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SUMMARY. This article develops a Bayesian semiparametric approach to the extended hazard model, with generalization to
high-dimensional spatially grouped data. County-level spatial correlation is accommodated marginally through the normal
transformation model of Li and Lin (2006, Journal of the American Statistical Association, 101, 591-603), using a correlation
structure implied by an intrinsic conditionally autoregressive prior. Efficient Markov chain Monte Carlo algorithms are devel-
oped, especially applicable to fitting very large, highly censored areal survival data sets. Per-variable tests for proportional
hazards, accelerated failure time, and accelerated hazards are efficiently carried out with and without spatial correlation
through Bayes factors. The resulting reduced, interpretable spatial models can fit significantly better than a standard additive

Cox model with spatial frailties.
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1. Introduction

The extended hazard (EH) model (Etezadi-Amoli and
Ciampi, 1987; Chen and Jewell, 2001) includes the propor-
tional hazards (PH) model (Cox, 1972; Kalbfleisch, 1978), the
accelerated failure time (AFT) model (Buckley and James,
1979; Komérek and Lessaffre, 2008), and the accelerated haz-
ards (AH) model (Chen and Wang, 2000; Chen, Hanson, and
Zhang, 2014) as special cases. Denote A¢(-) as the baseline
hazard function and z as a covariate vector. The EH model
assumes the individual hazard function

A(1]z) = ro(reP%)e?%. (1)

The more easily interpretable PH, AFT, and AH models occur
as special cases when 8 =0, 8 =y, and y = 0, respectively.
Note that the model also allows for per-variable PH, AFT,
or AH effects. For example, say z = (z1, z2) and consider the
model A(f|z) = Ao(tef1)ef1772. Holding z; constant, zo has
PH interpretation; holding z» constant, z; has AFT interpre-
tation. Such reduced semiparametric models have enhanced
interpretability, separating inference into easily interpretable
parametric (regression coefficients) and nonparametric (base-
line hazard) model components.

Our goal is to analyze large cancer registry data sets, which
typically record each patient’s location up to a district or
county due to patient confidentiality. A common feature of
these data is that the failure times are correlated. There
are two main categories of methods to model spatially corre-
lated areal failure times. One category introduces county-level
frailties to the survival model, which gives conditional inter-
pretations for covariate effects (e.g., Banerjee et al., 2003).
The other category includes marginal methods, which pro-
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Censored data; Gaussian Copula; Intrinsic autoregressive prior; Normal transformation model.

duce “population-averaged” covariate effects, for example, the
marginal method by Cai et al. (2007) through modifications
of the hazard, and the normal transformation model by Li
and Lin (2006), which is a Gaussian copula model. However,
the normal transformation model by Li and Lin (2006) allows
careful modeling of the spatial correlation. Since we seek to
formally test whether simpler models are adequate relative
to the EH model with spatial correlation, frailties complicate
such tests, as two complete sets of frailties need be included,
one for each linear predictor. For example, the EH model aug-
mented with frailties is

wM(1i12) = hoftief =i yer =t

where ¢; is the county subject i belongs to, and for our
data, by, ...,bss and g1, ..., g4 are county-level frailties for
South Carolina. To test that PH is adequate, the hypothe-
ses Hy: B=0,b; =0,j=1,...,46 where j refers to county,
need to be considered; the per-variable tests are even more
complex. In contrast, we show later in the article that the
normal transformation model is more easily implemented and
allows ready interpretation. Li and Lin (2006) consider es-
timation in the PH model for spatially correlated georefer-
enced data. Note that their georeferenced approach does not
work for large areal data sets without significant modification.
We generalize the georeferenced normal transformation PH
model of Li and Lin (2006) to EH with a correlation structure
suitable for areal data, and develop two novel Markov Chain
Monte Carlo (MCMC) schemes for posterior updating. Since
all three PH, AFT, and AH models are formally nested within
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the EH model, Bayes factors are quickly computed using the
Savage—Dickey ratio (Verdinelli and Wasserman, 1995).
Define Y; = ! {1 - eA"(T")} where ®(-) is the standard
normal cumulative distribution function, 7; the random fail-
ure time, and A;(-) the cumulative hazard function for T;. Let
Y = (Y1,...,Y,). Under the normal transformation model in
Li and Lin (2006), Y follows a joint multivariate normal dis-
tribution with mean zero and covariance I'. That is,

Y ~ N(0,T). (2)

The normal transformation model incorporates covariate
effects in A;(+) through (1) and spatial dependence by T. De-
tails of I are presented in Section 3.2.

