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ABSTRACT
Motivated by data gathered in an oral health study, we propose a Bayesian nonparametric approach for
population-averaged modeling of correlated time-to-event data, when the responses can only be deter-
mined to lie in an interval obtained from a sequence of examination times and the determination of the
occurrence of the event is subject to misclassification. The joint model for the true, unobserved time-to-
event data is defined semiparametrically; proportional hazards, proportional odds, and accelerated failure
time (proportional quantiles) are all fit and compared. The baseline distribution is modeled as a flexible tail-
free prior. The joint model is completed by considering a parametric copula function. A general misclassifi-
cationmodel is discussed in detail, considering the possibility that different examiners were involved in the
assessment of the occurrence of the events for a given subject across time. We provide empirical evidence
that the model can be used to estimate the underlying time-to-event distribution and themisclassification
parameters without any external information about the latter parameters. We also illustrate the effect on
the statistical inferences of neglecting the presence of misclassification. Supplementary materials for this
article are available online.

1. Introduction

Considerable attention has been given to estimation of sur-
vival functions and of regression coefficients from a variety of
standard models for univariate and multivariate censored data
(see, e.g., Hougaard 2000; Ibrahim, Chen, and Sinha 2001). For
the analysis of multivariate censored survival data, frailty and
marginal models have been discussed, including versions of the
proportional hazards (Cox 1972), accelerated failure time (AFT;
e.g., Hanson and Johnson 2004), additive hazards (AH; e.g., Lin
and Ying 1994), and the proportional odds (PO; e.g., Hanson
and Yang 2007) models.

These models usually assume that the determination of the
event of interest is done without error which can be unrealistic.
In fact, in many applications the ascertainment of the event of
interest is based on a screening test which may not have perfect
sensitivity and specificity. In this context, the use of standard sur-
vival models can lead to wrong inferences about the distribution
of the event times (García-Zattera, Jara, and Komarek 2016).

Compared to the rich literature on methods for correct-
ing for misclassification in regression models for categorical
data (see, e.g., García-Zattera et al. 2010, 2012, and references
therein), the study of models in the context of time-to-event
data has received much less attention and have been almost
exclusively focused on misclassification and measurement
errors in covariates (see, e.g., Gong, Whittemore, and Grosser
1990). We are only aware of McKeown and Jewell (2010), where
a nonparametric maximum likelihood approach is proposed in
the context of misclassified univariate current status data and
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García-Zattera, Jara, and Komarek (2016), where the AFT frailty
modeling approach is extended to account for misclassification
in the response for multivariate interval-censored data.

Frailty models are one of the most popular approaches to
account for the association structure in time-to-event data.
These models provide useful summary information in the
absence of estimates of a baseline survival distribution and may
be formulated in a parametric or semiparametric fashion. How-
ever, under these models the regression coefficients describe
changes in individual responses due to changes in covariates,
they induce a particular association structure for the clus-
tered variables, and rely heavily on the (conditional or subject-
specific) assumptions in the relationship between the covariates
and the event times (e.g., AFT, PH, or PH), which is not always
inherit in the induced marginal model. Furthermore, an often
overlooked limitation of this approach is that the interpretation
of regression coefficients can be highly sensitive to difficult-to-
verify assumptions about the distribution of randomeffects, par-
ticularly its dependence on covariates. This issue is particularly
relevant for interval-censored data where the degree of available
information to perform diagnostic techniques is rather limited
due to the censoring mechanism.

In this article, we propose a general framework for analyzing
the marginal effects of predictors on the distribution of mis-
measured multivariate interval-censored data. Specifically, we
define the joint distribution of the multivariate time-to-event
variables by combining marginal distributions arising from
standard assumptions on the relationship of the predictors and
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time-to-event responses, and a parametric copula function,
which describes the dependence structure among the event
times. To avoid the potential disadvantages of adopting a fully
parametric probability model, we consider a Bayesian semi-
parametric specification of the marginal distributions, where
the baseline distribution of the event times is modeled using
a Bayesian nonparametric (BNP) prior. Different misclassifi-
cation models allowing for different classifiers for each subject
across examinations are discussed.

The rest of the article is organized as follows. Section 2 intro-
duces themotivating data and research questions. The proposed
model is introduced in Section 3, including the discussion of
aspects associated with its computational implementation. In
Section 4, the performance of the proposedmodel is assessed by
means of simulation studies. The simulated data are also used
to evaluate the effect of neglecting the presence of misclassifica-
tion in the statistical analysis. The proposed model is applied to
our motivating problem in Section 5. A final discussion section
concludes the article.

2. The Dental Research Questions

The Signal-Tandmobiel� (ST) study is a longitudinal prospec-
tive oral health study conducted in Flanders, Belgium, between
1996 and 2001. This study involved a sample of 4468 Flemish
primary school children (2315 boys and 2153 girls). The sam-
ple represents 7.3% of the children born in 1989 in Flanders and
first examined in 1996. At the first examination, the average age
of the children in the sample was 7.1 years, with a standard devi-
ation of 0.4 years. The age of the children at the first examination
varied from 6.1 to 8.1 years.

The children were randomly drawn through a stratified clus-
ter sampling design without replacement. The selection units
were the schools, which were stratified by province and educa-
tional system. Thus, the target population was divided into 15
different strata, comprising the three types of the Belgian edu-
cational system (private, public, and municipal schools) for the
five provinces of Flanders. Schools were selected with a proba-
bility proportional to the number of children in the first year of
primary school. Whenever a school was selected, all children in
the first class of the selected school were included in the sam-
ple. The children were examined on a yearly basis during their
primary school time (between 7 and 12 years of age).

The children were examined annually by one of 16 dental
examiners in a mobile dental clinic on the school premises
and the visit dates for each school were mainly determined
by logistic reasons. Therefore, the number of visits and their
timing were not related with any potential response vari-
able or covariate gathered in the study. Clinical information
was obtained based on visual and tactile observations. They
included information about gingival condition, dental trauma,
presence and extent of enamel developmental defects, tooth
decay, presence of restorations, missing teeth, stage of tooth
eruption, and orthodontic treatment need, all using established
criteria, as recommended by the WHO report in 1987, and
based on the diagnostic criteria for caries prevalence surveys
published by the British Association for the Study of Commu-
nity Dentistry (BASCD; Pitts, Evans, and Pine 1997). Besides
the oral health data, information on oral hygiene and dietary

habits, use of fluorides, dental attendance, medical history,
and social demographic background of the children was also
obtained from questionnaires completed by parents and school
medical centers. For a more detailed description of the ST study,
we refer to Vanobbergen et al. (2000).

One of the main purposes of the ST study was to assess the
marginal effect of covariates on the time-to-caries experience
(CE). Caries lesions are typically scored at four levels of lesion
severity: D4 (dentine caries with pulpal involvement), D3 (den-
tine caries with obvious cavitation), D2 (hidden dentine caries),
and D1 (white or brown-spot initial lesions in enamel with-
out cavitation). CE corresponds to an event indicating whether
a particular tooth is decayed at least D3 level, missing, or filled
due to caries. Teeth extracted for reasons different from caries,
for example, orthodontics, were coded in a differentmanner and
treated as missing values for CE.

CE as just defined is a monotone process. Thus, the existence
of reversals in longitudinal data, that is, teeth or surfaces initially
recorded as being carious and subsequently recorded as caries-
free, provides evidence of the existence of classification errors.
For the teeth considered here, the reversals varied from 1.3% to
3.8% across the study. Diagnosis of CE is surrounded by a num-
ber of challenges. For instance, nowadays, composite materials
can imitate the natural enamel so well that it is sometimes dif-
ficult to spot a restored lesion. Another reason may be that the
location of the cavity, for example, far back in the mouth, ham-
pers the view of the dental examiner. Hence, overlooking CE is
likely to happen in practice, but the dental examiner could also
classify discolorations as CE.

The selected examiners participated every year in training
and calibration sessions, according to the guidelines issued by
the BASCD. At the end of each calibration exercise, the sensitiv-
ity and specificity of each dental examiner vis-a-vis the bench-
mark examiner were determined, yielding a misclassification
table for each examiner for scoring of caries at tooth and surface
levels. The results suggest that some examiners over- or under-
score the true caries status and that the scoring behavior of the
examiners was constant across the study period. It is also impor-
tant to stress that children who participated in the calibration
exercises were not taken at random from the main data, rather a
school was selected with a presumed high prevalence for caries.

