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Abstract: Smoking cessation intervention studies often produce data on smoking status at discrete
follow-up assessments, often with missing data in different amounts at each assessment. Smoking status
in these studies is a dynamic process with individuals transitioning from smoking to abstinent, as well as
abstinent to smoking, at different times during the intervention. Directly assessing transitions provides
an opportunity to answer important questions like ‘Does the proposed intervention help smokers
remain abstinent or quit smoking more effectively than other interventions?’ In this article, we model
changes in smoking status and examine how interventions and other covariates affect the transitions.
We propose a Bayesian approach for fitting the transition model to the observed data and impute
missing outcomes based on a logistic model, which accounts for both missing at random (MAR) and
missing not at random (MNAR) mechanisms. The proposed Bayesian approach treats missing data as
additional unknown quantities and samples them from their posterior distributions. The performance
of the proposed method is investigated through simulation studies and illustrated by data from a
randomized controlled trial of smoking cessation interventions. Finally, posterior predictive checking
and log pseudo marginal likelihood (LPML) are used to assess model assumptions and perform model
comparisons, respectively.

Key words: Transition model, Bayesian method, generalized linear mixed model, missing values,
smoking cessation

1 Introduction

Tobacco smoking continues to be a pressing healthcare problem because it
significantly shortens the lifespan of smokers (Jha and Peto, 2014). According to
Papadakis et al. (2010), there is still a need for low-cost, easily implemented and
effective interventions. Smoking cessation studies are commonly used to investigate
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interventions which may help smokers to quit smoking, for example, see the
meta-analyses on self-help interventions by Fiore et al. (2008) and Hartmann-Boyce
(2014). In a recent randomized controlled trial by Brandon et al. (2016) (see
Section 4 for more details), smoking status (‘smoker’ versus ‘abstinent’ using
7-day-point-prevalence) was assessed every 6 months for 2 years for participants
randomly assigned to one of three treatment conditions. Longitudinal data analysis
of binary smoking status at multiple times needs to adequately account for the
correlations of the responses from each, and deal with missing responses that often
arise in such studies.

There is a vast literature for analysing repeated binary data with missing values.
We refer to Daniels and Hogan (2008) for a comprehensive review. Most modelling
approaches focus on understanding covariates’ effects on the binary response, where
they typically equate the expected value of the response variable to a systematic
component, which specifies covariates in a linear predictor function. Developed
methodologies of this category include weighted generalized estimation equation
(GEE), multiple imputation combined with GEE (Robins et al., 1995; Carpenter et
al., 2006; Beunckens et al., 2008), multiple imputation coupled with generalized
linear mixed effects model (GLMM; Diggle et al., 2002; Jansen et al., 2006),
and marginalized transition models (Azzalini, 1994; Heagerty, 2002; Kurland and
Heagerty, 2004). The marginalized transition approach combines a mean model for
the response with a conditional mean model that describes a serial dependence and
treats the serial dependence as a nuisance quantity.

Another class of transition models (Steele et al., 2004; Steele, 2011; Yeh
et al., 2012) focus on quantifying the variations in the expected value of the
response variable in response to covariates as well as past responses. We refer
to this class of models as multilevel transition models and summarize it in
the following:

