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Summary. The paper extends the latent promotion time cure rate marker model of Kim, Xi
and Chen for right-censored survival data. Instead of modelling the cure rate parameter as a
deterministic function of risk factors, they assumed that the cure rate parameter of a targeted
population is distributed over a number of ordinal levels according to the probabilities governed
by the risk factors. We propose to use a mixture of linear dependent tail-free processes as
the prior for the distribution of the cure rate parameter, resulting in a latent promotion time
cure rate model. This approach provides an immediate answer to perhaps one of the most
pressing questions ‘what is the probability that a targeted population has high proportions (e.g.
greater than 70%) of being cured?’. The approach proposed can accommodate a rich class of
distributions for the cure rate parameter, while centred at gamma densities.The algorithms that
are developed in this work allow the fitting of latent promotion time cure rate models with several
survival models for metastatic tumour cells.

Keywords: Breast cancer data; Cure rate models; Latent cure rate; Right-censored survival
data; Tail-free process

1. Introduction

Cure rate models have been increasingly used for modelling time-to-event data related to various
types of cancers where a significant proportion of patients are freed of their diseases, i.e. ‘cured’
and thus are long-term survivors. One popular model for this type of data is the mixture cure
rate model of Berkson and Gage (1952) which assumes that the survivor function for the entire
population, denoted by S.t/, is S.t/=π+ .1−π/SÅ.t/, where SÅ.t/ is the survivor function for
the non-cured group and π is the fraction of the population being cured. Typically π is related to
covariates through a standard binomial regression. When the regression parameters are given
improper priors, however, the joint posterior distribution of the parameters of the mixture
model is improper and one resulting issue is that convergence of the Markov chain Monte Carlo
(MCMC) algorithm is not assured. An alternative cure rate model proposed by Yakovlev et al.
(1993) avoids this drawback and was later extensively studied by Chen et al. (1999) and Tsodikov
et al. (2003). We refer to this model as the promotion time cure rate model, which can be derived
as follows. Suppose that an individual in the population has N metastatic tumour cells left at
the beginning of the observation time and assume that N follows a Poisson.θ/ distribution. In
addition, assume that the time to produce detectable metastatic disease for each tumour cell has
a common distribution FT .t/ = 1 − ST .t/. Following these biological assumptions, the time to
observation of a relapse or death from the disease has the survival function
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S.t|θ/=P.T>t|θ/= exp{−θFT .t/}: .1/

The proportion of being cured in this model is S.∞|θ/ = exp.−θ/ and the survival function
for the ‘non-cured’ group is SÅ.t/= [exp{−θFT .t/}− exp.−θ/]={1− exp.−θ/}. We refer to θ as
the cure rate parameter and exp.−θ/ as the cure rate. When risk factors are present, the cure
rate parameter θ has often been modelled by a deterministic function of the risk factors, e.g.
θ= exp.z′ψ/ where z denotes the related risk factors. Ibrahim et al. (2005) gave detailed tech-
nical notes for fitting such models through Bayesian approaches. When a hierarchy of different
populations is present, for example, patients are treated by medical care strategies due to their
clinical characteristics of the disease, the promotion time cure rate model has been extended
to incorporate random effects; see Lopes and Bolfarine (2012) and Gallardo et al. (2016). The
drawback of using a deterministic function of risk factors and random effects is that it assumes
a constant cure rate for each risk group and hence does not account for the heterogeneities
due to unobserved factors in the cure rates. Moreover, it is often of interest to investigate the
predictive probabilities that are associated with each ordinal level of the cure rate for a specific
group. Motivated by the drawbacks of using deterministic functions for the cure rate, Kim et al.
(2009) proposed a latent cure rate marker model and applied the model to a prostate cancer
patient data set. The cure rate in their model is assumed to follow a multinomial distribution
where the probability for each ordinal level is linked to risk factors through logistic regressions.
In this paper, we do not assume a fixed number of ordinal levels for the cure rate but consider
a rich class of factor-dependent continuous distributions for the cure rate. By doing this, we do
not need to specify or estimate the number of levels; instead, we can estimate the density of a
cure rate, given the risk factors. To our knowledge, no work has been done for this case and we
call the corresponding model the ‘latent promotion time cure rate (LPTCR) model’. As it is dif-
ficult to specify a class of arbitrary factor-dependent distributions, we propose to use a Bayesian
non-parametric prior, the mixture of linear-dependent tail-free processes (LDTFPs) prior (Jara
and Hanson, 2011), for the distribution of the cure rate. For the distribution of time to produce
detectable metastatic disease FT .·/ for each tumour cell, the method proposed can accommodate
several survival models, including the proportional hazard (PH) model, the accelerated failure
time (AFT) model and the proportional odds (PO) model. Denote the baseline distribution of
the assumed survival model as F0.·/ on which we place a mixture of tail-free processes prior.
Prominent success has been achieved in applications by Bayesian non-parametric priors, be-
cause of their flexibility in modelling unknown distributions; some other examples include the
Dirichlet process (Ferguson, 1973), Polya tree priors (Lavine, 1992) and Dirichlet process mix-
tures (Escobar and West, 1995). Two main advantages of using tail-free mixtures for our model
are that, firstly, tail-free mixture models are easily used to generalize existing parametric models
in a robust fashion, e.g. tail-free processes have been used for PH modelling (Hanson, 2006),
PO modelling (Hanson and Yang, 2007) and AFT modelling (Hanson and Johnson, 2002).
This is practically appealing for us considering our complicated survival model. Secondly, the
simplicity of the density expression for dependent tail-free mixtures also allows us to obtain the
marginal survival distribution in a simple way by integrating out the covariate-dependent distri-
bution for the cure rate. This also provides efficient MCMC updating and a unified approach to
the PH, AFT and PO survival models. For the LPTCR model with dependent tail-free mixtures
that we outlined above, we develop an MCMC algorithm for estimating the parameters. We
demonstrate its usage in simulations and real data analysis. Compared with the algorithms in
Kim et al. (2009) which were specifically developed for the PH model, our algorithms can fit all
of PH, AFT and PO models.