Finally, the analyses reported in Section 5 involve the four
permanent firstmolars, that is, teeth 16, 26 on themaxilla (upper
quadrants), and teeth 36 and 46 on the mandible (lower quad-
rants). The numbering of the teeth follows the FDI (Federation
Dentaire Internationale) notation which indicates the position
of the tooth in the mouth. Position 26, for instance, means that
the tooth is in quadrant 2 (upper left quadrant from the view-
point of the dental examiner) and position 6 where numbering
starts from the mid-sagittal plane. The choice of these teeth for
the statistical analyses is primarily based on the relatively non-
negligible prevalence of the disease at this age in this population.

3. The Bayesian Semiparametric Models

Let T(i, j) ∈ R+ be the continuous time-to-event (time to CE)
for the jth unit (tooth) of the ith subject (child), i = 1, . . . ,N,
j = 1, . . . , J. Suppose that the occurrence of the event is
assessed by using a sequence of subject-specific evaluations.
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Let 0 < v(i,1) < v(i,2) < · · · < v(i,Ki) < +∞ be the ordered
examination times for the ith subject, i = 1, . . . ,N, where
Ki is the number of examinations. In a regular interval-
censored data context, the time-to-event T(i, j) is unobserved
but is known with certainty to lie in an interval T(i, j) ∈(
v(i,l(i, j)−1), v(i,l(i, j) )

]
obtained from the sequence of examina-

tions, l(i, j) ∈ {1, . . . ,Ki + 1
}
, where v(i,0) ≡ 0 and v(i,Ki+1) ≡

+∞. However, in our setting the determination of the event is
prone to misclassification and the observed data are given by
the binary variables D(i, j,k), k = 1, . . . ,Ki, indicating whether
the (potentially) error-corrupted evaluation concludes that the
event has occurred by time v(i,k) (D(i, j,k) = 1) or not (D(i, j,k) =
0). An illustration of the observed data-generating mechanism
is given in Appendix A of the online supplementary material.

In the following, set T = (T1, . . . , TN ), where Ti =
(T(i,1), . . . , T(i,J)), i = 1, . . . ,N, is a vector of unob-
served event times, and D = (D1, . . . , DN ), where
Di = (D(i,1), . . . ,D(i,Ki )), D(i,k) = (D(i,1,k), . . . ,D(i,J,k)),
i = 1, . . . ,N, k = 1, . . . ,Ki, is a vector of observed binary
indicators of potentially misclassified event status. We assume
that for each subject and unit, a p-dimensional design vector
including exogenous covariates is recorded, x(i, j), i = 1, . . . ,N,
j = 1, . . . , J. The main aim here is to develop a method to
infer on the marginal dependence of the event times T(i, j) on
covariates x(i, j), where the event times T(i, j) are observed only
through sequences of possibly misclassified binary indicators
D(i, j,k) of the event status. To this end, we first specify marginal
models for the dependence of event times on covariates in
Section 3.1. Second, the link between the observable binary
variables D and unobservable event times T is given by the
misclassification models in Section 3.2. The event times and
the misclassification models induce marginal models for the
observed dataD described in Section 3.3.

3.1. The Semiparametric Time-to-EventModels

Let fx(i,1),...,x(i,J) be the joint density function for the unobserved
time-to-event responses for the ith subject. We build on Sklar’s
theorem (Sklar 1959) and model fx(i,1),...,x(i,J) by using its unique
marginal-copula representation

fx(i,1),...,x(i,J) (t1, . . . , tJ ) = cρ
(
Fx(i,1) (t1), . . . , Fx(i,J) (tJ )

)
⎧⎨
⎩

J∏
j=1

fx(i, j) (t j)

⎫⎬
⎭ ,

where (t1, . . . , tJ ) ∈ R
J
+, cρ is the density of the a copula func-

tion, parameterized by the finite-dimensional parameter ρ, and
Fx(i, j) (t ) and fx(i, j) (t ) denote the marginal cumulative distribu-
tion and density function for the jth unit of the ith subject,
with covariates x(i, j), respectively. A Gaussian copula function
is assumed throughout, such that,

cρ
(
u1, . . . , uJ

) = ∣∣Rρ

∣∣−1/2 exp
{
−1
2
(
�−1 (u1) , . . . , �−1 (uJ))

U ρ

(
�−1 (u1) , . . . , �−1 (uJ))′} ,

where �−1(·) is the inverse cumulative distribution function of
a standardNormal distribution,U ρ = (R−1

ρ − IJ ), IJ is the iden-
tity matrix of dimension J, and Rρ is a correlation matrix.

The PH, AFT, and PO marginal regression models are con-
sidered by expressing the covariate-dependent cumulative dis-
tribution function (CDF), Fx(t ), as

1 − Fx(i, j) (t ) = (1 − F0(t ))exp
{
x′

(i, j)β j

}
, (1)

1 − Fx(i, j) (t ) = 1 − F0
(
exp
{
x′

(i, j)β j
}
t
)
, (2)

and
Fx(i, j) (t )

1 − Fx(i, j) (t )
= exp{x′

(i, j)β j}
(

F0(t )
1 − F0(t )

)
, (3)

respectively, where β j ∈ R
p, j = 1, . . . , J, is a vector of regres-

sion coefficients and F0 is the marginal baseline CDF. Finally, we
assume that, for i = 1, . . . ,N,

Ti | β, ρ, F0
ind.∼ fx(i,1),...,x(i,J) (· | β, ρ, F0) , (4)

where β = (β1, . . . ,βJ ).
There is a rich Bayesian nonparametric (BNP) literature for

robustifying the modeling of a baseline CDF F0 (or equivalently
its hazard function) in the context of univariate andmultivariate
frailty-based models (see, e.g., Müller et al. 2015), including
the use of gamma processes (Kalbfleisch 1978), beta processes
(Hjort 1990), piecewise exponential priors (Ibrahim, Chen,
and Sinha 2001), correlated increments priors (Sinha and Dey
1997), Bernstein polynomials (Gelfand and Mallick 1995), and
tailfree processes (Hanson 2006; Hanson and Yang 2007; Zhao,
Hanson, and Carlin 2009; Hanson, Branscum, and Johnson
2011). Among the BNP approaches, we opted for tailfree pro-
cesses because they allow for the use of the same BNPmodel for
F0 under the different formulations of themodel given by expres-
sions (1), (2), and (3). By placing the three time-to-eventmodels
on common ground, potential differences in fit and/or predic-
tive performance of the models can be attributed to the time-to-
eventmodel assumptions only, rather than to additional possible
differences in quite different nonparametric models or estima-
tion methods. Furthermore, the BNP model can be specified
such that standard parametric models are special cases of the
model.

Wemodel the baseline CDF as a mixture of tailfree processes
prior, centered at the Weibull family. Tailfree processes are
stochastic processes that can be defined to have trajectories
on the space of all probability distributions on a given space
(see, e.g., Freedman 1963; Fabius 1964; Ferguson 1974; Jara
and Hanson 2011). A tailfree random probability measure F0
supported on R+ is defined by allocations of random proba-
bilities to increasingly refined partitions of R+. Let E = {0, 1}
and Em be the m-fold Cartesian product E × · · · × E. Further,
set E∗ =⋃∞

m=1 E
m. Consider the sequence of partitions of R

given by π0 = {R+}, π1 = {B0,B1}, π2 = {B00,B01,B10,B11},
. . ., such that R+ = B0 ∪ B1 and B0 ∩ B1 = ∅, and for each
m ∈ N and every ε = ε1 · · · εm ∈ Em, Bε = Bε0 ∪ Bε1 and
Bε0 ∩ Bε1 = ∅. Assume that Bε0 lies below Bε1 and that for all
ε ∈ E∗, Bε is a left-open right-closed interval unless ε is a string
of ones only. Throughout the article, we use the convention that
ε = ε1 · · · εm−10 = 0 and ε = ε1 · · · εm−11 = 1, if m = 1. Let

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 131



� = ∪∞
i=0πi and further assume that the partitions form a rich

class in the sense that � is a generator of the Borel σ -field of
R+, B ≡ B(R+).

Definition 1. Let � be a sequence of binary partitions as before
and A = {aε : ε ∈ E∗} be a collection of real numbers. A ran-
dom probability measure F0 on (R+,B) is said to be a tail-
free process with parameters (�,A), denoted F0 | �,A ∼
TFP(�,A), if there exist a collection Y = {Yε : ε ∈ E∗} of
[0, 1]-valued random variables such that the following hold:

� The vectors (Y0,Y1), (Y00,Y01,Y10,Y11), . . . , are mutu-
ally independent and with probability law determined by
(a0, a1), (a00, a01, a10, a11), . . . , respectively.