There has been renewed, recent interest in stably estimat-
ing the EH model. Both Tseng and Shu (2011) and Tong
et al. (in press) consider a kernel-smoothed profile likelihood
(KSPL) approach to fitting the EH model, and also propose
tests to choose among EH, AFT, or PH. The KSPL approach
uses a plecewise-constant baseline hazard function iy (Sinha
and Dey, 1997), with a fixed number of hazard jumps at fixed
locations. It is difficult to generalize their optimization proce-
dure for fitting the EH to the spatial case as the likelihood be-
comes much more complicated and hence cause problems for
kernel-smoothing. Moreover, for big datasets, a large number
of hazard jumps needs to be used because time accelerates
or decelerates in the argument of the hazard function by a
factor e and it is not known a priori what the effective sup-
port of Ay is. For this reason, the baseline hazard should also
have a scale factor to appropriately stretch or shrink Aq(-) as
necessary, depending on the effective support of the baseline
survival. Several parametric families commonly used in sur-
vival analysis, generically Fy, have such scale parameters, for
example, log-logistic and gamma. We generalize these families
via a penalized B-spline model that is centered at the para-
metric hazard in the sense that E{X¢(f)} approximates Aq(t)
over the positive support of the B-spline. The resulting model
behaves like a blend of B-splines and a smoothed gamma pro-
cess that is able to capture a wide variety of density/hazard
shapes, yet remain anchored at a parametric family. More-
over, this penalized B-spline model easily accommodates the
spatial generalization and greatly facilitates the MCMC com-
putation for big data set.

We analyze a large prostate cancer data set from the South
Carolina Central Cancer Registry (SCCCR) for the period
1996-2004; the SCCCR data are described in Hurley et al.
(2009). The SCCCR is a population-based cancer registry cov-
ering the entire state of South Carolina that has data com-
pleteness in excess of 97.5%. Specifically, we investigate racial
disparities in prostate cancer mortality accounting for county-
level spatial dependence among subjects using interpretable
refinements of an EH model.

This article is organized as follows. Section 2 presents the
proposed method for fitting the EH model where the base-
line hazard is flexibly modeled via a novel penalized B-spline
centered at a given parametric family. Section 3 generalizes
the EH model to incorporate spatial dependence on a lat-
tice (county-level) while retaining marginal interpretation. An
analysis of the SCCCR prostrate cancer data using the pro-
posed models is presented in Section 4.
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2. Extended Hazard Model

In the EH model (1), B characterizes the acceleration or de-
celeration of the hazard progression and y characterizes the
change in the relative hazards after adjusting the different
hazard progressions. Let T and C be random failure and cen-
soring times, respectively. Conditioning on a p-dimensional
covariate vector z, we assume T and C are independent. Con-
sider n subjects in the study; each subject is observed with an
event time f; when §; = 1 and is right-censored when §; = 0.
The likelihood based on data D = {(t;, &;, z;)}/_; under model

(1) is

L(B,y, %o()) = H {eylz")ho(eﬁ/z'fi)}a’

1
X exp{—e’lz" / )\O(Ieﬂlz")dt} . (3)
0

Proper priors are required to compute Bayes factors; the most
common choice are normal priors with fixed means and co-
variances. We consider g-priors for g and p, that is,

p(B) ~ Ny (mg. g1n(Z'Z)7");

p(y) ~ Na(my g2n(Z'Z)7),

_ _1 ind.
8113821 ~" Gammal(ag, by), (4)

where Z = (21, ...,2,) and (g, p,) are prior means that use
information on the range of acceleration factors and hazard
ratios in the population. Here, b, is the rate parameter of
the Gamma distribution. Recently, the g-prior has been advo-
cated for nonlinear regression models (e.g., Rathbun and Fei,
2006; Bové and Held, 2011). The g-prior takes into account
the variability and correlation among predictors and can be
quite flexible, compared to typical, diffuse normal priors for
B and y. We have found the g-prior works well in simulations
and data analyses. More on g-priors is discussed in Section 4.

2.1.

B-splines are now a standard tool in modeling hazard func-
tions. They generalize the piecewise constant hazards (first
order B-spline), which have been extensively used in Bayesian
survival analysis (see, e.g., Ibrahim, Chen, and Sinha, 2001).
Existing approaches to modeling hazard functions using B-
splines (e.g., Gray, 1992; Hennerfeind et al., 2006; Sharef et al.,
2010) choose either equispaced knots over the spread of the
observed data or knots at the empirical quantiles of the ob-
served event times. Since we intend to fit the EH model while
accounting for spatial correlation, we develop a simpler, yet
highly flexible approach to knot selection that borrows from
Bayesian nonparametrics.
Assume the baseline hazard function to take the form

Baseline Hazard

ho(t) =Y b;By(0), (5)

where Bii(-), ..., Bi;(+) are kth order B-spline basis functions
expanded over a knot sequence s = (s1, ..., s;) (De Boor,
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2001) and by, ..., b; are positive B-spline coefficients. For an
arbitrary vector s, let s be the jth through kth elements of s.
Set the boundary knots s(1_4y.0 = Ok, and s(y_g).s = 1xSs—k+1-
Let Fy(-) be the cumulative distribution function for A¢(-). Let

