0.96 1.01 0.57 0.52 0.92
β2 = 1 1.09 0.45 0.52 0.96 1.08 0.41 0.38 0.92
β0 = 1 0.94 0.81 0.86 0.95 0.92 0.58 0.62 0.94
β1 = −1 −1.01 0.71 0.73 0.94 −0.99 0.47 0.51 0.96
β2 = −1 −1.07 0.45 0.50 0.96 −1.02 0.34 0.36 0.94

Type II
β0 = −1 −1.10 0.35 0.35 0.93 −1.01 0.28 0.27 0.91
β1 = 1 0.94 0.51 0.56 0.96 0.98 0.43 0.43 0.92
β2 = 1 1.04 0.34 0.40 0.95 1.04 0.30 0.31 0.94
β0 = 1 0.91 0.62 0.69 0.95 1.02 0.55 0.52 0.93
β1 = −1 −1.00 0.55 0.62 0.97 −1.02 0.50 0.46 0.92
β2 = −1 −1.09 0.40 0.43 0.95 −1.07 0.35 0.33 0.93

from the Kijima type I model with baseline hazard r(t) = exp(t2/3+ t/3). We consider a sample sizem∗
= 1000 and each

setup has 300 replications. We take M = 6 equally spaced quadratic B-splines to model the effect of wij2 and one B-spline
coefficient is set to be zero. Table 4 summarizes estimates for coefficients β0, β1 and Fig. 2 plots the point-wise mean, 2.5%
and 97.5% quantiles of the estimates for the true function h(w) = −w2.
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Fig. 1. Density and survival estimates for the simulated data sets with (a) f = 0.5 Weibull(2, 2)+0.5 Weibull(2, 4) and (b) r(t) = exp(t2/3+ t/3) based
on Kijima type I model; the dark lines are the true density or survival functions and the gray lines are the point-wise posterior means.

Fig. 2. Mean (gray-solid lines), 2.5% and 97.5% quantiles (gray-dashed lines) of the estimates for h(w) based on the simulated datasets from the type I
model with logistic (left) and exponential (right) links. The black solid lines are the true function h(w) = −w2 .

Table 4
Summary of simulation studies: r(t) = exp(t2/3 + t/3); h(wij2) =

5
l=1 blBl3(wij2).

True Logistic Exponential
Point SSD ESE 95% CP Point SSD ESE 95% CP

β0 = −1 −1.09 0.38 0.37 0.93 −1.06 0.23 0.24 0.96
β1 = 1 1.07 0.23 0.21 0.91 −1.07 0.17 0.17 0.92

5. Data analysis

We first consider the dataset analyzed in Lawless and Nadeau (1995) that gives the times of replacing valve seats on
41 diesel engines in a service fleet. A few successive repairs recorded on the same day are deleted. We assume the end of
history-time is independent of the event process, as concluded in Lawless and Nadeau (1995). On the left panel of Fig. 3,
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Fig. 3. Plots for valve seats maintenance data; left panel is the MCF plot for data where ‘+’ is the empirical point estimate and ‘×’ is its 95% confidence
interval, overplayed with estimates of the mean function for NHPP (solid line), Kijima type I (short-dashed line) and Kijima type II (long-dashed line); right
panel is the estimated baseline hazard function for Kijima type I (solid line), Kijima type II (dashed line) and NHPP (dotted line).

Table 5
Summaries of β0 for Kijima type I and type II models for the valve seats maintenance data.

Kijima model J π(c) π(β0) β0(95% CI.) P(β0 > 0) LPML DIC

Type I 4 Γ (5, 1) N(0, 32) 1.11 (−1.73, 3.06) 0.92 −334.0 665.4
5 Γ (5, 1) N(0, 32) 1.07 (−1.79, 2.98) 0.93 −334.9 665.2
4 Γ (5, 1) N(0, 22) 1.08 (−1.47, 2.76) 0.93 −334.0 665.0
5 Γ (5, 1) N(0, 22) 1.04 (−1.48, 2.61) 0.93 −334.1 664.0
5 Γ (10, 1) N(0, 22) 0.96 (−1.78, 2.85) 0.88 −334.9 668.0

Type II 4 Γ (5, 1) N(0, 32) 0.80 (−2.69, 2.89) 0.89 −334.7 667.2
5 Γ (5, 1) N(0, 32) 0.79 (−2.46, 2.66) 0.89 −334.5 666.2
4 Γ (5, 1) N(0, 22) 0.78 (−1.36, 2.23) 0.90 −334.6 666.3
5 Γ (5, 1) N(0, 22) 0.84 (−1.43, 2.39) 0.91 −334.5 665.7
5 Γ (10, 1) N(0, 22) 0.64 (−1.77, 2.27) 0.85 −335.1 669.5

a nonparametric estimate for the mean cumulative function (MCF) (Nelson, 1995) is plotted, where each ‘+’ is a point
estimate of MCF at its corresponding time and ‘×’s are its associated 95% confidence interval. Note that MCF is defined
as E[N(t)]. When the event process is NHPP, MCF equals the mean function

 t
0 r(s)ds. The dataset has been fitted many

times in the literature assuming NHPP. In this work, Kijima type I, Kijima type II, and NHPP models (Dij = 1) are fitted
for the data using the proposed method. The baseline distribution F is given a tailfree prior: J = 4 or 5; c ∼ Γ (5, 1) or
Γ (10, 1); θ ∼ N2(µθ,Vθ) where µθ and Vθ are obtained from a fit of the Poisson process assumingWeibull for the baseline
distribution. For the Kijima models, we choose exponential link for the age reduction factor, i.e. Dij = exp(β0). Two sets of
priors are considered for β0: N(0, 22) and N(0, 32).