� For every ε = ε1 · · · εm ∈ E∗, Yε1···εm−10 +Yε1···εm−11 = 1
almost surely.

� For every ε = ε1 · · · εm ∈ E∗, the randomprobabilitymea-
sure F0 is related to Y through the relations

F0 (Bε ) =
m∏
j=1

Yε1···ε j .

We consider partition sets in � such that their limits cor-
respond to quantiles of a parametric distribution Gθ , θ ∈ 	,
defined on (R+,B) (Lavine 1992). Specifically, we consider sets
in� of the form Bθ

ε = (lθε , uθ
ε], where lθε = G−1

θ
(k/2m) and uθ

ε =
G−1

θ
{(k + 1)/2m}, with G−1

θ
(·) being the quantile function of

Gθ , and k is the decimal representation of ε = ε1 · · · εm ∈ E∗.
If needed, the notation�θ will be used to make the dependence
of� on the parameters ofGθ explicit. Without loss of generality,
for the rest of the article we assume that the sets are constructed
based on the quantiles of the Weibull distribution, such that
Gθ(t ) = 1 − exp(−(t/η2)η1 ) for t ≥ 0, θ = (log(η1), log(η2)).

Following Jara and Hanson (2011), we consider a logistic-
Normal specification of the tailfree conditional probabilities,
such that for every ε0 = ε1 · · · εm−10 ∈ E∗,

Yε0 = exp{λε0}
1 + exp{λε0} ,

and

λε0 | c, τ ind.∼ N(0, 2/[cτ ( j)]),

where τ ( j) is a nondecreasing known function of j. A common
choice for τ ( j) is j2. The parameter c is a precision parameter;
lower values of c allowmass of F0 tomove easily from the center-
ing distribution Gθ . As c → 0+, E{F0(·)} tends to the empirical
CDF of the data (Hanson and Johnson 2002); as c → ∞, all con-
ditional probabilities go to 0.5 andhenceF0(A) → Gθ(A) a.s. for
every measurable set A. Common choices simply set c at small
values, for example, c = 1.

Under this specification Yε0 approximately follows a
beta(cτ ( j), cτ ( j)) distribution (Jara and Hanson 2011) and the
resulting process closely matches a Polya tree prior (see, e.g.,
Lavine 1992, 1994; Christensen, Hanson, and Jara 2008). As is
usually done for Polya trees priors, the tailfree model is partially
specified, where the tailfree process is terminated at level L and
on sets in the finest partition π θ

L the random F0 matches exactly
the parametric distribution Gθ (Hanson 2006). We typically
consider L ≈ log2(n/M), where n is the sample size andM is 5

to 10 (Hanson 2006). The resulting process is denoted by

F0 | c, θ ∼ TFPL (�θ,Ac) . (5)

Under this prior specification, the density of a realization of the
process is given by

f0(t ) = 2Jgθ(t )
L∏

l=1

Yεθ (t,l),

= 2Lgθ(t )
L∏

l=1

exp
{
λεθ (t,l−1)0

}I{t∈Bθ
εθ (t,l−1)0

}

1 + exp
{
λεθ (t,l−1)0

} , (6)

where t ∈ R+, I{A} is the indicator function for A, εθ(t, l) =
ε1ε2 · · · εl is the set in π l

θ that t is in, and gθ(·) is the density
of a Weibull distribution. This expression can be employed to
derive closed-form expressions for the cumulative distribution
function F0 and to construct the likelihood in different settings.

It may be difficult in practice to specify a single centering
Weibull distribution with which to center the tailfree process;
and once specified, a single centering distribution may affect
inference unduly. One way to mitigate the dependence of the
process on the partitioning sets is to specify a mixture of prior
distributions. Amixture of tailfree processes is induced for F0 by
allowing parameters of the centering distribution Gθ and/or the
precision parameter c to be random, that is,

F0 | c, θ ∼ TFPL(�θ,Ac) and (θ, c) ∼ p(θ, c),

where p(θ, c) refers to the joint prior for θ and c. Smoothness
properties in terms of continuity and differentiability of the den-
sities for F0 under the mixture of tailfree processes carry over
from the results reported by Hanson (2006). One important
property is posterior propriety under improper priors on the
mixing parameter θ, following a simple application of Tonelli’s
theorem.

3.2. TheMisclassificationModels

As in the case of the ST study, suppose now that the evaluation
of the event status at each visit is performed by Q examiners.
Denote by ξ(i,k) ∈ {1, . . . ,Q} the variable indexing the exam-
iner that evaluates all four molars of subject i at examination
time v(i,k), and let ξi = (ξ(i,1), . . . , ξ(i,Ki )) be the vector of indi-
cators of the examiners that score the responses of subject i over
time.We further assume that the scoring behavior of each exam-
iner is the same across the study. Let ηq = (η(q,1), . . . , η(q,J)) and
αq = (α(q,1), . . . , α(q,J)), q = 1, . . . ,Q, be the vectors contain-
ing the unit-specific specificity and sensitivity parameters for
the qth examiner, respectively. Finally, let α = (α1, . . . ,αQ) and
η = (η1, . . . , ηQ) be the matrices containing all sensitivity and
specificity parameters, respectively. In this setting, the misclas-
sification model assumes that

Pr(D(i, j,k) = 1
∣∣T(i, j) ∈ (0, v(i,k)]

) = α(ξ(i,k), j),

Pr(D(i, j,k) = 0
∣∣T(i, j) ∈ (v(i,k),+∞)

) = η(ξ(i,k), j),

and the process is characterized by the following conditional
independence assumptions. Note that assumptions (A.1)–(A.5)
represent natural extensions of the commonly used assumptions
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for the analysis of misclassified binary data (see, e.g., García-
Zattera et al. 2010, 2012).
(A.1) ⊥⊥1≤i≤N Di | T1, . . . ,TN, ξ1 . . . , ξN, η,α, that is, the

observed responsematrices for each subject are indepen-
dent given the true unobserved event times, examiner
indicators, and sensitivity and specificity parameters,

(A.2) Di ⊥⊥D1, . . . ,Di−1,Di+1, . . . ,DN | Ti, ξi, η,α, ∀ i, that
is, the distribution of the observed response matrix for
a subject only depends on his true unobserved time-to-
event vector, the examiners that score his responses, and
the sensitivity and specificity parameters,

(A.3) ⊥⊥1≤k≤Ki Di,k | Ti, ξi, η,α, ∀ (i, k), that is, the observed
response vectors for a subject are independent across
time given his unobserved time-to-event vector, the
examiners that score his responses and the sensitivity
and specificity parameters,

(A.4) ⊥⊥1≤ j≤J D(i, j,k) | Ti, ξ(i,k), ηξ(i,k)
,αξ(i,k) , ∀ i, k, that is, the

observed responses at the kth examination are inde-
pendent given the unobserved time-to-event vector, the
examiner that scores his responses at the kth examina-
tion, and the examiner-specific sensitivity and specificity
parameters,

(A.5) D(i, j,k) ⊥⊥T(i,1), . . . ,T(i, j−1),T(i, j+1), . . . ,T(i,J) |
T(i, j), ξ(i,k), η(ξ(i,k), j), α(ξ(i,k), j), that is, the distribution
of the jth observed variable at the kth examination
only depends on the true unobserved time-to-event
for the same variable, the examiner that scores his
responses at examination k, and the sensitivity and
specificity parameters of this examiner for the jth
variable.

A simplified version of the above defined general misclassifi-
cation model, which assumes unstructured examiner-unit spe-
cific sensitivity and specificity parameters, is to assume the same
misclassification parameters across units for each examiner: for
q = 1, . . . ,Q, η(q, j) = η(q), and α(q, j) = α(q), ∀ j. Extensions of
the general misclassification model can also be considered. For
instance, the model could be extended by including examinee-
specific or examiner-specific characteristics in the misclassifica-
tion parameters, allowing for the understanding of the potential
heterogeneity in the scoring behavior of the examiners. Unfortu-
nately, there is no available information about the specific char-
acteristics of the examiners in the ST study andwe do not pursue
this here. However, tooth position, gender, and age of the exam-
inee are considered in Section 4.2.