P1s---, Pi—k+1 be probabilities between 0 and 1 in an increas-
ing order. Our default choice is p; = jpmax/(J —k+1), j=
1,...,J —k+ 1, where pyax is a constant set to close to one;

let Spax = F‘;I(pmax). Set s; = F,;l(pj), j=1,...,J—k+1.
The proposed method automatically allocates more knots
in regions of higher probability mass under the parametric
family, and it works very well in simulations and our data
analyses. To ensure a positive hazard over (0,00), we as-
sume Ag(f) = Ao (Smax) fOr t > spmax, implying a flat hazard past
where the bulk of the data lie under the parametric model.
Define 5; = lejﬂ s1/(k — 1). By Schoenberg’s approximation
theorem (Marsden, 1972), Ao(t) = ij‘:1 Ao(3;)Byj(t) approxi-
mates Ap(t) over t € (0, Siax) with uniformly bounded error,
that is, MaXo<i<sma,llro(t) = Ae(1)I] =< 2max{|rg(x) — 2e(¥)| :
|x — y| < min{smax/+/2k — 2, max;{s;11 — 5;}v/k/12}}.

To center Ag(t) at Ap in our Bayesian framework,
we take the prior mean E(b;) = A¢(5;), specifically b; ~
Gamma (cAg(3;),c) where the scalar ¢ controls the how
stochastically “close” XA is to Ay under the prior and is as-
signed a prior I'(a,, b.). The distribution family F, anchors the
prior shape of Ag. A data-driven prior for 6 is assumed by first
obtaining maximum likelihood estimates 6 under the underly-
ing parametric EH model, and its associated inverse informa-
tion matrix Vy; 0 is then assigned Gaussian prior N(@, agVy)
where ag > 1 is a scalar. The number of B-spline basis function
J is typically chosen between 20 and 40; see Ruppert (2002)
for a detailed discussion on selection of J. In summary,

b; nd Gamma (cAg(5;),¢), j=1,...,J;

¢ ~ Gamma (a., b.); 8 ~ Ny(8, agVy). (6)

Sharef et al. (2010) posit a hazard model that is a weighted
sum of a parametric hazard and a penalized B-spline to induce
shrinkage toward a specified parameter target. In contrast, the
prior we suggest directly shrinks the B-spline toward a para-
metric target. The parametric target both centers inference
and also guides knot locations.

2.2. MCMC Sampling

Denote S and S¢ as the sets of observed and censored subjects,
respectively. For notational simplicity, we omit k in By;. To fa-
cilitate the sampling of b, we follow Lin and Wang (2011), and
introduce binary latent variables {u,-_, e{0,1},j=1,..., J}
for uncensored subjects. Let w; = (us1,...,u;;) for i € § and
u = (u;,i € §). The augmented likelihood LA(B, y, b, 8, u) is

H {eylzi H [bij(eﬂ,zili)} o 1 (Z ujj = 1) }

ieS 1 j=1

n i J
X exp{—Ze”lz’/ ijBj(teﬂ/z")dt} (7)
i—1 0 j=1

315

where I(-) is an indicator function. The joint posterior
p(B,y,b,0,c, g1, g2|D) following the augmented likelihood (7)
and priors (4) and (6) is proportional to

L*(B.7.b.,6,w)p(Blg:)p(v1g2)p(8) p(c) p(g1)p(g2) [ | p(b116. ).

(®)

where b = (by, ...
follows.

Step 1: Update the blocks {8, y}, 0, ¢ separately using adap-
tive Metropolis—Hastings steps (Haario, Saksman, and Tam-
minen, 2005).

Step 2: Sample g;* from Gamma(a, + p/2, BZ'ZB/2n + b,)
and g5' from Gammal(a, + p/2, y'Z'ZB/2n + b,).

Step 3: Sample the latent random vectors u; from

. by). One iteration of the MCMC algorithm

b1 Bl (eﬂ/z" ti)

Multinomial ("ﬂ e
Ej:l bij(e zll,‘)

b]B](eﬂlz"l,') )
Y biB(ef ) )

Step 4: Sample B-spline coefficient b; from

n ti
Gamma <Z uij+cho(3;), ¢+ Z e’ / B_,v(teﬂlz")dt> .
i=1 0

ieS

Updating the baseline hazard using the augmented latent
variable vector u and adaptive Metropolis—Hastings algo-
rithms, coupled with a data-driven prior on 6 has given very
efficient MCMC chains. More details on computation time are
presented in the Supplementary Materials.

3. Spatial Correlation

The normal transformation model of Li and Lin (2006) is
extended here to areal data. Relevant articles include Li and
Rahman (2011) and Smith (2013). Both approaches use a mul-
tivariate normal for the transformed responses coupled with
latent data; for them a latent continuous variable underlies a
discrete response, for us a latent censored survival time.

3.1.  Likelihood of the Normal Transformation Model

Under the the normal transformation model (2), Li and Lin’s
(2006) likelihood simplifies to

. 1] [y b,
LBy b.6.1) ‘/ lH ¢<y,->] lH o0 ' ")]

x ¢(y;0.T) ] [ . ©)

ieS¢

where ¢(-) is standard normal density,

[ (Fi(n). i€S
V= { O (Fi(x)), i € §

y=(1,--.,), and T is a positive definite matrix with
diagonal elements being one. Note that this joint density is
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identical to that obtained from a Gaussian copula model
on the X;. It is difficult to integrate out {x;,i € S°} both
theoretically and numerically.