logit(P(Yti = 1|Yt−1,i = 0)) = xT
0tiˇ

01 + u0i,

logit(P(Yti = 0|Yt−1,i = 1)) = xT
1tiˇ

10 + u1i,

where logit(·) = exp(·)/(1 + exp(·)), Yti is a binary variable indicating the state for
individual i at time t, x0ti and x1ti are covariates, ˇ01 and ˇ10 are regression
coefficients, and u0i and u1i are time-invariant random effects. Probabilities P(Yti =
1|Yt−1,i = 0) and P(Yti = 0|Yt−1,i = 1) are referred as transition probabilities. This
class of models has potential to better understand the dynamics of smoking status
using transition probabilities rather than only the means of responses. Figure 1
presents an example of smoking status transitions with all participants smoking at
the start of the two-group comparison study. In both groups, 80% continue to smoke
and 20% transition to abstinent at the 6-month assessment. The two groups diverge
between the 6-month and 12-month assessments. In Group 1, 25% of smokers at
6 months transition to abstinent at 12 months and 20% of those abstinent at 6
months transition to smokers at 12 months. In Group 2, 40% of smokers at 6
months transition to abstinent at 12 months and 80% of those abstinent at 6 months
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transition to smokers at 12 months. At 12 months, both groups will have 64%
smokers and 36% abstinent. However, there are group differences in the composition
of the smokers. In Group 1, 60% of smokers at 12 months were continuous smokers
(i.e., also smoked at 6 months). In Group 2, only 48% of smokers at 12 were
continuous smokers. In terms of those abstinent at 12 months, Group 2 has a larger
proportion who quit smoking later in the study. Without missing responses, the
joint likelihood of observing {yi, i = 1, . . . , n} under a multilevel transition model
is equivalent to that under a GLMM where

logit(P(Yti = 1)) = (xT
0ti − yt−1,ixT

0ti)ˇ
01 − yt−1,ixT

1tiˇ
10 + (1 − yt−1,i)u0i − yt−1,iu1i.

However, when responses are partially missing, the likelihood marginalized over
missing responses under a multilevel transition event model can no longer find an
equivalence under the GLMM framework. Hence multiple imputations coupled with
GLMM can no longer apply here. To our knowledge, extensions of the multilevel
transition models that accommodate missing responses are limited.

In this article, we propose a Bayesian approach for extending the multilevel
transition model to account for missing responses. Typically, Bayesian methods for
missing longitudinal responses require a specification of the joint distribution of the
responses and the missing indicators. Once the missing model is specified, missing
responses can be augmented as additional unknown parameters and be sampled
together with other parameters. We refer to Daniels and Hogan (2008) for a review of
Bayesian missing imputation which has become a highly useful paradigm for handling
missing values in many settings as it accounts for the uncertainty in imputation
naturally. We further refer to Ibrahim and Molenberghs (2009) for a comprehensive
review of missing data modelling in longitudinal studies. Notably, there are three
important missing data mechanisms: missing completely at random (MCAR) when
missingness is unrelated to the data, missing at random (MAR) when missingness
depends on the observed data only, and missing not at random (MNAR) when
missingness depends on the unobserved data, perhaps in addition to the observed
data. A favourite type of model that accommodates the aforementioned three missing
mechanisms is the selection model (Diggle and Kenward, 1994; Ibrahim et al., 2001),
which specifies a conditional distribution, for example, logistic distribution, for the
indicators of missing responses, given hypothetical complete data. In this work, we
combine the multilevel transition models for the responses with logistic regressions
for the missing indicators.

For the proposed joint modelling of transition events and missing responses, we
developed a new Bayesian approach for fitting the models while employing Bayesian
multiple imputations for missing values. In our proposed Bayesian approach,
we utilize an approximation of a particular class of t-distributions to a class
of logistic distributions (Kinney and Dunson, 2007), which devises conjugate
conditional distributions for most of the parameters. The resulting MCMC mixes
quickly after a short burn-in, which is appealing for imputing a large number of
missing responses. The posterior samples allow us to compute the posterior mean
probabilities of each smoking patterns, together with their credible intervals. Using
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the posterior samples, we are also able to assess models’ goodness of fit based on a
posterior predictive checking method (Gelman et al., 2014; Xu et al., 2016) and
perform model comparisons by log pseudo-marginal likelihood (LPML) (Geisser
and Eddy, 1979; Linero and Daniels, 2015) and Watanabe-Akaike information
criterion (WAIC) (Watanabe, 2010). We present simulation results to demonstrate
the performance of the proposed algorithm and model selection criteria. We also
demonstrate a real data analysis using data from the randomized controlled trial by
Brandon et al. (2016).

The rest of the article is organized as follows: Section 2 presents the details of
the model development, which include model base, prior construction, posterior
inference and model assessment; Section 3 evaluates the proposed method using
simulation studies; Section 4 illustrates the data analyses for a recent randomized
controlled intervention trial for smoking cessation; we conclude the article with a
summary in Section 5.