Following García-Zattera et al. (2010), García-Zattera et al.
(2012), and García-Zattera, Jara, and Komarek (2016), the fol-
lowing restricted parameter spaces for the misclassification
parameters are considered to avoid identification problems,{(

η(q, j), α(q, j)
) ∈ [0, 1]2 : η(q, j) + α(q, j) > 1

}
,

q = 1, . . . ,Q, j = 1, . . . , J.

3.3. The Implied Statistical Models and Stochastic
Representations

Regardless of the misclassification model, the assumptions
(A.1)–(A.5), along with the joint probability model for the
time-to-event responses (4) and the BNP prior for the baseline

probability distribution (5), imply that the joint probability
model for the observed binary indicators and unobserved
time-to-event variables for each subject is given by

p
(
D1, . . .DN,T1, . . . ,TN

∣∣α, η,β, ρ, c, θ
)

=
N∏
i=1

p(Di | Ti,α, η)p(Ti | β, ρ, c, θ),

=
N∏
i=1

⎧⎨
⎩

J∏
j=1

Ki∏
k=1

p
(
D(i, j,k)

∣∣T(i, j), η(ξ(i,k), j), α(ξ(i,k), j)
)⎫⎬⎭

×
∫

p(Ti | β, ρ, F0)p(F0 | c, θ)dF0,

where

p
(
D(i, j,k)

∣∣T(i, j), η(ξ(i,k), j), α(ξ(i,k), j)
)

=
{
α
D(i, j,k)
(ξ(i,k), j)

(
1 − α(ξ(i,k), j)

)1−D(i, j,k)
}I(T(i, j) ){T(i, j)∈(0,v(i,k)]}

×
{(
1 − η(ξ(i,k), j)

)D(i, j,k)
η
1−D(i, j,k)
(ξ(i,k), j)

}I(T(i, j) ){T(i, j)∈(v(i,k),+∞)} ,

=
k∏

l=1

{
α
D(i, j,k)
(ξ(i,k), j)

(
1 − α(ξ(i,k), j)

)1−D(i, j,k)
}I(T(i, j) ){T(i, j)∈(v(i,l−1),v(i,l)]}

×
Ki+1∏
l=k+1

{(
1 − η(ξ(i,k), j)

)D(i, j,k)
η
1−D(i, j,k)
(ξ(i,k), j)

}I(T(i, j) ){T(i, j)∈(v(i,l−1),v(i,l)]} ,

and p(Ti | β, ρ, F0) is given by fx(i,1),...,x(i,J) (T(i,1), . . . ,T(i,J) |
β, ρ, F0) under each specific time-to-event marginal model
assumption ((1)–(3)). Therefore, the likelihood function for
observed data is given by

p
(
D1, . . .DN

∣∣α, η,β, ρ, c, θ)

=
N∏
i=1

∫
R

J
+
p(Di | Ti,α, η)p(Ti | β, ρ, c, θ, τ )dTi,

=
N∏
i=1

∫
R

J
+

⎧⎨
⎩

J∏
j=1

Ki∏
k=1

p
(
D(i, j,k)

∣∣T(i, j), η(ξ(i,k), j), α(ξ(i,k), j)
)⎫⎬⎭

×
∫

p(Ti | β, ρ, F0)p(F0 | c, θ)dF0dTi. (7)

An alternative stochastic representation of the joint model for
the unobserved time-to-events greatly simplifies the posterior
computation for the proposed models. Under this representa-
tion, the time-to-events are viewed as transformed Gaussian
random variables,

T(i, j) = F−1
x(i, j)

(
�
(
Z(i, j)

))
,

where

Zi = (Z(i,1), . . . ,Z(i,J)
) | ρ

iid∼ NJ
(
0J,Rρ

)
,

i = 1, . . . ,N, with Nd(m, S) denoting a d-variate Normal
distribution with meanm and covariance matrix S, and density
denoted by φd(· | m, S). The joint density implied by this
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transformation is then given by

J∏
j=1

⎧⎨
⎩ fx(i, j)

(
t j
)

φ
(
F−1
x(i, j)

(
�
(
t j
)))
⎫⎬
⎭

×φJ

(
F−1
x(i,1)

(� (t1)) , . . . , F−1
x(i,J)

(
�
(
tJ
)) | 0J,Rρ

)
,

which is equivalent to fx(i,1),...,x(i,J) (t1, . . . , t j | β, ρ, F0). This
distribution can also be viewed as the marginal distribution for
Ti arising from the joint model

p (Ti | Zi,β, F0) p (Zi | ρ) ,

where p(· | Zi,β, F0) is a degenerate probability distribution
arising from

T(i, j) | Z(i, j),β, F0
ind.∼ p(· | Z(i, j),β, F0) = δF−1

x(i,1) (�(Z(i, j) ))(·),

j = 1, . . . , J, with δa(·) being the Dirac measure at a. Based
on this, the data augmented hierarchical representation of the
proposed models, along with the employed prior distributions,
is given by

D(i, j,k) | T(i, j), η(ξ(i,k), j), α(ξ(i,k), j)
ind.∼ p(· ∣∣T(i, j), η(ξ(i,k), j), α(ξ(i,k), j)

)
,

T(i, j) | Z(i, j),β, F0
ind.∼ p(· | Z(i, j),β, F0),

Z(i, j) | ρ
i.i.d.∼ NJ

(
0J,Rρ

)
,(

η(q, j), α(q, j)
) | a(η,0), a(η,1), a(α,0), a(α,1) ind.∼ Beta

(
a(η,0), a(η,1))

×Beta
(
a(α,0), a(α,1))× I

(
η(q, j), α(q, j)

)
{(η(q, j),α(q, j) ): η(q, j)+α(q, j)>1} ,

β | mβ,V β ∼ Np(mβ,V β),

F0 | c, θ ∼ TFPJ (�θ,Ac) ,
θ | mθ,V θ ∼ N2(mθ,V θ ).

A similar hierarchical representation is obtained under the mis-
classification model assuming equal misclassification parame-
ters across variables for each examiner. The model specification
is completed by assuming a prior distribution on the parameters
of the Gaussian copula model ρ, which depends on the param-
eterization of the correlation matrix Rρ. We assume priors on
ρ such that the resulting prior on the correlation matrix Rρ is
uniform on the corresponding space of correlation matrices.

3.4. Main Aspects of the Posterior Computation

Samples from the posterior distribution for the model param-
eters are obtained by using a Gibbs sampler algorithm based
on the augmented posterior distribution described in the pre-
vious section. In this Gibbs sampler, blocks of parameters are
updated using Metropolis–Hastings steps (Tierney 1994) or
directly sampled from the corresponding conditional distribu-
tions. The parameters defining the conditional tailfree prob-
abilities are updated in a single block by using the adaptive
Gaussian random-walk proposal described byHaario, Saksman,
and Tamminen (2001), where the candidate generating covari-
ance matrix is tuned to get acceptance rates in the 20% to 50%
range. The underlying time-to-event variables Zi, i = 1, . . . , n,
the regression parameters β and the parameters of the centering
distribution of the tailfree process θ can be updated in a similar
way.

Assumptions (A.1)–(A.5), along with the assumptions of the
semiparametric time-to-event models for clustered data, imply
that the full conditionals for the misclassification parameters
under the more general misclassification model are truncated
beta distributions given by

η(q, j) | · · · ∼ Beta
(
a(η,0) + n00(q, j), a

(η,1) + n+0
(q, j) − n00(q, j)

)
× I
(
η(q, j)

)
{η(q, j) :η(q, j)>1−α(q, j)} ,

and

α(q, j) | · · · ∼ Beta
(
a(α,0) + n11(q, j), a

(α,1) + n+1
(q, j) − n11(q, j)

)
× I
(
α(q, j)

)
{α(q, j) :α(q, j)>1−η(q, j)} ,

where

n00(q, j) =
N∑
i=1

Ki∑
k=1

I
(
D(i, j,k),T(i, j)

)
{D(i, j,k)=0,T(i, j)∈(v(i,k),+∞)} I

(
ξ(i,k)
)
{q} ,

n+0
(q, j) =

N∑
i=1

Ki∑
k=1

I
(
T(i, j)

)
{T(i, j)∈(v(i,k),+∞)} I

(
ξ(i,k)
)
{q} ,

n11(q, j) =
N∑
i=1

Ki∑
k=1

I
(
D(i, j,k),T(i, j)

)
{D(i, j,k)=1,T(i, j)∈(0,v(i,k)]} I

(
ξ(i,k)
)
{q} ,

and

n+1
(q, j) =

N∑
i=1

Ki∑
k=1

I
(
T(i, j)

)
{T(i, j)∈(0,v(i,k)]} I

(
ξ(i,k)
)
{q} .