3.2. CAR and ICAR Correlation Structures

In this section, we construct the correlation matrix I' so
that the transformed survival times follow in the spatial
transformation model (2) for areal data, based on intrinsic
conditionally autoregressive (ICAR) model (Besag, York,
and Mollie, 1991; Banerjee, Carlin, and Gelfand, 2004). The
framework developed here allows immediate extension to
conditionally autoregressive (CAR) model and exchangeable
correlation structures as well.

Suppose subjects come from m areal units where some areal
units share boundaries and some do not. Assume W = (w;;)
where w;; = 1 if areal unit i is adjacent to areal unit j, and
w;; = 0 if they are not adjacent. Customarily, w; =0 for
i=1,...,m. Let d; be the total number units adjacent to unNit
i, that is, d; = E;.”Zl wj;. Denote D = diag(d,, ..., d,). Let ¥;;
be a normal random variable for the jth individual in unit
i. Let Y; = (Yn,...,Yy) and Y = (Y),....Y]) where n; is
the number of observations in unit i. Let Y be the vector
of transformed failure times {¥; = ®~1(F(T;)),i=1,...,n},
sorted so that they correspont to the elements of Y. Assume
I' = cov(Y) = cov(Y).

To induce marginal ICAR correlation on Y, first consider
the random effects model:

Y,‘j = (Xl‘-f—E,'j; o= (al,...,ocm)’ ~ N(O, BQB),

i (o o? (10)
€j ~ T |
! Vi + o?
where a,i=1,....m are the random effects,
Q = (w;;) introduces spatial dependence to «, B =

diag(1l/vw11 +02,...,1//@um +02), and €; is the error
term for the jth subject in the unit i, independent of
other error terms and the spatial random effects. Note that
Var(Y;) = 1. Popular models for € include independent
normals (i.e., exchangeable), conditional autoregressive
(CAR) models, ICAR, simultaneous autoregressive mod-
els (SAR), and many others. Assume 7 is a random
vector with 5§ ~ N(0, ). Under the proper CAR model,
nilm_;, ¢ ~ N(r Z?:l win;/wjt, 1/(pw;y)), which implies @ =
¢ 1(D —rW)'. When r = 0, 5, is independent of n; if j # i.
It is difficult to estimate r and ¢ simultaneously, as noticed by
many authors. One way is to fix r = 1, which leads to ICAR
model. However, the implied covariance matrix of » under
ICAR model is improper as D — W is singular. A common
strategy to restore the propriety (without standardization)
is imposing a constraint Z']":l n; = 0 during Gibbs sampling.
In Appendix, we derive the implied covariance matrix under
this constraint and yield cov(n) = ¢™'Q*, where Q* = (};)
only depends on matrices W and D. Then replace w;; by
o}; in B. The implied covariance matrix I under the ICAR
model only involves one unknown quantity o2, that is,
cov(Yy, Yi) = cov(ey, ax) = wj‘k/\/(w; + ¢o?)(w}, + 9o?). De-
note ¢* = po?. A smaller value of ¢* corresponds to stronger
spatial dependence within counties and across counties.
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3.3.
As mentioned in Section 3.1, it is difficult to evaluate the
likelihood function (9). In this section, we introduce a latent
failure time X; for each censored observation. The augmented
likelihood with sampled latent failure time variables {x;,i €
S¢} for the spatial model is

Latent Survival Times Approach

L} (B, y,b,0,T, {x;,i € 5})
_ H fi(t)
ieS ¢(yi)

Note that each y; is a function of # for i € § and a function
of x; for i € S¢. Based on the augmented likelihood (11) and
the priors (6) and (4), MCMC sampling steps 1-3 are similar
as those in Section 2.2, except that now we introduce latent
binary random vector u; for all subjects. Sampling {b, ¢*} is
accomplished as follows.

11 {;((;)) I(xi > ;)| ¢(y;0,T). (11)

Step 4: Propose bjew) from
n n 1
Gamma Z u; +cho(5;), ¢+ Ze"’z’ / B;(tef=)dt
i=1 i=1 0

and accept it with probability

_ rp—1
i {1 e Ynew' I " ¥new/2 H:l=1 d’()’:)}

e T2 T ¢(Yimew))

where y,ow is new transformed failure time vector correspond-
ing to bjmew). Evaluations of I'! and y'T'y are efficiently
carried out in Appendix.

Step 5: Sample Y;~ N(yily—i, D)I(yi > ' (Fi(1:))) (eg,
Geweke, 1991) where y_; = (y1,.+, Yi_1, Yit1>-+-» ¥n)- Then
set x; = F,1(®(y;)) using bisection or the Newton-Raphson
algorithm.

Step 6: Update ¢* using adaptive Metropolis—Hastings
method.