The rest of this paper is constructed as follows. Section 2 describes the proposed model in
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detail and outlines the LDTFP prior. Section 3 describes the Bayesian MCMC algorithm for
fitting the model. Model comparison criteria are presented in Section 4.1. The model and its
performance will be examined by simulations in Section 4.2 and data analyses in Section 5. We
conclude the paper in Section 6.

2. Model development

2.1. General model
Denote ti as the observed event time for the ith subject and let δi be its right censoring indicator,
i.e. δi = 1 if ti is an observed failure time and δi = 0 if it is right censored. Let FT .·|xi/ be a
cumulative distribution function conditioning on a covariate vector xi. Let θi be the cure rate
for the ith subject, and zi be a covariate vector related to θi. Given θi and FT .·|xi/, the survival
function for the ith subject has the form

Si.t|xi, θi/=P.Ti > t|xi, zi/= exp{−θi FT .ti|xi/}: .2/

The cure rate parameter θi can be assumed to be a deterministic scalar related to zi. For example,
in Ibrahim et al. (2005), θi = exp.z′

iψ/; however, we model it as a continuous random variable
with its distribution changing with zi. Let the density of θ given zi be fθ.θ|zi/ and its cumulative
distribution function be Fθ.θ|zi/. Instead of focusing on one specific survival model for FT .ti|xi/

(Li and Taylor, 2002; Tsodikov et al., 2003; Gu et al., 2011), we consider all the following
commonly used survival models: PH,

hT .ti/=h0.ti/exp.x′
iγ/, .3/

AFT,

hT .ti/=h0{ti exp.x′
iγ/}exp.x′

iγ/, .4/

PO,

FT .ti/

1−FT .ti/
= F0.ti/

1−F0.ti/
exp.x′

iγ/, .5/

where h0.·/ is the baseline hazard function and F0.·/ is the corresponding baseline cumula-
tive distribution function. Given the distributions Fθ.·|zi/ and FT .·|xi/, the marginal survival
function Si.ti|xi, zi/ is computed:

Si.t|xi, zi/=
∫ ∞

0
exp{−θFT .ti|xi/}fθ.θ|zi/dθ .6/

and the marginal density function fi.t|xi, zi/ is

fi.t|xi, zi/=
∫ ∞

0
θfT .t|xi/exp{−θFT .ti|xi/}fθ.θ|zi/dθ: .7/

In equation (7), fT .·|xi/ is the density function of FT .·|xi/. The full likelihood function given
data D ={ti, δi, xi, zi}n

i=1 under the LPTCR model is

L=
n∏

i=1
fi.ti|xi, zi/

δiSi.ti|xi, zi/
1−δi : .8/

We are interested in inference on the unknown distributions fθ.·|zi/ and FT .·|xi/. As men-
tioned in Section 1, we assign an LDTFP prior on the distribution Fθ.·|zi/ and another inde-
pendent mixture of tail-free processes prior on F0.·/. The non-parametric priors allow both
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distributions to have tremendous flexibility while being centred at two parametric distributions:
the gamma distribution for Fθ.·|zi/ and Weibull distribution for F0.·/. The centring feature,
especially in the right-hand tails of the distributions, is appealing, as Tsodikov et al. (2003)
suggested that, since typically few subjects are at risk in the tail of the survival curve after suf-
ficient follow-up, there is a need to model the right-hand tail of the survival curve carefully
and to allow the model to be more parametric in the tail, while also allowing the model to be
non-parametric in other parts of the curve. This suggestion is achieved naturally by the LDTFP
prior.