Similar expressions are obtained for the model assuming the
same examiner-specific misclassification parameters for each
variable.

The updating scheme for the association parameters of the
Gaussian copula model, ρ, depends on the parameterization
of the correlation matrix Rρ. Under an unstructured correla-
tion matrix, parameter expansion for data augmentation strate-
gies can be used (Liu and Wu 1999; van Dyk and Meng 2001;
Imai and van Dyk 2005). A compound symmetric parameter-
ization, with off-diagonal elements equal and positive, allows
for a simpler marginal joint likelihood of the proposed mod-
els. Specifically, a compound symmetry parameterization of the
correlation matrix can be obtained from the stochastic repre-
sentation Zi j = γi + εi j, where γi | ρ

iid∼ N(0, ρ) and εi j | ρ
iid∼

N(0, 1 − ρ). Thus, given γi, the conditional CDF for T(i, j) is
given by

Fx(i, j) (t | γi) = �

(
�−1(Fx(i, j) (t )) − γi√

1 − ρ

)
,

and p(Di | γi,α, η,β, ρ, F0) is given by

J∏
j=1

{Ki+1∑
k=1

A(i, j,k)

[
�

(
�−1(Fx(i, j) (v(i,k))) − γi√

1 − ρ

)

−�

(
�−1(Fx(i, j) (v(i,k−1))) − γi√

1 − ρ

)]}
, (8)
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whereA(i, j,k) =∏Ki
l=k α

D(i, j,l)
(ξ(i,l), j)(1 − α(ξ(i,l), j))

1−D(i, j,l)
∏k−1

l=1 η
1−D(i, j,l)
(ξ(i,l), j)

(1 − η(ξ(i,l), j))
D(i, j,l) . A detailed description of the MCMC algo-

rithm employed under a general correlation matrix is given in
Appendix B of the online supplementary material.

4. A Simulation Study

To validate the proposed models, we conducted an analysis of
simulated datasets. The main aim of this study is to provide
empirical evidence that under the proposed semiparametric
marginal approach to modeling misclassified time-to-event
data, the model parameters can be estimated from the observed
data only, without the need of external information about
the misclassification parameters. It is important to emphasize
that external information beyond the observed data is often
required for misclassified data in other settings. The simulation
study is also used to evaluate the performance of classical
model selection criteria in identifying among the time-to-
event model assumptions, to show the effect of performing
naive analyses neglecting the misclassification process, and to
assess the effect on inferences under a wrong time-to-event
model.

4.1. The Simulation Settings

Three different marginal models are considered for the under-
lying time-to-event data T(i, j). Specifically, we consider PH,
AFT, and PO marginal assumptions in the definition of
the true model, respectively. Under the three models we
considered J = 4 teeth and the joint model was completed
by considering a Gaussian copula function. For all mod-
els, a bimodal baseline distribution is assumed by consider-
ing F0(·) = 0.5 × LN(· | −0.5, 0.82) + 0.5 × LN(· | 0.5, 0.32),
where LN(· | μ, σ 2) refers to the CDF of a log-Normal distri-
bution with location μ and scale parameter σ 2. For each model,
we set x(i, j) = (x(i, j,1), x(i, j,2)), where x(i, j,1)

iid∼ Bernoulli(0.5),

x(i, j,2)
iid∼ Uniform(0, 1). The true time-to-event marginal mod-

els are shown in Appendix C of the online supplementary mate-
rial.

For each marginal model, three different simulation sce-
narios were considered. In Scenario I, a compound symme-
try correlation matrix and common effects of the predic-
tors across teeth were assumed. In this case, we set ρ = 0.2
and β j = (−0.5, 1), for every j. The true time-to-events were
interval-censored by simulating the “visit” times for each sub-
ject. We considered Ki = 10. The first visit time was ran-
domly chosen from an LN(−1.0, 22) distribution. The time
between the consecutive visits, νi,k − νi,k−1, was drawn from an
LN(−0.7, 0.22) distribution. We assumed that the assessment
of the occurrence of the event was performed by Q = 4 exam-
iners, allocated randomly to each subject and visit. We further
assumed common misclassification parameters for each exam-
iner across variables and set α = (0.95, 0.90, 0.85, 0.80) and
η = (0.80, 0.85, 0.90, 0.95).

In Scenario II, a general correlation matrix was assumed,
keeping everything else the same as in Scenario I. In this case,

we set

Rρ =

⎛
⎜⎜⎝
1.0 ρ12 ρ13 ρ14
ρ21 1.0 ρ23 ρ24
ρ31 ρ32 1.0 ρ34
ρ41 ρ42 ρ43 1.0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1.0 0.4 0.2 0.1
0.4 1.0 0.4 0.2
0.2 0.4 1.0 0.4
0.1 0.2 0.4 1.0

⎞
⎟⎟⎠ .

In Scenario III, data were generated using the same setup
as Scenario II, but we allowed tooth-specific misclassification
parameters and predictor effects for each of the four examiners
in estimation. For each simulation scenario and true marginal
model, we considered three different sample sizesN = 100, 200,
and 300. For each scenario, true marginal model, and sample
size, 200 datasets were generated.

To evaluate the ability to identify among the correct time-
to-event modeling assumption, AFT, PH, and PO versions of
the proposed marginal model were fit to each dataset, using the
algorithms described in Section 3.4.Under Scenarios I and II, we
considered versions of the proposed model assuming common
effects of the predictors across teeth and commonmisclassifica-
tion parameters across teeth for each examiner. In this case, we
set mβ = mθ = 02, V β = V θ = 103 × I2, and constrained uni-
form priors distributions were assumed for the misclassification
parameters by taking a(α,0)

(1) = a(α,1)
(1) = · · · = a(α,0)

(Q)
= a(α,1)

(Q)
= 1

and a(η,0)
(1) = a(η,1)

(1) = · · · = a(η,0)
(Q)

= a(η,1)
(Q)

= 1. Under Scenario
I, a compound symmetry correlation matrix was assumed with
a uniform prior for ρ. Under Scenario II, an unstructured cor-
relation matrix was assumed with a uniform Haar prior over
all correlation matrices. Under Scenario III, on the other hand,
we considered versions of the proposed model assuming differ-
ent effects of the predictors across teeth, an unstructured corre-
lation matrix, and different misclassification parameters across
teeth for each examiner. In this case, we set mβ = mθ = 08,
V β = V θ = 103 × I8, and considered a uniform prior for the
general correlation matrix and constrained uniform priors for
the misclassification parameters. For all models we set c = 1.

For each model and dataset, we obtain a posterior sample of
size 5000, after a burn-in period of 20,000 and thinning of every
other 5 scans of the posterior distribution. The three versions
of the proposed marginal model fit for each dataset were com-
pared by means of the pseudo Bayes factor (PsBF), originally
developed by Geisser and Eddy (1979) and further considered
by Gelfand and Dey (1994). The PsBF for the comparison ofMi
versusM j corresponds to the ratio between the pseudomarginal
likelihood (PML) for model Mi and model M j . In our context,
the PML for modelMi is defined as

PMLMi =
N∏
i=1

J∏
j=1

pMi

(
D(i, j,1), . . . ,D(i, j,Ki ) | D[−(i, j)]) ,

where pMi

(
D(i, j,1), . . . ,D(i, j,Ki )

∣∣D[−(i, j)]) is the predictive dis-
tribution for observations associated with the jth tooth of the
ith subject, based on the dataD[−(i, j)] and undermodelMi, with
D[−(i, j)] being the observed data matrix that excludes the obser-
vation for the jth tooth of subject i. Therefore, PsBF for model
Mi versus modelM j is defined as

PBFMi,M j =
N∏
i=1

J∏
j=1

pMi

(
D(i, j,1), . . . ,D(i, j,Ki )

∣∣D[−(i, j)])
pMj

(
D(i, j,1), . . . ,D(i, j,Ki )

∣∣D[−(i, j)]
) . (9)
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Table . Simulated data—Scenario I. True value, Monte Carlo mean, bias, and mean square error (MSE) of the posterior mean of the time-to-event model parameters. The
results are presented for different group sample sizes (N) and true underlying time-to-eventmodel assumptions (PH, AFT, and PO). In this table, the same true time-to-event
model is assumed to simulate and to fit the data.