The latent survival approach is computationally straight-
forward and can accommodate large datasets. However, the
imputation of latent failure becomes inefficient as the num-
ber of censored failure times increases. In the next section, we
propose an alternative approach.

3.4. Random-Effect Approach for Lattice Data

Let ij be the failure time for the jth observation in county
i and 7; be the observed event time for Tj;. Conditional on
random effect «;, the likelihood contribution for a censored
observation in areal unit i is

-1 ~
Sij(igles) = P(Ty; > Tylei) =1 — @ o (Fylty) — e
(02/(wii + 02))
where Fj;(-) is the cumulative distribution function associ-
ated with i, For an observed observation the likelihood
contribution is fj;(f;la;) = —dS;;(%jle;)/9f; Under the ICAR
prior, 02/(w; +02) = ¢*/(w}; + ¢*). Survival probability S;;
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Table 1
Summary characteristics of prostate cancer patients in SC from 1996 to 200/

Covariate n Sample percentage
Race Black 6483 0.32
White 14,116 0.68
Marital status Non-married 4525 0.22
Married 16,074 0.78
Grade well or moderately differentiated 15,309 0.74
poorly differentiated or undifferentiated 5290 0.26
SEER summary stage Localized or regional 19,792 0.96
Distant 807 0.04

increases as «; increases, holding ¢* constant. With the addi-
tion of e, the joint likelihood (9) is written as

11 st

(i,j)es

Li(B,y.b,0,T) =

o )doy .. day,,

X H Sl‘j(iij|di)P(dl, N

(i.))ese

(12)

where P(a1, ..., o) is the joint density of . The dimension of
integration in (12) is typically much lower than that in (10) for
highly censored data. The sampling steps for b and a1, ..., a),
are carried out through adaptive Metropolis—Hastings steps.

4. Data Analysis

In our supplementary materials, we include simulations vali-
dating our approach to the EH and spatial EH models. The
latter is fitted using the latent survival times approach. For
the simulated data, model parameters and the survival func-
tions are estimated with low bias and coverage probabilities
for model parameters are consistently close to the nominal
levels. The 95% credible intervals for the estimated survival
functions contain the true functions when choosing Fy to be
either log-logistic or log-normal.

Using the proposed methods, we now analyze SCCCR
prostate cancer data for the period 1996-2004. Covariates at
diagnosis include county of residence, age (standaradized in

Mortality rate

the analyses), race, marital status, grade of tumor differentia-
tion, and SEER summary stage. Table 1 provides summaries
for the categorical covariates. There are n = 20, 599 patients
in the dataset after excluding subjects with missing informa-
tion; 72.3% of the survival times are right-censored.

One purpose of the study is to quantify racial disparity
in prostate cancer survival, adjusting for the remaining risk
factors while accounting for the county where the subject
lives in. We expect patients residing in the nearby counties
to be correlated due to similarities in access to health care
and socioeconomic factors. Mortality rates (percentages of
death) for each county based on the SCCCR, prostate can-
cer data for the period 1996-2004 are mapped in Figure 1,
which suggests strong spatial patterns in the northwestern
and eastern parts of South Carolina. A test for the PH as-
sumption using methods proposed in Grambsch and Therneau
(1994) yield a global p-value less than 0.01, that is, PH is
rejected. We first fit the EH model with the following spec-
ifications: Fy is the log-logistic distribution, which provides
the best fit to a parametric PH, AFT, or EH model com-
pared to fits using other commonly used parametric hazard
families, § ~ N(0, ay%;) where 6 and %, are obtained under
the underlying log-logistic model, B ~ N(0, g1n(Z'Z)™ ), y ~
N(0, gon(Z'Z)71), g7t g5° g~ Gamma(ag, b,), a; = b, = 0.1,
ag = 1000, a. = b, = 0.1, and J = 30.

Hanson, Branscum, and Johnson (in press) explore the use
of the g-prior in a generalized linear model setting in detail.
They view the g-prior as a population-averaged prior and de-
tail its use in providing informative prior information on ob-

PH ICAR frailty

Marginal reduced model random effects

—~
(¢
~

325 330 335 340 345 350

T T T T T
-82 -81 -80 -79

Figure 1. Map of (a) mortality rate, (b) ICAR frailties in the spatial PH model and (c) random effects in the marginal
reduced model for the SCCCR data. Larger values of frailties in (b) correspond to higher risk of hazard function; larger values
of random effects in (c) are related to higher survival probabilities.
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Table 2
Summary of fitting EH, the reduced model, AFT, and PH; % indicates LPML—21,000 and DIC—42,000
AFT PH PH + additive age

Covariates EH Reduced B=y B=0 B=0
Age B1 0.50 (0.48,0.52) 0.48 (0.46,0.50) 0.48 (0.45,0.51) -

Y1 0.45 (0.42,0.49) =5 0.65 (0.62,0.68) -
Race Bo 0.18 (0.15,0.21) 0.20 (0.16,0.21) 0.18 (0. 15 0.22) — -