Based on the results in Table 5, both Kijima type I and type II models show high probabilities for Dij being greater than 1,
i.e. posterior P(β0 > 0). There is little difference in both estimation of β0 and goodness-of-fit measures (LPML, DIC) when
increasing the tailfree level J . The prior favoring lower c shows slightly better values for LPML and DIC and has some effects
on estimation of β0 due to a less weight of the centeringWeibull family. The prior on β0 with larger variance results in wider
95% credible intervals but the point estimate of β0 remains stable. Under J = 5, c ∼ Γ (5, 1) and π(β0) ∼ N(0, 22), the
estimated baseline hazards r(t) (right panel of Fig. 3) are nondecreasing in general and with slight decreases around 500
days. Interpretation of the age reduction is then related to effectiveness of the repairs, i.e. the repairs have high probability of
beingworse than ‘‘bad as old’’, explaining to some extent the rapid increase of failures around 600 days. To compare data fits,
estimates of E(N(t)) for NHPP, Kjima type I and type II models are also plotted on the left panel in Fig. 3 where estimates for
Kijima types I and II are based on simulated failure times using the posterior means of β0 and the baseline survival function
(Krivtsov, 2000; Veber et al., 2008). The plot shows that MCF estimates based on all three of NHPP, Kijima type I, and type
II interpolate the nonparametric MCF estimates well, except for slight differences in the tail. Under J = 5, c ∼ Γ (5, 1), the
nonparametric fit of the NHPP model has LPML and DIC −336.0 and 666.6 respectively. Little difference can be found in the
goodness-of-fit measures, compared to those in Table 5. Nevertheless, our models provide information on the age reduction
factor which is helpful for understanding the repairs and future modeling. We also fit parametric Kijima type I and II models
assuming Weibull baseline distribution and obtain LPML as −334.6 and −334.7 and DIC as 669.4 and 669.6 respectively.
Therefore, the simpler Weibull family would be an adequate choice for the baseline distribution.
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Table 6
Summary of the coefficients for Kijima type I and type IImodels for Syringe-drivermaintenance data;
J = 5, link function is exponential, estimates are posterior means, and 95% CIs are credible intervals.

Coefficient π(c) Type I Type IIβ (95% CI) β(95% CI)

Γ (10, 1) β ∼ N(0, gn(W′W)−1); g ∼ Exp(1)
β0 (pm) −0.13 (−1.96, 1.13) −0.36 (−0.65, −0.06)
β1 (cm) 1.29 (0.46, 2.31) 0.05 (−0.04, 0.19)
β2 (cost) −0.20 (−0.78, 0.25) −0.02 (−0.16, 0.11)

Γ (10, 1) β ∼ N(0, 32I3)
β0 (pm) 0.04 (−3.47, 2.18) −0.36 (−0.66, −0.07)
β1 (cm) 2.19 (0.67, 4.44) 0.05 (−0.05, 0.19)
β2 (cost) −0.28 (−1.03, 0.31) −0.02 (−0.14, 0.11)

Γ (5, 1) β ∼ N(0, 32I3)
β0 (pm) −0.06 (−4.4, 2.55) −0.34 (−0.63, −0.06)
β1 (cm) 2.25 (0.65, 5.17) 0.04 (−0.05, 0.16)
β2 (cost) −0.29 (−1.16, 0.29) 0.01 (−0.12, 0.13)

Table 7
Goodness-of-fit measures for Kijima type I and type II model for Syringe-driver
maintenance data; J = 5, and link function is exponential.

π(c) π(β) Type I Type II

LPML Γ (10, 1) g-prior −313.2 −319.2
LPML Γ (10, 1) N(0, 32I3) −312.2 −319.1
LPML Γ (5, 1) N(0, 32I3) −311.4 −316.8
DIC Γ (10, 1) g-prior 624.2 631.3
DIC Γ (10, 1) N(0, 32I3) 621.8 631.1
DIC Γ (5, 1) N(0, 32I3) 616.4 627.2

The second dataset includes failures and repairs of 12 syringe-driver pumps (Baker, 1991; Singh, 2011). Most systems are
maintained up until 106months andwe assume that this censoring time is independent of the failure processes. The pumps
receive preventive maintenances (pm mode) and corrective maintenances (cm mode) with 48 pms and 94 cms in total. The
cost for each cm is also available andwe consider it as a covariate interactingwith correctivemaintenancemode only. Denote
w as the covariate vector including: w0 = 1 if the maintenance is pm and 0 otherwise, w1 = 1 if the maintenance is cm
and 0 otherwise and w2 is the cost of the cm repair. Kijima type I and type II models are fitted to the data. The baseline
distribution F is given a tailfree prior: J = 5; c ∼ Γ (10, 1) or Γ (5, 1); θ ∼ N2(µθ,Vθ) where µθ and Vθ are obtained from
a parametric fit of the first events of the 12 pumps. The coefficient vector β = (β0, β1, β2) is considered with g-prior and
other Gaussian priors. We assume the exponential link for both models.