True marginal model

PH AFT PO

N Parameter True value Mean Bias MSE Mean Bias MSE Mean Bias MSE

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

The method suggested by Gelfand and Dey (1994) was used
to obtain estimates of CPO statistics from the MCMC output.
Under a compound symmetry correlation matrix, the CPO can
be computed as

pMi

(
D(i, j,1), . . . ,D(i, j,Ki )

∣∣D[−(i, j)])
=
{
Eγi,α,η,β,ρ,F0|D

(
1

p
(
D(i, j) | γi, α, η, β, ρ, F0

)
)}−1

,

≈
⎧⎨
⎩ 1
B

B∑
b=1

⎛
⎝ 1

p
(
D(i, j) | γ

(b)
i , α(b), η(b), β(b), ρ(b), F (b)

0

)
⎞
⎠
⎫⎬
⎭

−1

,

where (γ
(b)
i ,α(b), η(b),β(b), ρ(b), F (b)

0 ), b = 1, . . . ,B, are
MCMC samples from the posterior distribution, and
p(D(i, j) | γi,α, η,β, ρ, F0) can be derived from expression
(8). The expression for approximating the CPO under an
unstructured correlation matrix is given in Appendix D of the
online supplementary material.

To assess the effect of ignoring the misclassification process
on the statistical inferences, we performed naive analyses to data
generated under misclassification. Specifically, we implemented
the semiparametric marginal models described in Section 3.1
for regular interval-censored data. These models were fit to the
data that arises by assuming that the identification of the inter-
val of time where each event occurred is free of error, leading
to regular interval-censored data. In this case, each response
was assumed to lie in the corresponding kth interval, where k
is the first interval where D(i, j,k) = 1, regardless of the values
of D(i, j,k+1), . . . ,D(i, j,Ki ). The naive analyses were performed
for the data generated under Scenario I, using the same MCMC
and prior specification as for the corresponding semiparamet-
ric marginal models taking into account the misclassification
process.

Finally, to assess the effect on the inferences of the use
of a wrong time-to-event model, we also simulate data from
an extended hazard (EH) model (see, e.g., Li, Hanson, and
Zhang 2015). The EHmodel assumes the following relationship
among the baseline survival distribution, the predictors, and the
marginal survival distributions:

1 − Fx(i, j) (t ) =
(
1 − F0(exp{x′

(i, j)ζ}t )
)exp{x′

(i, j)β}
,

where β and ζ are vectors of regression coefficients. The EH
model is a more flexible survival model, including AFT and PH
as special cases.

4.2. The Results

The results suggest that the regression and association parame-
ters can be estimated with only minimal bias and with reason-
able precision under all simulation settings. Table 1 shows the
means, across simulations, the biases, and the MSE of the pos-
terior mean of the parameters from the different versions of the
semiparametric model, from the different time-to-event model-
ing assumptions under Scenario I. The results under Scenarios
II, III, and a variation of Scenario Iwith a different baseline time-
to-event distribution (Scenario IV), are shown in Appendix E of
the online supplementary material.

Similar results regarding bias andMSE were observed for the
misclassification parameters for all simulation settings. Figures 1
and 2 show the results for Scenario I. In general, the MSE is
similar for the misclassification parameters across true time-to-
event models and there is a larger variability of the estimates of
the specificity parameters. This is explained by the distribution
of the visit times. In fact, assessment intervals were simulated
to roughly capture all possible survival times, that is, approxi-
mately cover the support of the true survival distributions. How-
ever, relatively more assessment visits are toward the tail of the
survival distribution. Therefore, less information is available to
estimate the specificity parameters.

As illustrated in Table 1, Figure 1, and Figure 2 for
Scenario I, important reductions in the MSE were observed for
all parameters when the sample size increased for all simulation
settings, suggesting that the posterior mean is a consistent
estimator of the model parameters. These results on bias, MSE,
and consistency strongly suggest that prior information on
the misclassification parameters is not needed to obtain nearly
unbiased and precise estimates for the regression coefficients,
association parameters, and misclassification parameters. Thus,
the model parameters can be estimated from the observed
data without extra information on the misclassification
parameters.

Table 2 displays the results on the behavior of themodel selec-
tion criteria under Scenario I. This table shows the percentage
of time across simulations in which the logarithm of the PML
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Figure . Simulated data—Scenario I: True value (×), mean of the posteriormean across simulations ()± 1.96 × √
MSE for the sensitivity and specificity of each examiner.

The results forN = 100,N = 200, andN = 300 are displayed as solid, dashed, and dotted lines, respectively. Panels (a) and (b), (c) and (d), and (e) and (f ) display the results
under a true PH, AFT, and POmarginal time-to-eventmodel, respectively. Panels (a), (c), and (e) display the results for the sensitivity. Panels (b), (d), and (f ) display the results
for the specificity.
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Figure . Simulated data—Scenario I. Mean across simulations of the posterior mean of the baseline survival function (dashed line), point-wise % confidence region
(shaded). The true survival function is represented as a solid line. Panels (a), (b), and (c) display the results for N = 100 under a true PH, AFT, and PO marginal model,
respectively. Panels (d), (e), and (f ) display the results for N = 200 under a true PH, AFT, and PO marginal model, respectively. Panels (g), (h), and (i) display the results for
N = 300 under a true PH, AFT, and POmarginal model, respectively.

(LPML) selects the correct time-to-event model assumption.
The results show that the LPML is an adequate model selection
criteria and that the power for selecting the correct regression
model assumption is high even for sample sizes as small as
N = 100. Furthermore, the power of LPML for selecting the
correct model assumption rapidly increases with the sample
size. The less power observed for the LPML for detecting the
correct regression assumption under the PH and PO model is
explained by the distribution of the visit times. More assessment

Table . Simulated data—Scenario I. Percentage of time, across simulations, in
which the LPML favors the correct true underlying time-to-event regression model
assumption. The results are shown for the different group sample sizes (N) and true
underlying time-to-event regression model assumption.

True marginal model

N PH AFT PO

 . . .
 . . .
 . . .

visits are toward the tail of the time-to-event distribution under
the PH and PO models, in comparison with the AFT model.

Table 3 and Figure 3 show the results for the naive analy-
sis assuming no misclassification. The increased bias and MSE
strongly support the benefits of the proposed model under the
presence of misclassification. Indeed, systematic and strong bias
was observed for the regression coefficients and variance com-
ponents. The posteriormean of the regression coefficients under
the naivemodel were biased toward the null effect. Furthermore,
an underestimation of the correlation is obtained under a naive
analysis.

As expected from the results obtained for the model param-
eters under a naive analysis, the posterior mean is a strongly
biased estimator of the baseline survival function if the misclas-
sification process is not taken into account.Most of themarginal
survival probabilities are significantly underestimated by the
posterior mean under the naive analysis.

Finally, when an incorrect probability model is fit to the data,
it is expected to observe misleading inferences associated with
parameterswith different interpretations acrossmodels (e.g., the
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Table . Simulated data—Scenario I. True value, and Monte Carlo mean, bias, and mean square error (MSE) of the posterior mean of the time-to-event model parameters
for different sample sizes. The results are presented for naive fitting of AFT, PO, and PH models. In this table, the same true time-to-event model is assumed to simulate
and to fit the data.

Fitted model

PH AFT PO

N Parameter True value Mean Bias MSE Mean Bias MSE Mean Bias MSE

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

 β1 − . − . . . − . . . − . . .
β2 . . . . . . . . . .
ρ . . . . . . . . . .

regression coefficients) and parameters highly influenced by the
model assumptions (e.g., themarginal survival functions, which
varies as a function of predictors in different ways under the
different models). However, no or little effects are expected on

parameters with a common interpretation, such as the associa-
tion structure andmisclassification parameters. Amore detailed
discussion on this aspect is provided in Appendix F of the online
supplementary material.

Figure . Simulated data—Scenario I. Mean across simulations of the posterior mean of the baseline survival function (dashed line), point-wise % confidence region
(shaded) under the naive analysis ignoring the misclassification process. The true survival function is represented as a solid line. Panels (a), (b), and (c) display the results
forN = 100 under a true PH, AFT, and POmarginal model, respectively. Panels (d), (e), and (f ) display the results forN = 200 under a true PH, AFT, and POmarginal model,
respectively. Panels (g), (h), and (i) display the results for N = 300 under a true PH, AFT, and POmarginal model, respectively.
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Table . Signal-Tandmobiel� data. Log pseudo marginal likelihood (LPML) for the
considered models. For the geographic location of the schools, the tensor product
of spline basis functions for x and y, additive spline basis for x and y, linear terms
for x and y with an interaction term, and a linear version without interaction are
represented by g(x, y), gx (x) + gy(y), x + y + x × y, and x + y, respectively.