Vo 0.18 (0.12,0.24) 2 = Ba 0.26 (0.21,0.32)  0.26 (0.20,0.31)
Marital status B3 —0.06 (—0.11, —0.02) —0.05 (—0.09, —0.00) 0.26 O 21,0.30) - -

V3 0.35 (0.29,0.40) 0.33 (0.28,0.40) 0.33 (0.27,0.39) 0.31 (0.26,0.37)
Grade Ba 0.03 (—0.02, 0.08) Bs=0 0.27 O 22,0.32) - -

V4 0.36 (0.29,0.41) 0.37 (0.31,0.43) 0.38 (0.32,0.44) 0.37 (0.33,0.43)
SEER stage Bs 3.19 (2.80,3.53) 3.27 (2.79,3.57) 1.50 (1.41,1.59) - -

Vs 1.02 (0.83,1.20) 1.00 (0.82,1.19) 1.56 (1.47,1.64) 1.57 (1.19,1.65)
LPML* —161.0 —162.0 —206.5 —242.5 —231.9
DIC* 267.7 270.7 366.0 443.0 412.8

servables of interest. For us, these are the acceleration factors
e#i and hazard ratios e%. The simulated 60% (20-80%) cred-
ible intervals for age, race, marital status, grade, and SEER
stage using the g-prior are (—24, 24), (—50, 49), (—52, 58), and
(—53,50), and (—117, 146) for our data. These prior ranges
for the log-acceleration factors and log-hazard ratios under
the g-prior allow for very weak or very strong covariate ef-
fects.

For all analyses we take a burn-in of 2000, followed by
6000 iterates after thinning every other five for the SCCCR
data. The column under EH in Table 2 gives the fitted
results. Tests on null hypotheses Hy : B =0, Hy: y =0, and
Hy : B =y lead to global comparisons of EH to PH, AH and
AFT model, respectively. Let M; denote the model under the
null hypothesis with parameter Y and M, denote EH under
the alternative with parameters (z, Y). Our M; models are
restricted versions of My, for example, when M; is PH, let
=8, Y=(y,b,0,c,g2) and then f1(D|Y,M;)= f2(D|t =
0, Y, M>) where fi1(D|-) and f>(D|-) are the likelihoods of
the data D under models M; and Ms, respectively. The
Bayes factor for comparing models M; and My is BFi5 =
[ A@IT, M)y ()AY/ [ f2(DIY, T, Ma)m2 (Y, T)dYdT, where
m1(Y) and 7o(Y,T) are the prior densities. We assume
71(Y) = m2(Y|T = 0), so the Bayes factor BFi» for com-
paring M; to My is reduced to a Savage-Dicky ratio,
BF,5 = (1t = 0|D)/m2(r = 0) (Verdinelli and Wasserman,
1995) where 75(7|D) is the posterior distribution and ma(7)
the marginal prior distribution of T under My. We use MCMC
iterates to obtain the posterior ordinates based on normal
approximations (Verdinelli and Wasserman, 1995). Similarly,
we can also compute per-variable Bayes factors for testing
Hy:B;=0, Hy:y; =0, and Hp: B; = y; which correspond
to letting v = B;, T =y;, and v = B; — y;, respectively. The
per-variable Bayes factors provide further guidance on
choosing sub-models.

The Bayes factors for globally testing EH versus PH, AH,
and AFT are much greater than 1000, indicating evidence
against those commonly assumed models. Variable-specific
Bayes factors in Table 3 under EH indicate evidence favor-
ing a reduced model with AFT components for age and race,
EH components for marital status and SEER stage, and a PH

component for grade. We compared this reduced model, the
general EH model, AFT, and PH models using the same prior
specifications, except that for PH, knots are fixed and equally
spaced—a common way for fitting PH model (Hennerfeind
et al., 2006). The results are displayed in Table 2. The LPML
and DIC statistics indicate that EH and the reduced model
outperform AFT or PH. We carried out a prior sensitivity
analysis for the EH model; there is very little difference in
parameter estimates, LPML, and DIC for the alternative pri-
ors g;* ~ I'(0.001, 0.001), g _1 ~ T'(0.001, 0.001). We also tried
fitting vaguely flat priors on B and y with little difference.
There is also very little difference when increasing J to 50.
The model appears to be robust to different prior settings for
these data.

We further fit the EH model with spatial dependence (2)
via the random-effect approach described in Section 3.4, due
to a high percentage of censored observations and a large sam-
ple size. The fitted results are presented in Table 4. The Bayes
factors after taking into account spatial correlation are pre-
sented Table 3 under the column Spatial + EH, implying the
same reduced model as that in Table 2 under independence.
Taking into account the spatial correlation significantly im-
proves model fit according to LPML and DIC.