Table 6 shows the point estimates (posterior means) and 95% credible intervals for β. For the Kijima type I model, the
g-prior results in narrower credible intervals for the intercept β0 and shrinks β1 toward zero. For Kijima type II model, there
is little difference in the estimates and credible intervals by using different priors onβ. The effective age reduction factor due
to preventive maintenance in type II models is significantly less than 1, by exponentiating the estimate of the intercept β0,
indicating that preventive maintenances are better than ‘‘bad as old’’ repairs. Baker (1991) also observes that the preventive
maintenances are very effective in maintaining the systems. Type I models does not show strong evidence for β0 less than
zero. Across all fitting specifications, the corrective repairs perform significantly worse than the preventive repairs and the
cost of the corrective repairs shows no significant effect. Table 7 presents estimates of Goodness-of-fit measures LPML and
DIC. Since larger LPML or lower DIC indicates a better fit of the data, the results show that type I models fit the data slightly
better than type II models; Γ (5, 1) yields a better fit than Γ (10, 1).

We also fit the Kijima type I and II models with the underlyingWeibull baseline (c → ∞) and β ∼ N(0, 32I3). The type I
model has LPML−314.6 and DIC 628.7. The type II model has LPML−319.1 and DIC 636.6. The nonparametric Bayesmethod
gives slightly better fits to the data than the parametric Weibull models. The differences are not significant, suggesting
adequacy of the Weibull assumption for the data. Fig. 4 also shows that the parametric estimates for the baseline density
and hazard functions (smooth lines) stay in the credible intervals (dashed lines) of the nonparametric estimates.

Finally, we fit the Kijima type I model with h(w2) modeled by a B-spline as outlined in Section 3.3. Let M = 6 and set
one B-spline coefficient as zero for model identifiability. Now β = (β0, β1, b1, . . . , b5) and let β ∼ N(0, ng(X′X)−1) where
X is the new design matrix and g is fixed at 0.5 or 1. For the tailfree prior, let J = 5 and c ∼ Γ (10, 1). Based on Table 8,
point estimates for β0 and β1 are close to those fitted with linearity assumption for h(w2) but credible intervals are much
wider due to an increased number of parameters. Fig. 5 plots the point-wise estimates (solid lines) and 95% credible intervals
(dashed lines) for h(w2) showing no significant nonlinear trend. Bayes factors for the test of linearity of h(w2) are less than
one and hence the linear assumption is preferred.
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Fig. 4. Plots for Syringe-driver maintenance data for Kijima type I (left) and type II (right) model; solid lines are baseline density (hazard) estimates and
dashed lines are 95% credible intervals. Smooth estimates (dotted lines) are fitted from the parametric Weibull fit.

Fig. 5. Estimate (solid) of h(w2) and its 95% credible intervals (dashed) for type I model with logistic (exponential) link on the left (right) panel; dotted
lines are linear functions, i.e. h(w2) = −0.2w2 on the left panel.

Table 8
Summary of the coefficients for Kijima type I model for Syringe-driver maintenance
data; h(w2) is approximated by a B-spline, estimates are posterior means, and 95% CI
are credible intervals.

Coefficient g = 0.5 g = 1β (95% CI) β (95% CI)

β0 (pm) −0.12 (−1.5, 1.17) −0.04 (−2.12, 4.63)
β1 (cm) 2.02 (−2.02, 8.06) 2.53 (−5.37, 9.43)
β2 (cost) – –
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6. Discussion

We proposed a new semiparametric regression model for recurrent events arising from maintenances of repairable
systems where effectiveness of repairs characterized by covariates are taken into account in the joint modeling. We
generalized the Kijima effective agemodels (Kijima, 1989) by regressing the age reduction factors on covariates. The baseline
distribution is flexibly modeled using a tailfree prior, which generalizes the commonly-used Weibull family allowing for
data-driven flexibility. Logistic and exponential links are proposed for the regression and efficient, adaptive, and easy-to-
implement MCMC is described. The proposed method was illustrated using simulations and two data analyses. We found
useful and interesting interpretations of regression coefficients when examining the effect of covariates on the effectiveness
of repairs. When the link is the exponential function, the proposed semiparametric regression model provides an easy test
for the common assumption of minimal repair (‘‘bad as old repair’’) which is also appealing to practitioners.

The regression parameters are interpretable since an increase or decrease of effective age is closely related to intensity of
the system. However when the hazard of the system is not monotone, the interpretation becomesmore difficult. Finally, we
note that it is also straightforward to generalize our model to include heterogeneous systems by including random system
effects in the linear predictor or times the intensity function.
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