2.2. A summary of the linear dependent tail-free process prior
The following description outlines an LDTFP prior for F.·|wi/ over domain [0, ∞/ where wi is a
p-dimensional numeric vector based on covariates (see the last paragraph of this section for more
details). Denote Gφ as a parametric cumulative distribution function. Let Π={Π1, Π2, : : :} be
a sequence of partitions of the positive real numbers R+ and let Πj ={B.ε1: : : εj/ : εi ∈{0, 1}, i=
1, : : : , j} be the partition at the jth level, e.g {B.0/, B.1/} at the first level, {B.00/, B.01/, B.10/,
B.11/} at the second level, and so on. Each set in Πj is split into two sets in Πj+1, i.e. B.0/=
B.00/∪B.01/. Following Lavine (1992), the sets are given by quantiles of the centring family:
B.ε1: : : εj/ is the interval [G−1

φ .m=2j/, G−1
φ {.m+1/=2j}] where m is the base 10 representation

of the binary number ε1: : : εj. We also refer to Π as the partition tree and j =1, 2, : : : as the tree
levels.

Define F.A|wi/ to be the probability of any set A given the distribution F.·|wi/. The LDTFP
prior for F.·|wi/ is constructed from the sequence of partitions Π and associated pairwise
conditional probabilities .π.ε1: : : εj−10|wi/,π.ε1: : : εj−11|wi//, assuming thatπ.ε1: : : εj−10|wi/=
1−π.ε1: : : εj−11|wi/=F{B.ε1: : : εj−10/|B.ε1: : : εj−1/, wi}. Let π.ε|wi/={π.ε1: : : εj−10|wi/, j =
1, 2, : : :}. Further an LDTFP prior assumes that random probabilities in π.ε|wi/ are mutu-
ally independent, and random measure F is related to the probabilities through the relations
F{Bφ.ε1: : : εj/|wi}=Πj

i=1π.ε1: : : εi|wi/. Let ε0 represent ε1: : : εj−10 and assume that

logit{π.ε0|wi/}=w′
iν.ε0/, ν.ε0/∼Np[0, {2n=.cj2/}.DTD/−1] .9/

where D is the design matrix, i.e. D= .w1, w2, : : : , wn/T,ν.ε0/ is a vector of regression parameters
and c is a precision parameter. The prior on ν.ε0/ is a modified version of Zellner’s g-prior
(Zellner, 1983), which takes the scale, location and correlation among the predictor variables into
account to standardize and bound prior variability across representative predictor values. Lower
values of c in equation (9) allow mass of F.·|wi/ to move easily from the centring distribution
Gφ. One common choice simply fixes c at small values, e.g. c=1 (Hanson, 2006).

The infinite number of levels in the partition tree Π is usually capped by some fixed level J ,
which yields partitions up to level J , say ΠJ . Furthermore, on partition sets B.ε1: : : εJ / ∈ΠJ

at level J we assume that F.·|wi/ follows the base measure Gφ, i.e., for all measurable A ⊂
B.ε1: : : εJ /,

F{A|B.ε1: : : εJ /, wi}=Gφ.A/=Gφ{B.ε1: : : εJ /}: .10/

We use the notation LDTFPJ .c, Gφ, wi/ for this finite LDTFP prior with cap J . For any F.·|wi/∼
LDTFPJ .c, Gφ, wi/, the survival function S.t|wi/ with respect to F.·|wi/ is given by

S.t|wi/=p{s.t/}{s.t/−2J Gφ.t/}+
2J∑

j=s.t/+1
p.j/, .11/

where s.t/=�2J Gφ.t/	 and �·	 is the ceiling function. Here p.j/, j =1, : : : , 2J , is defined as
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p.j +1/=F{B.ε1: : : εJ /|wi}=
J∏

k=1
π.ε1: : : εk|wi/, .12/

where ε1: : : εJ is the base 2 representation of j. Formula (11) can be obtained from equations
(10) and (12). By differentiating equation (11), the density corresponding to F.·|wi/ is given by

f.t|wi/=2J p{s.t/}gφ.t/, .13/

where gφ.·/ is the density corresponding to Gφ.
On the basis of the notation that was developed above, we assign the following priors on

Fθ.·|zi/ and F0.t/ for the semiparametric LPTCR model:

Fθ.·|zi/∼LDTFPJθ .cθ, Gφ, wi/, .14/

F0.·/∼LDTFPJT .cT , Gλ, 1/, .15/

where Jθ and JT are two integers; cθ and cT are two precision parameters and wi is the vector zi

expanded by an additional intercept and other terms for the continuous variates. Suppose that
zi = zi is a continuous covariate; Jara and Hanson (2011) compared models by using a polyno-
mial expansion (wi = .1, zi, : : : , zk

i /, k = 1, 2), a B-spline expansion .wi = .1,φ1.zi/, : : : ,φk.zi///

and a cosine basis expansion .wi = .1,κ1.zi/, : : : ,κk.zi///. We found that low order polyno-
mial expansions fit well to our simulated data. Let β be the corresponding vector of regression
parameters in equation (9) for LDTFPJθ .cθ, Gφ, wi/, i.e. β is the vectorized expression of the
set {β.ε1: : : εj0/, j = 1, : : : , Jθ − 1}. Let η be the vector of intercepts for LDTFPJT .cT , Gλ, 1/,
i.e. η is the vectorized expression of the set {η.ε1: : : εj0/, j = 1, : : : , JT − 1}. Following the as-
sumption in equation (9) for ν.ε0/, the following priors on β.ε1: : : εj−10/ and η.ε1: : : εj−10/ are
assumed:

β.ε1: : : εj−10/∼Np{0, .2n=j2/.DTD/−1}, .16/

η.ε1: : : εj−10/∼N.0, 2=j2/, .17/

where D is .w1, w2, : : : , wn/T.