We also fit what might be considered state-of-the-art, a PH
model with ICAR frailties and a B-spline transformation for
age, that is, a partially linear Cox model with spatial frailties
(e.g., Kneib and Fahrmeir, 2007). The nonlinear transforma-

Table 3
Bayes factors for comparing EH to PH, AFT, and AH with
and without spatial correlation

EH Spatial+EH
Covariate PH AFT AH PH AFT AH
Age >1000 0.08 =>=1000 >1000 0.01 >1000
Race >1000 0.01 =>1000 >1000 <0.01 =>1000
Marital status 1.79 >1000 >1000 1.18 >1000 >1000
Grade 0.14 >1000 >1000 0.08 =>1000 >1000
SEER stage >1000 >1000 >1000 >1000 >1000 =1000
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Table 4
Summary of spatial models; * indicates LPML—21,000 and DIC—42,000
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PH+ICAR+-additive age

Covariates Marginal EH Marginal reduced B=0
Age B1 0.50 (0.47,0.52) 0.47 (0.46,0.49) -

Y1 0.46 (0.43,0.49) yi=hH -
Race B2 0.18 (0.15,0.21) 0.20 (0.17,0.22) -

V2 0.17 (0.11,0.23) v2 = B2 0.24 (0.18,0.30)
Marital status B3 —0.06 (—0.10, —0.02) —0.02 (—0.05, —0.00) -

Y3 0.34 (0.28,0.41) 0.33 (0.27,0.39) 0.32 (0.25,0.38)
Grade B4 0.03 (—0.01, 0.07) Bs=0 -

V4 0.36 (0.30,0.42) 0.38 (0.32,0.43) 0.37 (0.32,0.44)
SEER stage Bs 3.16 (2.86,3.34) 2.77 (2.72,2.82) -

Vs 1.10 (0.94,1.26) 1.21 (1 01,1.33) 1.55 (1.46,1.64)
o* 50.1 (19.9,113.7) 54.6 (22.7,120.8) 33.08 (9.2,100.1)
LPML* —142.7 —143.2 —215.7
DIC* 192.4 164.0 332.5

tion of age improves model fit beyond a linear age effect in
PH, and the inclusion of ICAR frailties improves model fit be-
yond the assumption of independence according to LPML and
DIC. However, the independent EH and EH-reduced models
outperform the PH model, even augmented with a nonlinear
transformation of age and spatial ICAR frailties. The ICAR-
normal transformation model improves model fit of EH and
EH-reduced even further. Our findings agree with Zhao, Han-
son, and Carlin (2009) in that the most important aspect af-
fecting model fit and prediction is the overarching model tying
covariates to survival; of lesser importance is the spatial as-
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pect of the model. Here, an EH model with linear effects (and
a more interpretable EH-reduced model) vastly outperforms
the PH model with a nonlinear effect.

The random effects in the marginal EH-reduced model and
the ICAR frailties in the spatial PH model are mapped in
Figure 1. Note that the random effects have opposite inter-
pretation from the PH frailties that smaller random effect
indicates poorer survival. Both plots suggest similar spatial
patterns to the map of mortality rates, however, the latter
two plots adjust for other factors such as race, age, and as-
pects of the diagnosed cancer.

Survival estimates
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Figure 2. Baseline hazard (left) and survival function (right) estimates for the SCCCR data.
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Figure 3. Hazard (left) and survival function (right) estimates for black patients (solid line) and white patients (long-dashed

line). Short-dashed lines are 95% credible intervals.

Based on the fitted results of the reduced models with and
without spatial dependence, white South Carolina subjects di-
agnosed with prostrate cancer in live 22% longer (e%2° ~ 1.22)
than black patients (95% CI is 18-25%), fixing age, stage, and
SEER stage. Note that this interpretation pertains to indi-
viduals randomly selected from any South Carolina county,
that is, is population-averaged. Cox—Snell residual plots (Cox
and Snell, 1968) show major lack-of-fit of the PH model (not
shown) while EH, the EH-reduced model, and AFT show no
lack of fit. Finally, we plot the estimated baseline survival and
hazard functions for PH, EH, AFT, and the reduced model
in Figure 2. To compare the survival probabilities for white
and black patients, in Figure 3 we plot the baseline hazard
and survival function estimates for each race while setting
age at the sample mean and other discrete covariates at the
reference levels. Survival probabilities for black patients are
significantly lower than those for white patients when other
factors are fixed at the same levels. Note that the largest event
time is only 12.2 years.

Since the sample standard deviation of age is 8.47 and
€047/847 ~ 1,054, decreasing age by 1 year increases survival
time by 5.4%. Taking €%3® ~ 1.46 indicates that the hazard
of dying increases 46% for poorly or undifferentiated grades
vs. well or moderately differentiated, holding age, race, and
SEER stage constant. For SEER stage, which has general EH
effects, €277 ~ 16 (AH) and e!?! ~ 3.4 (PH). Those with dis-
tant stage are at least three times worse in one-sixteenth of the
time as those with localized or regional. Finally, in the reduced
model marital status essentially has PH interpretation; sin-
gle (including widowed or separated) subjects are e®3% &~ 1.39
times more likely to die at any instant than married.