2 Model development

2.1 Model base

Two states of smoking behaviour are considered in our study: abstinent (A) and
smoking (S). Let Yti be a binary variable indicating the state for individual i at time
t; Yti = 0 for abstinent and Yti = 1 for smoking. The probabilities of transitioning
from a state at time t − 1 to either smoking or abstinent are:

p01
ti = P(Yti = 1|Yt−1,i = 0), p00

ti = P(Yti = 0|Yt−1,i = 0), (2.1)

p10
ti = P(Yti = 0|Yt−1,i = 1), p11

ti = P(Yti = 1|Yt−1,i = 1), (2.2)

where p00
ti = 1 − p01

ti , p11
ti = 1 − p10

ti , t = 1, . . . , m and i = 1, . . . , n. Suppose all initial
states y0i are known. If all initial states are ‘smoking’, using the definition of
transition probabilities in equations (2.1) and (2.2), the probability of the pattern
S → A → A → A → A for the first four states is p10

1i p00
2i p00

3i p00
4i and the probability

of the pattern S → S → S → S → S is p11
1i p11

2i p11
3i p11

4i . All other types of patterns
are feasible following these notations. The class of multilevel transition models we
consider here assumes logistic regression models for the transition probabilities,

log

(
p01

ti

1 − p01
ti

)
= xT

0tiˇ
01 + u0i (2.3)

log

(
p10

ti

1 − p10
ti

)
= xT

1tiˇ
10 + u1i (2.4)
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Transition map for Group 1
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Figure 1 Smoking status transition map for Group 1 and 2

Notes: S–smoking; A—abstinent; arrows are the transitions; the numeric values above the arrows are
transition percentages; the numeric values after smoking statues are the overall percentages of smoking
and abstinent.

where x0ti and x1ti (including intercepts) are covariates that may or may not differ
from each other, ˇ01 and ˇ10 are regression coefficients, u0i and u1i are time-invariant
random effects, allowing unobserved heterogeneities among individuals in their
probabilities of transitioning from state 0 to 1 and 1 to 0, respectively. Random vectors
ui = (u0i, u1i), i = 1, . . . , n are assumed to follow a bivariate normal distribution

independently, that is, ui
ind.∼ N(0, �), where � is a two-dimensional covariance

matrix.
As we mentioned in the introduction, the observed dataset has a large portion of

missing values of the response variable, among which most are non-monotonic. Let
ıti be a binary indicator which equals 1 if the state variable yti is observed and equals
0 if yti is missing. Define �ti = P(ıti = 1). We consider a logistic regression model for
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the missing indicators,

logit(�ti) = ˛T
1 zti + ˛T

2 y∗
i , (2.5)

where zti = (zt,i,1, . . . , zt,i,p) is a covariate vector and y∗
i = (yti, yt−1,i). The

aforementioned model implies MCAR when all components in ˛1 and ˛2 except the
intercept equal zero, MAR when ˛2 equals zero and MNAR otherwise. We refer
to Ibrahim et al. (2001) for other flexible missing data models and our method
can be extended to consider those missing models. An important issue related to
complicated missing data mechanism is model assumption validation. In Section
2.4, we propose a posterior predictive checking for validating the transition model
and the missing data model. Let ˇ = {ˇ01, ˇ10} and ˛ = {˛1, ˛2}. Denote yobs,i and
ymis,i as the observed and missing responses for individual i, respectively. Denote
ıi = (ı1i, . . . , ımi) as missing indicators for individual i at m time points, xi

= (x1i, . . . , xmi) and zi = (z1i, . . . , zmi) as the corresponding set of covariates. We write
the observed dataset as D = {(yobs,i, xi, zi, ıi); i = 1, . . . , n}.