2.3. Hyperparameters settings in the linear dependent tail-free process priors
We have found that setting cθ = 1 and cT = 1 provides enough flexibility while speeding up
the convergence of MCMC algorithms. For a sensitivity analysis, we also implement the full
conditional updating of cθ and cT (Jara and Hanson, 2011) in our breast cancer data analysis.
The full conditional distributions are included in Section 3. For the partition caps JT and Jθ, a
conservative rule of thumb was suggested in Jara and Hanson (2011) that J ≈ log2.n=N/ where
n is the sample size and N is typically 5–10. For our simulations and data analysis, we start
from fixing Jθ = 3 and JT = 5. We suggest performing sensitivity analyses by comparing the
goodness-of-fit statistics (see Section 4.1) for different partition caps.

Jara and Hanson (2011) suggested continuous priors on the parameters that are associated
with the centring distributions, φ and λ, to smooth out the jumps in the densities. Let φ=
.log.φ1/, log.φ2//′ and Gφ.·/ be the cumulative distribution function that is associated with
gamma density φ2

φ1=Γ.φ1/xφ1−1exp.−φ2x/. Let λ= .log.λ1/, log.λ2//′ and Gλ.t/ be a Weibull
cumulative distribution function where Gλ.t/=1−exp{−.t=λ2/λ1}. Given a survival model for
FT .t|x/, we suggest fitting the following parametric LPTCR model to construct Gaussian priors
for φ and λ:
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Si.t|xi, θi/= exp{−θiFT .t|xi/},

θi ∼Gφ.·/,
F0.t/=Gλ.t/:

The resulting model has the following marginal survival and density function respectively:

Si.t|xi/=
{

φ2

φ2 +FT .t|xi/

}φ1

, .18/

fi.t|xi/= φ1φ
φ1
2 fT .t|xi/

{φ2 +FT .t|xi/}φ1+1 : .19/

A practical procedure is as follows.

(a) Use the function optim in the R ‘stats’ package to maximize the likelihood (8) where the
marginal survival and density function are in equations (18) and (19).

(b) Obtain maximum likelihood estimatesμφ forφ,μλ for λ, the inverse information matrix
Vφ associated with μφ and the inverse information matrix Vλ associated with μλ.

(c) Place a Gaussian prior N2.μφ, Vφ/ on φ and a Gaussian prior N2.μλ, Vλ/ on λ. We
can also obtain an estimate for the survival regression parameter γ which will be used
as the MCMC starting values for the LPTCR model using linear dependent tail-free
mixtures.

3. Markov chain Monte Carlo methods for implementing the latent promotion
time cure rate model using dependent tail-free mixtures

Given the observed data D={.ti, δi, xi, zi/}n
i=1 and the parameters that are related to the LPTCR

model using linear dependent tail-free mixtures Θ={γ,β,φ,η,λ}, the full likelihood is

L.γ,β,φ,η,λ|D/=
n∏

i=1
fi.ti|xi, zi/

δiSi.ti|xi, zi/
1−δi , .20/

where

Si.t|xi, zi/=2Jθ
2Jθ∑
l=1

pθ.l/
φ
φ1
2

Γ.φ1/

∫ G−1
φ {l=.2Jθ /}

G−1
φ {.l−1/=.2Jθ /}

θφ1−1exp[−θ{FT .t|xi/+φ2}]dθ, .21/

fi.t|xi, zi/=2Jθ
2Jθ∑
l=1

pθ.l/
φ
φ1
2

Γ.φ1/

∫ G−1
φ {l=.2Jθ /}

G−1
φ {.l−1/=.2Jθ /}

fT .t|xi/θ
φ1exp[−θ{FT .t|xi/+φ2}]dθ, .22/

and pθ.1/, : : : , pθ.2Jθ / are functions of β, defined in equation (12). The joint posterior is given
by

π.Θ|D/∝L.γ,β,φ,η,λ|D/π.γ/π.β/π.φ/π.η/π.λ/, .23/

where priors π.β/ and π.η/ are specified in equations (16) and (17) and priors π.φ/ and π.λ/

are detailed in the last paragraph of Section 3. Suppose that the length of γ is q. We let π.γ/ be
Nq.0, 42Iq/ which provides a weakly informative prior centred at zero. Parameters {γ,β,φ,η,λ}
are updated by using random-walk Metropolis–Hastings algorithms (Tierney, 1994) based on
the joint posterior (23). In each iteration of updating γ while the other parameters are fixed
at their latest value .βÅ,φÅ,ηÅ,λÅ/, a new vector for γ is first sampled from the proposal
distribution
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γ′ ∼Nq.γÅ, V/

where γÅ is the last value for γ, and V is a covariance matrix tuned to obtain acceptance rates
in the 20–50% range. The new value is accepted with probability