In summary, a Bayesian semiparametric method for fitting
the EH model to data on South Carolina subjects diagnosed
with prostate cancer is developed, and further generalized to

include spatially correlated data through a normal transfor-
mation model. A novel B-spline prior on the baseline hazard
is centered at a parametric scale-family, thus allowing base-
line stretching or shrinking as necessary for the EH, AH, and
AFT models. For lattice data, we introduce a marginal cor-
relation matrix based on the ICAR prior to accommodate
spatial correlation and construct two MCMC approaches for
fitting the model. Our findings for the SCCCR data help fur-
ther quantify racial differences in prostate cancer survival as
well as indicate South Carolina counties with higher mortality
for further etiologic research, adjusted for other risk factors.

5. Supplementary Materials

Web Appendix A, referenced in Section 4, and Fortran 90
codes to this Section, are available with this paper at the
Biometrics website on Wiley Online Library.
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APPENDIX

Covariance Matriz of ICAR Model under the Constraint

In the following, we derive the covariance matrix of 5 un-
der the constraint Z';l:l n; = 0. Under the ICAR prior for »,
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p(n) o exp(—gy' (D — W)y/2). Note that

m

7D - W)y = Z wj+’7i2 - Z Z w;iniNj-

(A1)
j=1 j=1 i=1
Under the constraint Z?:l n;=0,let n, =-n—ny—---—
nm—1 and plug it into (A.1), then
m—1
7"(D—-W)y = Z wj+77,'2
j=1
m—1 m—1
=0 (W = Wi — Wi — W)
j=1 i=1
Let D* = diag(wi4, -+, Wim-1)+), W* = (wfj) with wj, =

Wiji — Wijm — Wi — Wipg-- Let 71* = (771’ ) ’7m—1)~ Then under

the constraint

7' (D= W)y =q"(D" = W")p". (A.2)

If county m is adjacent to at least one county, D* — W* is
positive definite and hence cov(y*) = ¢~ 1(D* — W*)~1. Let
E = (D* — W*)~! with elements (&;). Note that cov(n,,, n;) =

_ m—1 _ m—1 m—1
—p 13" &y and var(n,) = —pt 30 ST &, Define

&11 E1m-1 - ZZ:; &1j

: 31 (A.3)
Emfl,mfl _Z};l:l smfl.j
m—1 m—1 m—1
Zj:l Ej,m—l _Zj=1 i=1 Sij

gmfl,l
m—1
ijl En o
The covariance matrix of § under the constraint is ¢~1Q*.

Matriz Inversion

In the following, we find the inverse of T = cov(Y). Let
J,, and Jin; be matrix of ones with dimension n; x n; and
n; x n;, respectively, I,, be an identity matrix with dimen-
sion n; x n;, and 1, be a vector of ones with length n;.
Based on the random effects model (10), I = AXA where

A = blockdiag ( 1/(w11 + 02, -, A/ 1/ (Wnm + az)I,,m),
Jnlwll + In102 Jn1n2w12 Jnlnma)lm
Jngnl @21 J712w22 + In202 ot Jngnma)2m
Z =
Jnmnl W1 Jnmnzwm2 ot Jnm WDmm + In,,, 62

(A.4)
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Note that

T =PQP +0°L,, (A.5)

where P = blockdiag (1,,, ..., 1,,) and n* = ZT=1 n;. Next
we find a singular vector decomposition of P. Define [;; =

i—-1 _ m ~ ’ 1 q/ Y
Zj:l nj, l,‘Q = Zj:iJrl nij, and u, = (0,[1, \/TT]"U’ 01[2) where

0,, is a vector of zeros with length [;. Define U =
(uy,...,u) where w; = 0; fori =1,...,m and w41, ..., Uy
are the orthonormal expansion of ui,...,u,. Define U; =

(ug,...,u,), V=L, So=diag(\/nr, -, /nm), and S=

(Sos Opxnr)’ where 0,5, is a matrix of zero with dimension

m x n*. By singular vector decomposition, P = USV’.
Therefore, ¥ = USQSU’ + ¢21,, = UKU' + 021, where

K*0
K = and
00

niwiy

N2 W12 -+ N0,
A/ N2n1w21 NaW32 cr N2l W2y

VN1 W1 /N N2Wpy2 - - - Ny Wi

Since U is orthonormal and ¥ = U (K + 02L,,) U’, therefore,

2 =U(K+0’L,) U

(K* + 61,1 0 ,
=Y 0 21 v
o (n*—m)x (n*—m)
(K*+021,) ' -0721, 0 B
=U 0 0 U +o In*

and hence X' =U; (K*+021,)"! —072I,) U} 4+ 0~ 21,..
Based on the definitions of K and K*, the determinant of X
can be computed simply as |X| = |K* + 0L, 62"~ Based
on 71,

' =AU, (K +0°L,) ' —07°L,) UJA™ +0 A,
(A.6)
yItly=x ((K* +021,)7" - (I_QI,,,) x+07%y'A %y, (A7)

(i +02)/n; 32

J=li1
our data m = 46. Note that y’A~?y is a simple sum because
A is diagonal.

where x; = y; and x = (x1,...,x,); for