2.2 Prior specifications

Fully Bayesian methods require specifying priors for all the model parameters, which
include ˇ = (ˇ01, ˇ10), ˛ and �. We assume independent multivariate Normal priors
for ˇ01, ˇ10, and ˛, that is, ˇ01 ∼ N(0, c2

ˇI), ˇ10 ∼ N(0, c2
ˇI) and ˛ ∼ N(0, c2

˛I)), where
c2

ˇ and c2
˛ are scalars. Larger values of c2

ˇ and c2
˛ lead to less informative priors on the

corresponding parameters. Our simulations in Section 3 show that setting c2
ˇ = c2

˛

= 52 allows accurate estimations of the parameters for all scenarios.
For the covariance matrix �, we adopt the hierarchical half-t prior in Huang and

Wand (2013), which is a multivariate extension of the half-t prior in Gelman (2006).
An important advantage of the hierarchical prior over the commonly used inverse
Wishart prior is that it allows weakly informative priors on the standard deviation
terms and imposes less restrictions on the relationships between standard deviations
and correlations. A hierarchical half-t prior for two-dimensional � is written as
follows:

� ∼ IW(a + 1, 2a�),
� = diag(�1, �2),

�j
ind∼ �(

1
2

,
1

ς2
j

),

where a is the degree of freedom, 1/ς2
j is the rate parameter of the Gamma distribution

�(·, ·), and IW(·, ·) represents inverse Wishart distribution. Denote the standard
deviation terms as �j = √

�jj, j = 1, 2 and the correlation term as 	 = �12/
√

�11�22.
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According to Huang and Wand (2013), the joint distribution of �1, �2, and 	 is

p(�1, �2, 	) ∝ (1 − 	2)−
a
2 −2�−a−2

1 �−a−2
2

[
− a

(1 − 	)2�2
1

+ 1

ς2
1

]−(a+2)/2

×
[
− a

(1 − 	)2�2
2

+ 1

ς2
2

]−(a+2)/2

, �1, �2 > 0, −1 < 	 < 1.

The marginal distribution of �j is Half-t(a, ςj), which has density

p(�j) ∝ {1 + (�j/ςj)2/a}−(a+1)/2,

and

E(�jj) = 2ςj

√
a

�

�
(

a+1
2

)
�
(

a
2

)
(a − 1)

, Var(�jj) = ς2
j

a

a − 2
4a

�(a − 1)2

(
�
(

a+1
2

)
�
(

a
2

)
)2

.

Therefore, larger values of ς2
j lead to less informative priors on the corresponding

standard deviation term. Huang and Wand (2013) recommend setting ς2
j = 105,

which leads to a weakly informative prior on the standard deviation term. The
marginal distribution of the correlation parameter 	 has density

p(	) ∝ (1 − 	2)
a
2 −1.

When a = 2, the marginal distributions for the correlations are uniform distributions
over [−1, 1]. Since the conditional distribution of 	 given �1 and �2 is symmetric
around 0, E(	|�1, �2) = 0. Therefore, �12 = 	�1�2 also has prior mean at 0. We set
a = 2 throughout simulations and data analyses.

In summary, the joint prior of the parameters in 
 = {ˇ, �, ˛} is

N(ˇ01; 0, c2
ˇI)N(ˇ10; 0, c2

ˇI)N(˛; 0, c2
˛I)

× IW(�; a + 1, 2a�)
2∏

j=1

�(�j;
1
2

,
1

�2
j

). (2.6)
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2.3 Bayesian multiple imputations and posterior inference

Denote M as the set of indices ti for all the missing responses. Let u = {ui, i =
1, . . . , n} be the set of random effects. The joint likelihood L(u, yti, (t, i) ∈ M, 
|D) is

n∏
i=1

m∏
t=1

[(
p01

ti

)yti(1−yt−1,i)(
p00

ti

)(1−yti)(1−yt−1,i)(
p11

ti

)ytiyt−1,i
(
p10

ti

)(1−yti)yt−1,i
]

× �ıti

ti (1 − �ti)1−ıtiN(ui; 0, �), (2.7)

where �ti = P(ıti = 1). To further exploit conjugacy in the exponential families
for MCMC, we introduce auxiliary variables ωti, t = 1, . . . , m; i = 1, . . . , n, which
follow logistic distributions with location parameters as [xT

0tiˇ
01 + u0i]I(yt−1,i

= 0) + [xT
1tiˇ

10 + u1i]I(yt−1,i = 1), where I(·) is an indicator function taking
values 0 and 1. The distribution of ωti can be approximated by N(xT