L.γ′,βÅ,φÅ,ηÅ,λÅ|D/π.γ′/
L.γÅ,βÅ,φÅ,ηÅ,λÅ|D/π.γÅ/

:

The automatic tuning of V in Haario et al. (2005) is used in this paper. Specifically, let the
sequence γ.1/,γ.2/, : : : be the states of the Markov chain for γ. When deciding the tth state γ,
we sample γ′ ∼Nq.γ.t−1/, V.t// with

V.t/ =
{

V.0/, t< t0,
svar.γ.1/, : : : ,γ.t−1//+ s0Iq, t> t0,

where s is recommended to be 2:42=q, s0 is a small constant, V.0/ is the initial variance of the
proposal distribution and Iq is an identity matrix. Similar automatic tuning procedures apply
to β,η,φ and λ.

As mentioned in Section 2.3, instead of fixing cT and cθ, we also allow both cT and cθ to be
random and to be updated through the full conditional distributions with conjugate gamma
priors gamma.aT , bT / and gamma.aθ, bθ/. The conditional posterior distributions are

π.cT |η/∼Γ{.aT +2JT −1 − 1
2 /, bT + ∑

ε1ε2:::εj

η.ε1ε2: : : εj/2j2=4}

and

π.cθ|β/∼Γ{aθ +p.2Jθ−1 − 1
2 /, bθ + ∑

ε1ε2:::εj

β.ε1ε2: : : εj/′D′Dβ.ε1ε2: : : εj/j2=.4n/}:

4. Evaluating the performance of the semiparametric latent promotion time
cure rate models

4.1. Model comparison criteria
We compare models by using the log-pseudomarginal likelihood LPML (Geisser and Eddy,
1979), which is a measure of model predictive ability, and the deviance information criterion
DIC (Spiegelhalter et al., 2002), which is a Bayesian model selection criterion related to the
Akaike information criterion. Both are easy to compute on the basis of the MCMC output. In
what follows, we give the details of their definitions and computational algorithms.

For our model,

LPML=
n∑

i=1
log{p.ti|t−i/},

where p.ti|t−i/ is the predictive probability for ti based on the remaining data t−i. Following the
computing algorithms that were suggested in Gelfand and Dey (1994), we have

p.ti|t−i/=
{∫

1
p.ti|Θ/dΘ

}−1

,

p.ti|Θ/=fi.ti|xi, zi/
δiSi.ti|xi, zi/

1−δi :

LPML is then estimated by
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LPML=−
n∑

i=1
log

{
1
s

s∑
k=1

1

p.ti|Θ.k//

}
, .24/

where Θ.k/ ={γ.k/,β.k/,φ.k/,η.k/,λ.k/} are iterates from the MCMC output of all the param-
eters. When comparing two models, the model with greater LPML suggests a better fit of the
data.

For our model,

DIC=2E[D.Θ|y/]−D.Θ̂/,

where D.Θ/ =−2 log{L.Θ/}+ c, L.Θ/ is the likelihood in equation (20) and c is a constant
cancelled in model comparison. The effective number of parameters of the model is defined as
pD = E[D.Θ|y/] − D.Θ̂/. The conditional expectation E[D.Θ|y/] is typically estimated by an
average of D.Θ/ over the posterior samples of Θ, and the Θ̂ in D.Θ̂/ is commonly chosen as
the posterior mean of Θ. When comparing two models, the model with smaller DIC suggests a
better fit of the data.

4.2. Simulations
We simulate data from parametric LPTCR models to evaluate model performance with respect
to sample size, different survival models for FT .·|x/ and different sampling distributions for a
covariate zi that is related to the cure rate. The parametric LPTCR models that are considered
here assume that

Si.t|xi, θi/= exp{−θiFT .t|xi/},

θi ∼Fθ.·|zi/,

where the baseline distribution F0.·/ is assumed to be a mixture of log-normal distributions:
0:5N{log.t/, 1:5, 0:82}+0:5N{log.t/, 0:5, 0:32}, FT .·|xi/ is related to F0.·/ through the PH, AFT
and PO survival models, and Fθ.·|zi/ is assumed to be a gamma distribution with exp.1+zi/ for
the shape parameter and 2 for the scale parameter. We let xi be bivariate where xi1 takes values
−0:5 and 0.5 with equal probabilities and xi2 is sampled from N.0, 1/. We set the true values of
the regression parameters γ1 and γ2 as 0.5 and −0:5 respectively. To obtain an observation ti,
we firstly sample θi from gamma{exp.1+zi/, 2} and a random number u from the uniform(0,1)
distribution. If u < exp.−θi/ or F−1