Marginal
model

β (across
teeth) Rρ x and y α and η LPML

AFT Common Structured x + y Common −
PH Common Structured x + y Common −
PO Common Structured x + y Common −
PO Common Unstructured x + y Common −
PO Common Structured x + y Different −
PO Common Structured x + y Depending on

x
−

PO Different Structured x + y Common −
PO Common Structured g(x, y) Common −
PO Common Structured gx(x) + gy(y) Common −
PO Common Structured x + y + x × y Common −

5. The Analysis of the Signal-Tandmobiel� Data

In this section, analyses of the ST study data are presented. We
are interested in the evaluation of the marginal effect of gender,
age at baseline, age when brushing starts, number of between-
meal snacks (two or less a day vs. more than two a day), and
geographical location of the school, expressed in terms of the
x- and y-coordinates, on the time-to-CE for permanent first
molars: teeth 16, 26 on the maxilla (upper quadrants), and teeth
36 and 46 on the mandible (lower quadrants). The inclusion of
the geographical components was motivated by the results of
exploratory data analyses without correcting for misclassifica-
tion, that showed a significant East-West gradient in the appar-
ent prevalence of CE in Flanders (estimated as the number of
teeth testing positive to CE by the dentists divided by the num-
ber of teeth in the sample, and shown in Figure 10 of Appendix
G of the online supplementary material). Therefore, one of the
research questions is whether there is a geographical trend in
the true prevalence of CE or the observed trend in the apparent
prevalence is completely explained by the geographic distribu-
tion of the dentists. In fact, and for practical reasons, the den-
tists were active in a relatively restricted geographical area. For
instance, the spatial distribution of the dentist in the first year
of examination of the ST is shown in Figure 11 of Appendix G
of the online supplementary material. Thus, a possible cause for
the apparent trend in CE is a different scoring behavior of the 16
dental examiners and their nonhomogenous spatial distribution
in the study area. The proposed model addresses this question
by correcting for the misclassification of the examiners and, at
the same time, evaluating the effect of the geographic location
of the school on the underlying distribution of the time-to-CE.
Notice that the identification of the two possible sources of the
geographic trend are possible because in each year there was
more than one examiner active in each geographical area and
there was some overlapping between the area where each exam-
iner was active and the regions. For instance, for the first year
of examination at least 4 examiners were active in each province
and 14 out of the 16 examiners were active in more than one
province.

Different versions of the proposed models were fit to the ST
data. Specifically, we considered different marginal modeling

assumptions, common or tooth-specific regression coefficients,
compound symmetry (structured) or unstructured correlation
matrices, nonlinear and linear models for the effects of the
geographic location of the schools, and common or covariate
specific misclassification parameters. For the geographic loca-
tion of the schools, we considered a model based on tensor
product of spline basis functions for x and y (i.e., nonlinear and
with interaction) (Hennerfeind, Brezger, and Fahrmier 2006),
additive spline basis for x and y (i.e., nonlinear and without
interaction), linear terms for x and y with an interaction term,
and a linear version without interaction. For the misclassifi-
cation parameters, we considered models assuming common
sensitivity and specificity parameters across teeth for every
examiner, along with a model where these parameters were
allow to vary with tooth’s position, child’s gender and age at
baseline.

The models were fit by assuming similar priors to the ones
described in the analyses of simulated data. For each model, we
ran the Markov chain cycle described in Section 3.4 a conser-
vative total number of 1,000,000 samples. The full chain was
subsampled every 50 iterations after a burn-in period of 250,000
samples, to give a reduced chain of length 15,000. Standard
MCMC tests (not shown) suggested convergence of the chains.

Table 4 shows the LPML for the different models. The
results suggest that, from a predictive point of view, the PO
version of the Bayesian semiparametric marginal model pre-
dicts these data the best. Furthermore, the results show that
the simplest version of the model better fits the data. Specif-
ically, we conclude that there is no need for a “nonpara-
metric” modeling of the geographic information or evidence
of spatial interaction, interaction between the predictors and
the tooth’s location, an unstructured correlation matrix, dif-
ferent misclassification parameters across teeth or predictor-
dependent misclassification parameters. More importantly, the
results also suggest that the marginal models outperform the
flexible AFT frailty model proposed by García-Zattera, Jara,
and Komarek (2016) for these data. In fact, the LPML for the
frailty AFTmodel considering the same predictors andmisclas-
sification model was −5560 versus −5543 for the simplest PO
model.

To assess the goodness of fit of the proposed model, two
different measures were considered. Specifically, we consider a
posterior predictive check strategy (Gelman et al. 2014), where
we compare the predictive distribution of the error-corrupted
binary variables with the observed ones. A summary of the
results for the ST data under different models is given in
Appendix H of the online supplementary material. The results
show there is no evidence of lack of fit for the selected model.
For instance, the 95% credible band from the posterior predic-
tive distribution contains the observed count in all cases. Fur-
thermore, the PO versions of the proposedmodel (under a com-
pound symmetry correlationmatrix and under an unstructured
correlation matrix) showed the best performance. In fact, the
posterior predictive mean (95% credible interval) of the “chi-
square” goodness-of-fit statisticswas 48.76 (17.67, 118.34), 47.54
(19.22, 118.87), 83.28 (48.44, 153.12), 53.62 (19.55, 144.49),
and 65.06 (31.42, 138.80), for the PO model under a com-
pound symmetry correlation matrix, for the PO model under
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Table . Signal-Tandmobiel� data. Posterior mean (% credible interval) for the time-to-event model parameters under the PO version of the proposed model (PO), a
semiparametric version of the POmodel for error-free interval-censored data, neglecting the misclassification process (PO naive), and for a Weibull parametric PO model,
taking into account the misclassification process (PO parametric).

Model

Parameter PO PO naive PO parametric

β1(Gender; Girl) . (. ; .) . (. ; .) . (. ; .)
β2 (Age at baseline; years) . (. ; .) . (. ; .) . (. ; .)
β3 (Age when brushing starts; years) − . (−. ;−.) − . (−. ;−.) . (−. ; .)
β4 (In between-meal snacks;≥ 2 a day) . (−. ; .) . (−. ; .) . (−. ; .)
β5 (x-coordinate) . (−. ; .) . (−. ; .) . (−. ; .)
β6 (y-coordinate) − . (−. ;−.) − . (−. ;−.) − . (−. ; .)
ρ . (. ; .) . (. ; .) . (. ; .)

an unstructured correlation matrix, for a parametric version of
a PO model (with a compound symmetry correlation matrix)
using a Weibull baseline distribution, for the PH version of the
model, for the AFT version of the model, respectively.

As a secondmeasure of goodness of fit, we consider the poste-
rior predictive distribution for the latent time-to-event residuals
and compare it with the theoretical distribution, assuming that
the model is correct. The results for the different teeth under
the PO version of the proposed model are given in Appendix
H of the online supplementary material for a compound sym-
metry correlationmatrix and under an unstructured correlation
matrix. The results do not show significant deviations from the
theoretical distribution for all teeth. The PO model under an
unstructured correlation matrix shows a slightly better perfor-
mance, where the point-wise 95% credible band for the quantiles
of the latent residuals cover the theoretical straight line com-
pletely. For the POmodel under a compound symmetry correla-
tion matrix, the point-wise 95% credible band for the quantiles
of the latent residuals cover most of the theoretical straight line,
with small deviations observed for tooth 46.

Table 5 shows the posterior means and 95% highest pos-
terior density (95% HPD) credible intervals for the regression
and association parameters under the selected PO semiparamet-
ric model. The 95%HPD interval for each regression coefficient
suggest that gender, age, age when brushing starts, and the geo-
graphical location (y-coordinate) has a significant effect on the
marginal odds of CE at any given time. To evaluate the poste-
rior evidence about the effect of the predictors on the time to
CE, we also computed the pseudo contour probability (PsCP)
for each of these hypotheses. The PsCP was computed based on
equi-tailed credible bands and is defined as oneminus the small-
est credible level for which the null hypothesis parameter value
is contained in the corresponding credible bands. The PsCP was
0.007 for the marginal effect of gender, 0.001 for the marginal
effect of both age and age when brushing starts, 0.185 for the
number of between-meal snacks, 0.275 for the x-coordinate, and
0.006 for the y-coordinate. These results suggest that there is
strong posterior evidence against several of the corresponding
null hypotheses: namely, boys have greater odds of developing
CE and that the older the child is when he/she starts brushing,
the greater the odds of developing CE. Furthermore, the results
onβ5 andβ6 support the hypothesis that the observed geograph-
ical gradient is indeed explained by real local geographical dif-
ferences and not due to the different scoring behavior of the
examiners.