0tiˇ
01

+ u0i, �̃2/ti)I(yt−1,i = 0) + N(xT
1tiˇ

10 + u1i, �̃2/ti)I(yt−1,i = 1), �̃2 = �2(c − 2)/3c,
ti ∼ �(c/2, c/2), � = 3.1416, and c = 7.3, for which the approximation error is
negligible and can be corrected by importance sampling (Kinney and Dunson, 2007).
Probabilities p01

ti and p10
ti are then approximated by �(xT

0tiˇ
01 + u0i) and �(xT

1tiˇ
10 +

u1i), where �(·) is the standard normal cumulative distribution function. Utilizing
the auxiliary variables � = {ti, t = 1, . . . , m; i = 1, . . . , n} and ω = {ωti, t = 1,
. . . , m; i = 1, . . . , n}, the augmented likelihood L(ω, u, �, yti, (t, i) ∈ M, 
|D) is

n∏
i=1

m∏
t=1

{
N

(
ωti; xT

0tiˇ
01 + u0i,

�̃2

ti

)
(1 − yt−1,i) [I(ωti > 0)yti + I(ωti ≤ 0)(1 − yti)]

+ N

(
ωti; xT

1tiˇ
10 + u1i,

�̃2

ti

)
yt−1,i [I(ωti ≤ 0)yti + I(ωti > 0)(1 − yti)]

}

× �
(
ti;

c

2
,

c

2

)
�ıti

ti (1 − �ti)1−ıti

n∏
i=1

N(ui; 0, �). (2.8)

We draw posterior samples of each variable in the set {ω, u, �, yti, (t, i) ∈ M, 
, �}
from its corresponding conditional posterior distribution, that is, conditional
distribution given observed data and the rest of the variables in the set. The
following steps are repeated to obtain a desired number of samples.
Sample missing ylis: For (l, i) ∈ M, We sample yli from a Bernoulli distribution with
P(yli = 1) and P(yli = 0) proportional to

m∏
t=1

{[(
p01

ti

)yti
(
p00

ti

)1−yti
](1−yt−1,i) [(

p10
ti

)1−yti
(
p00

ti

)yti
]yt−1,i

�ıti

ti (1 − �ti)1−ıti

}
(2.9)

with yli evaluated at 1 and 0 respectively.
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Sample ωtis: We sample ωti from its conditional posterior distribution that is
proportional to⎧⎪⎨

⎪⎩
N
(
ωti; xT

0tiˇ
01 + u0i,

�̃2

ti

)
[I(ωti > 0)yti + I(ωti < 0)(1 − yti)] ; if yt−1,i = 0,

N
(
ωti; xT

1tiˇ
10 + u1i,

�̃2

ti

)
[I(ωti ≤ 0)yti + I(ωti > 0)(1 − yti)] ; if yt−1,i = 1.

Sample uis: Define �0i = ∑m
t=1

ti

�̃2 (1 − yt−1,i)(ωti − xT
0tiˇ

01), �1i = ∑m
t=1

ti

�̃2 yt−1,i(ωti

− xT
1tiˇ

10), �0i = ∑m
t=1

ti

�̃2 (1 − yt−1,i), and �1i = ∑m
t=1

ti

�̃2 yt−1,i. Sample ui from a
bivariate normal distribution N(�i,�i) where �i = �i(�0i,�1i)T and

�i = [
diag(�0i, �1i) + �−1]−1

.

Sample tis: Sample ti from �( c
2 + 0.5, Ati

2�̃2 + c
2) where Ati = (ωti − xT

0tiˇ
01

− u0i)2I(yt−1,i = 0) + (ωti − xT
1tiˇ

10 − u1i)2I(yt−1,i = 1) and c = 7.3.
Sample �: Sample � from

IW(n + a + 1,

n∑
i=1

uiuT
i + 2a�),

where a is the degree of freedom in the hierarchical half-t prior.