T {−log.u/=θi|xi}> 15, we set ti = 15 and δi = 0. Otherwise,
we set ti =F−1

T {−log.u/=θi|xi} and δi =1. Around 35–50% observations are right censored.
We consider two sample sizes, n = 500 and n = 800, and two sampling distributions for zi,

N.0, 0:52/ and Bernoulli(0.5). When fitting the samples to semiparametric LPTCR models, we
consider two values for the tail-free partition cap Jθ of the prior on Fθ.·|zi/: 3 and 4. The
combinations of the scenarios are displayed in Table 1. The semiparametric LPTCR models
that we fit assume that

Si.t|xi, θi/= exp{−θiFT .ti|xi/},

θi|zi ∼Fθ.·|zi/,

Fθ.·|zi/∼LDTFPJθ .1, Gφ, wi/,

F0.·/∼LDTFPJT .1, Gλ, 1/,

where Gφ is a gamma distribution and Gλ is a Weibull distribution. We let wi = .1, zi, z2Å
i , z3Å

i /

for which z2Å
i and z3Å

i are centred values of z2
i and z3

i . The starting values of β and η are fixed
at 0. Starting values for γ,φ and λ are obtained by fitting the parametric models to the data,
which are detailed in Sections 2.2 and 2.3.
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Table 1. Parameter estimates of the simulated data sets†

Model n z Jθ Parameter Mean Mean of Standard Coverage
standard deviation probability

errors of means

PH 500 z∼N.0, 0:52/ 3 γ1 0.518 0.174 0.171 0.943
γ2 −0:501 0.087 0.081 0.957

PH 800 γ1 0.490 0.137 0.137 0.953
γ2 −0:495 0.069 0.070 0.943

AFT 500 z∼N.0, 0:52/ 3 γ1 0.497 0.087 0.101 0.906
γ2 −0:497 0.046 0.055 0.863

AFT 4 γ1 0.494 0.086 0.099 0.890
γ2 −0:500 0.046 0.053 0.917

PO 500 z∼N.0, 0:52/ 3 γ1 0.500 0.204 0.199 0.977
γ2 −0:505 0.104 0.101 0.953

PO z∼ Bernoulli(0.5) γ1 0.519 0.203 0.198 0.963
γ2 −0:502 0.103 0.104 0.963

†True values γ1 =0:5 and γ2 =−0:5.

For each scenario, we simulated 300 data sets and, for each simulated data set, we obtained a
chain of 8000 iterates after a burn-in of 20000 and thinning of every other five iterates. MCMC
diagnostics are presented in section 2 of the on-line supplementary file. For each parameter
in the vector γ, we computed its posterior mean, posterior standard deviation and posterior
95% predictive interval. We summarize the results for the 300 data sets in Table 1 where ‘Mean’
represents the mean of the 300 posterior means, ‘Mean of standard errors’ the mean of the
300 posterior standard errors, ‘Standard deviation of means’ the standard deviations of the 300
posterior means and ‘Coverage probability’ the proportion of predictive intervals which cover
the true values.

Table 1 shows that the posterior mean estimates are fairly close to the true values (within 1
standard deviation of the true values) and the coverage probabilities are close to the nominal
level 95% across the majority of the models specified. When the sample size increases in the
PH model group, the standard deviation estimates decrease but the coverage probabilities stay
around the same. For the AFT model group, the coverage probabilities are a little lower than
the nominal level. The main reason is that the approximation for the covariate-dependent dis-
tribution of the cure rate, using a dependent tail-free process, can be affected by sample size,
censoring rate and fixed level of Jθ. The tail-free prior shrinks the cure rate distribution towards
a gamma distribution, which serves as a parametric guide, but also induces bias when there
is not enough information from the data. Higher Jθ results in more flexible models and hence
reduces bias in estimation. Table 1 also shows that higher Jθ for the AFT model yields better
coverage probabilities. Additional simulation studies for the AFT model (which are not shown
here) where the censoring rate is lower also have higher coverage probabilities. We suggest a
sensitivity analysis with different Jθs in data analysis. Overall, setting Jθ =3 and JT =5 results
in estimation with relatively low bias and good coverage probabilities for the simulations that
are considered here.

We also plot the mean pointwise estimated survival or density function and its 95% predictive
interval in Figs 1(a) and 1(b) for one scenario. The ‘true’ curves correspond to the true functions;
the ‘mean’ line corresponds to the mean of the 300 posterior means; ‘lower quantile’ and ‘upper
quantile’ correspond to the 2.5% and 97.5% quantiles of the 300 posterior means respectively.
The estimated mean functions are fairly close to the true functions. An increase in JT (which is
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Fig. 1. (a) Survival and (b) density estimates of baseline fT .�/ and (c), (d) density estimates of fθ.θjz/ for
the AFT model, nD500, f.θ/Dgamma{exp.1Czi /, 2}, zi �N.0, 0.52/, JT D5 and Jθ D3 ( , true; ,
mean; , lower and upper quantiles): (a) S0.t/ D 1 � F0.t/ estimates; (b) f0.t/ estimates; (c) fθ.θj � 0.5/
estimates; (d) fθ.θj0.5/

not shown here) would also improve the estimations of survival and density functions. Figs 1(c)
and 1(d) plot the estimated cure rate parameter distributions and their 95% predictive intervals
given the value of zs. The true distributions are mostly covered by the predictive intervals. Less
precision in the left-hand tail of each estimated fθ.·|z/ would be expected due to less information
for large cure rate probabilities exp.−θ/.