Figure 4 shows the posterior mean and 95% HPD credible
interval for the sensitivity and specificity of each examiner under
the selected PO model. The results under the corresponding
AFT and PHmodels are also displayed in this figure. The results
suggest a greater variability in the sensitivity than in the speci-
ficity estimates, which can be explained by the low prevalence
of CE at this age. All examiners showed a sensitivity greater
than 0.75, with rather narrow 95% HPD credible intervals, with
one exception. The latter result is explained by the fact that this
examiner (examiner 9) was only involved in the first 2 years of
the ST study, having less information for the estimation of his
parameters. The posterior means for the specificity parameters
were higher than 0.93 for all examiners.

To illustrate the contributions of both the nonparametric and
misclassification components of the proposed model for the ST
data, we also implemented and fit parametric versions of the
proposed models and performed naive analyses by consider-
ing a Bayesian semiparametric models for error-free interval-
censored data (i.e., neglecting themisclassification process). The
results show the need of the Bayesian nonparametric component
in the time-to-event model. As a matter of fact, the LPML for
parametric counterparts of the simplest PH, AFT, and PO ver-
sions of themodel were−5570,−5583, and−5564, respectively.
In these cases, the parametric models were fit using a Weibull
baseline distribution, the same predictors, and the samemisclas-
sification model.

Table 5 shows the results of the regression parameters under
a semiparametric PO model using a naive analysis. Not tak-
ing into account the misclassification process for the ST data
causes an attenuation of the effects of the predictors toward zero.
Also, the power for detecting differences is reduced. The results
also show that the correction of the point estimates of predic-
tor effects obtained under the model taking into account the
misclassification, in comparison with the naive analysis, does
not come with an increase in variability, which is an important
advantage with respect to contexts where the data do not con-
tain information on the misclassification parameters (see, e.g.,
Luan et al. 2015). On the other hand, the results under aWeibull
parametric PO model show that the differences in the poste-
rior inferences do not follow a systematic pattern, with coef-
ficients taking higher or smaller values than observed under
the semiparametric POmodel.More importantly, the significant
effect of the age when brushing starts, variable and geographic
location are not detected under the parametric version of the
model.
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Figure . Signal-Tandmobiel� data. Posterior mean ( �) and % highest posterior density intervals for the misclassification parameters for each examiner. Panels (a) and
(b), (c) and (d), and (e) and (f ) display the results under a PH, AFT, and PO marginal time-to-event model, respectively. Panels (a), (c), and (e) display the results for the
sensitivity. Panels (b), (d), and (f ) display the results for the specificity.

Figures 5 and 6 display the estimated survival functions for
some combinations of the predictors under the different mod-
els. The results also show that significantly different inferences
are obtained when the objects of interest are the predictor-
dependent marginal survival functions. The inferences under

naive analyses not taking into account the misclassification pro-
cess and a parametric version of the model can even produce
survival point estimates that are outside the credible region
under the PO model (please also see Figures 14 and 15 in the
online supplementary material).
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Figure . Signal-Tandmobiel� data—PO model—misclassification. Posterior predictive mean of the survival function under the selected model (solid line) and under a
semiparametric PO model neglecting the misclassification process (dashed line). The pointwise % credible bands for each model are displayed as gray areas. Panel (a)
displays the results for a girl, . years old at baseline,  years oldwhenbrushing starts, having twoor fewer snacks in-betweenmeals, and samplemean x- and y-coordinates.
Panel (b) displays the results for a girl, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-between meals, and sample mean x- and
y-coordinates. Panel (c) displays the results for a boy, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-betweenmeals, and sample
mean x- and y-coordinates. Panel (d) displays the results for a boy, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-betweenmeals,
and sample mean x- and y-coordinates.

Figure . Signal-Tandmobiel� data—PO model—nonparametric. Posterior predictive mean of the survival function under the selected model (solid line) and under a
Weibull parametric PO model (dashed line). The pointwise % credible bands for each model are displayed as gray areas. Panel (a) displays the results for a girl, . years
old at baseline,  years old when brushing starts, having two or fewer snacks in-between meals, and sample mean x- and y-coordinates. Panel (b) displays the results for
a girl, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-between meals, and sample mean x- and y-coordinates. Panel (c) displays
the results for a boy, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-between meals, and sample mean x- and y-coordinates.
Panel (d) displays the results for a boy, . years old at baseline,  years old when brushing starts, having two or fewer snacks in-between meals, and sample mean x- and
y-coordinates.
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6. Concluding Remarks

We have proposed a Bayesian semiparametric approach for the
marginal modeling of misclassified correlated interval-censored
data and showed that models under this framework can outper-
form standard frailty models, even when they are specified in a
flexible way regarding the distributional assumptions. Although
the methodology was motivated by an oral health application, it
can be applied to any situation where correlated responses are of
interest, they can only be determined to lie in an interval of time,
and the assessment of the event is subject to misclassification.
Examples include studies about kidney failure or vision loss. An
important aspect associated with the Bayesian nonparametric
formulation of the model is that, by assuming the same flexible
model for the baseline marginal time-to-event distribution
function F0, the different regression model assumptions are
placed on common ground. Furthermore, parametric models
are special cases of the nonparametric models. Thus, differences
in the performance of the models can be attributed to the
regression model assumption only, rather than to additional
possible differences in nonparametric models or estimation
methods. The proposed approach is illustrated under the three
most commonly used regression assumptions (PH, AFT, and
PO). However, it can be easily extended for other specifications,
such EH (see, e.g., Li, Hanson, and Zhang 2015) or to fully
nonparametric specification of the marginal distributions (see,
e.g., Jara et al. 2010). As a matter of fact, we also fit an EH
version of the proposed mode for the ST data. However, the
LPML for this model was −5564 and thus the LPML still favors
the simplest and PO version of the proposed model.

We provided empirical evidence showing that under simple
restrictions on the parameter space, the model parameters in
the proposed model can be estimated from the observed data
obtained froma longitudinal study,where the follow-up for indi-
viduals and variables continues after the first positive result, thus
avoiding the need of external information on the misclassifica-
tion parameters. The results suggest that even under the use of
uniform priors on the misclassification parameters, the poste-
riormean of themodel parameters is unbiased, precise, and con-
sistent. We noted that if external information on the misclassi-
fication parameters is available, this can be easily incorporated
into the model specification.

The generalization of the proposed modeling approach to
account for potential time trends in themisclassification param-
eters is also of interest in some applications, for instance, when
the examiners follow a learning-by-doing process. The most
important question in such generalizations of the models are
related to the potential lack of identification of themodel param-
eters. In the context of models for categorical data, the assump-
tion of constant misclassification parameters is a necessary
and sufficient identification restriction when at least three time
points are considered (García-Zattera et al. 2010, 2012). The
empirical results provided in this article suggest that this con-
straint is at least a sufficient identification restriction whenmore
time points are considered. These and other generalizations are
the subject of ongoing research.

The MCMC algorithms were coded in C++. The code were
compiled into a shared library and linked into R via “Rcpp”
package’s foreign language interface. For a simulated data of size

N = 100 and J = 4, the computation time to obtain a Markov
chain of length 45,000 is on average 25 min, based on an IMAC
machinewith 3.2GHz intel Core i5 and 16GB1600MHzDDR3.
When the number of covariates is increased from 2 to 10, the
computation time for n = 100 increases to 30min. On the other
hand, if the sample size isN = 300, the computation time is 1 hr
on average.

Supplementary Materials

- Appendix A contains an illustration of the observed data gen-
erating mechanism.

- Appendix B contains a description of the MCMC sampling
algorithm under an unrestricted correlation matrix.

- Appendix C contains the survival and density functions associ-
ated with the true marginal models for simulation scenarios
I, II, and III.

- Appendix D provides the expression for approximating the
CPO under an unstructured correlation matrix.

- Appendix E provides additional results for the simulation study
under scenarios II and III.

- Appendix F contains simulation results under an incorrect
model and when misclassification is present.

- Appendix G contains figures of the spatial trend for the appar-
ent prevalence of CE and the spatial distribution of the exam-
iners for the first year of the ST study.

- Appendix H contains additional results associated with the
Signal-Tandmobiel® data.
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