5. Application to New Mexico ‘Surveillance, epidemiology, and end results’
breast cancer patient data

We analyse a New Mexico ‘Surveillance, epidemiology, and end results’ (SEER) data set for
women who were initially diagnosed with stage III breast cancer during 2000–2012. The recorded
survival time is either time to death from breast cancer or the end of the observation period (right
censored). More than 95% of the patients received surgery and, of those who received surgery,
only 61% received additional radiation treatments. We focus on a two-group comparison in this
study where one group includes the patients who received surgery only (41%) and the other
group includes those who received radiation in addition to surgery (61%). 92:3% of the women
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Fig. 2. Kaplan–Meier estimates of the survival functions for the New Mexico SEER stage III breast cancer
data: (a) estimates by different ethnicity ( , non-Hispanic; , Hispanic); (b) estimates by treatment
( , surgery only; , surgery and radiation)

are either Hispanic white or non-Hispanic white, and other ethnicity groups were excluded in
the analysis. About 41.2% of the patients in the data are Hispanic white (coded 1) and the final
data size is n=801. We consider standardized age at diagnosis ((age − mean of age)/(standard
deviation of age)), ethnicity (Hispanic versus non-Hispanic) and an indicator for treatment
(surgery only versus surgery plus radiation). Fig. 2 gives an illustration of how ethnicity and
radiation affect the survival functions by using Kaplan–Meier estimates. Patients who received
radiation in addition to surgery seem to live significantly longer than those who received only
surgery. There is also some evidence that the non-Hispanic group has a better survival than the
Hispanic group.

We consider LPTCR PH, AFT and PO models with w including an intercept, standardized
age, ethnicity and an indicator for radiation. Using the same mixture of tail-free processes
prior for F0.t/, we fit models with θ= exp.z′ψ/ where z includes an intercept, the indicator for
ethnicity, standardized age and the indicator for radiation. We also fit basic PH, AFT and PO
models which do not consider the cure rate fraction in the population. For the models above,
we fix the mixture of tail-free prior partition caps Jθ = 3 and JT = 5. For each LPTCR model,
we obtain a chain of 8000 iterates after a burn-in of 100000 and thinning every other 50 iterates.
For the other simpler models that we compare, we obtain a chain of 8000 iterates after a burn-in
of 40000 and thinning every other 20 iterates. The acceptance rates for all the parameters are
between 20% and 80% and good convergence is achieved. See the on-line supplementary file for
more diagnostic details. Table 2 illustrates the LPML- and the DIC-values for all the models.
On the basis of the results in Table 2, LPTCR models improve both LPML and DIC over the
models assuming θ= exp.z′ψ/ (especially for PH and PO models) and the models which do not
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Table 2. Model comparisons for the New Mexico SEER stage III breast cancer data†

Model for FT (·) Results for the following cure rate models:

LPTCR θ= exp(z′ψ) No cure rate

LPML DIC LPML DIC LPML DIC

PH −751 1482 .−0:4/ −757 1503 (8.5) −760 1514 (6.5)
AFT −749 1477 (3.0) −750 1488 (11.6) −755 1499 (5.3)
PO −750 1477 .−5:5/ −754 1497 (6.7) −759 1515 (8.4)

†Values in parentheses are the effective numbers of parameters for DICs.
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Fig. 3. Mean estimates ( , surgery; , radiation and surgery) and 2.5% quantiles and 97.5%
quantiles ( ) of the cure rate distributions based on the AFT model for the New Mexico SEER stage
III breast cancer data with age at diagnosis 57 years: (a) Fθ.θjz/ estimates for the Hispanic white group; (b)
Fθ.θjz/ estimates for the non-Hispanic white group

assume a cure fraction in the population at all. Among the PH, AFT and PO models, the AFT
models seem to yield a better fit consistently.

On the basis of the LPTCR AFT model with Jθ=3, we plot the estimated Fθ.·|z/ to compare
the cure rate distribution for patients with and without radiation by ethnicity group in Fig. 3,
while fixing age at diagnosis at its sample mean (57 years). Recall that the proportion of
being cured for patients in a specific population is exp.−θ/. Lower θ indicates a higher cure
rate probability. Fig. 3 shows that both Hispanic white and non-Hispanic white patients who
received surgery and radiation have higher probabilities for high cure rates than those who
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Table 3. Model fitting of the AFT models for the New Mexico SEER stage III breast cancer data

Parameter LPTCR θ= exp(z′ψ) No cure rate

ψ1 (intercept) — 0.076 .−0:337, 0:535/ —
ψ2 (age) — 0.020 .−0:171, 0:212/ —
ψ3 (ethnicity) — 0.597 (0.020, 1.363) —
ψ4 (radiation) — −0:962 .−1:389,−0:543/ —
γ (age) 0.278 .−0:036, 0:475/ 0.337 (0.213, 0.446) 0.357 (0.222, 0.471)
γ (ethnicity) −0:301 .−0:797, 0:329/ −0:399 .−1:098, 0:235/ 0:254 .−0:125, 0:568/
γ (radiation) 0.516 .−0:231, 0:893/ 0.715 (0.452, 0.975) −0:272 .−0:537,−0:064/

received surgery only. The non-Hispanic group seems to have a distribution favouring small θ
and hence favouring a higher cure rate. This also can provide a guide to practical interpreta-
tions. For example, from Fig. 3, given age 57 years at diagnosis and non-Hispanic ethnicity,
the estimated probability of having a proportion of more than 70% being ‘cured’ is 0.132 for
stage III breast cancer patients who have surgery only, whereas it is 0.560 for those who receive
surgery and radiation, given age 57 years at diagnosis and Hispanic ethnicity. The estimated
probability of having a proportion of more than 70% being cured is 0.056 for stage III breast
cancer patients who have surgery only, whereas it is 0.382 for those who receive surgery and
radiation.

For all the AFT models, the estimates of γ and βÅ are presented in Table 3. An equivalent
expression of the AFT model in equation (4) is log.T/=−x′γ+T0 where T0 is the error term.
The LPTCR AFT model estimates that an increase of around 14 years in age at diagnosis
significantly shortened the average time for each remaining tumour cell to produce detectable
metastatic disease by 1.3 years. Meanwhile, ethnicity and radiation do not have a significant
effect on those remaining tumour cells. On the basis of the AFT model without cure rate, an
increase of around 14 years in age at diagnosis significantly shortened the average patient lifespan
by 1.4 years whereas additional radiation significantly prolonged the average patient lifespan
by 1.3 years.

For sensitivity analysis regarding the LPTCR AFT model, we first let Jθ = 4 and obtain
−749 for LPML and 1476 for DIC. Hence we conclude that Jθ=3 is sufficient for modelling the
distribution of Fθ.·|z/. We also let cθ and cT be assigned independent gamma priors gamma.1, 1/,
we obtain −749 for LPML and 1483 for DIC. Compared with the LPML for setting both
precision parameters to 1, little difference is found. We also set cT to be a large value, resulting
in a parametric Weibull model for the survival distribution, in the same spirit of the parametric
AFT promotion time model in Yakovlev and Tsodikov (1996). We obtain −748 for LPML and
1490 for DIC. It suggests that a Weibull model for the survival distribution suffices for the
LPTCR AFT model.

We also compare our LPTCR AFT model with the AFT model with ordinal regression for θ
(Kim et al., 2009). The number of discrete levels G for θ is fixed at 3, 4 and 5. We further specify
the prior means for θs as θ01 =0:4, θ02 =0:7 and θ03 =1 when G=3, θ01 =0:4, θ02 =0:7, θ03 =1
and θ04 =1:8 when G=4 and θ01 =0:4, θ02 =0:7, θ03 =1, θ04 =1:8 and θ05 =2:5 when G=5. We
note that .0:4, 0:7, 1, 1:8/ for G = 4 corresponds to the estimated θs for the four ethnicity-by-
radiation groups based on the cure rate model in Table 2 where θ=exp.z′ψ/. The hyperparameter
c0 is fixed at 2.5, which reflects a vague prior belief. Priors for the ordinal regression parameters
φk, k = 1, : : : , G, are N4.0, 32I4/ and for the AFT regression parameter γ is N3.0, 52I3/. For
each model fit, we obtain 15000 iterates, after a burn-in of 200000 and thinning every other 50.
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We obtain −765, −765 and −766 for LPML and 1484, 1480 and 1475 for DIC. The LPMLs are
significantly lower than that of our LPTCR AFT model though the DICs suggest similar fits.

6. Conclusion

This paper proposes an LPTCR model for data where a proportion of subjects are cured and
the cure rate has significant medical implications. The model proposed is more flexible than
the latent cure rate marker model of Kim et al. (2009) by generalizing the discrete distribution
of the cure rate parameter to a factor-dependent continuous distribution. We use a mixture
of tail-free processes for both the distribution of the cure rate and the survival distribution of
each metastatic tumour cell. The algorithms that were developed in this work allow us to fit
LPTCR with several survival models for the tumour cell. Its flexibility is demonstrated through
the simulations. We hope that the New Mexico SEER breast cancer data analysis provides some
practical interpretations for physicians and patients. C++ code for implementing the algorithms
has been written in the ‘Rcpp’ environment and can be called in R easily. The code is available
on request.
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