Sample �: Sample diagonal value �j from �

(
(a + 2)/2, 1

ς2
j

+ a�−1
jj

)
, where �−1

jj is

the jth diagonal value of �−1.
Sample ˇ: Sample ˇ01 from N(�0B0, �0) where

�−1
0 =

m∑
t=1

∑
i∈S0t

ti

�̃2
x0tixT

0ti + 1

c2
ˇ

I, B0 =
m∑

t=1

∑
i∈S0t

ti

�̃2
(ωti − u0i)x0ti,

and S0t is the set of indices for individuals whose states are 0 at time t − 1. Similarly,
define S1t is the set of indices for individuals whose states are 1 at time t − 1. We
sample ˇ10 from N(�1B1, �1) where

�−1
1 =

m∑
t=1

∑
i∈S1t

ti

�̃2
x1tixT

1ti + 1

c2
ˇ

I, B1 =
m∑

t=1

∑
i∈S1t

ti

�̃2
(ωti − u1i)x1ti.

Sample ˛: We propose a Metropolis–Hasting step for updating ˛. The conditional
distribution of ˛ given y, u, 
, and D, denoted as p(˛|·), is proportional to

n∏
i=1

m∏
t=1

�ıti

ti (1 − �ti)1−ıtiN(˛; 0, c2
˛I).

Statistical Modelling xxxx; xx(x): 1–30



10 Li Li et al.

Let ˛∗ be the latest accepted value for ˛. Sample ˛′ from proposal distribution
N(˛∗, V) and accept ˛′ with probability min{p(˛′|.)/p(˛∗|.), 1}. The automatic tuning
of V in Haario et al. (2005) is used in this article to get acceptance rate in the
20%–50% range. Specifically, let the sequence ˛(1), ˛(2), . . . be the states of the
Markov chain for ˛. When deciding the k-th state ˛, we sample ˛′ ∼ N(˛(k−1), V(k))
with

V(k) =
{

V(0), k < k0,

sVar
{
˛(1), · · · , ˛(k−1)

} + s0Iq, k > k0,

where q is the dimension of ˛, s is recommended to be 2.42/q, k0 is the number of
burn-in iterations, s0 is a small constant, V(0) is the initial variance of the proposal
distribution and Iq is an identity matrix.

We point out that a recently developed Polya–Gamma data augmentation
approach (Polson et al., 2013) can also yield a Gibbs sampler for the Bayesian
logistic-regression type model. It is our future interest to compare the two
augmentation approaches in extensions of the transition event model.

2.4 Posterior predictive checking and model comparison

Posterior predictive checking: To assess the goodness of fit of our models, we adopt
the posterior predictive checking approach in Gelman et al. (2014, Chapter 6) and
Xu et al. (2016). The idea is that the replicated data generated under the model
should look similar to observed data if the model fits. In our scenario, observed
data include yobs and ı. Define yrep

obs
and ırep as the replicated data that could

have been observed, or we would see if the data generating process for yobs and ı
were replicated with the same model (including model covariates and examination
times) and the same value of model parameters. As an illustration, we define a test
quantity G(yt,obs) = ∑

i∈Ot
yti/n as the percentage of individuals smoking at time t

among the all responses, where Ot as the set of indices (ti) for all the responses
that are not missing at time t. Posterior predictive distribution of the test quantity
can be approximated by MCMC samples G(yrep,l

t,obs
) = ∑

i∈Orep,l
t

y
rep,l
ti /n, l = 1, . . . , L.

We summarize the posterior predictive distribution by the sample mean, 2.5%
quantile and 97.5% quantile of the samples. Since we are interested in smoking
status transitions and missing model estimation, we also compare observed transition
percentages to simulated transition percentages and observed missing percentages to
simulated missing percentages.

Model comparison: We compare models using LPML (Geisser and Eddy, 1979)
and WAIC (Watanabe, 2010). LPML is a measure of a model’s predictive ability and
WAIC is a fully Bayesian approach for estimating point wise out-of-sample prediction
accuracy from a fitted Bayesian model. More recently, Linero and Daniels (2015) used
LPML to compare models for longitudinal studies with missing data. Denote yobs and
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ymis as the observed and missing responses respectively, yobs,−i and ı−i as the observed
responses and missing indicators for those with individual i removed.

By definition,

LPML =
n∑

i=1

log(p(yobs,i, ıi|yobs,−i, ı−i)),

where p(yobs,i, ıi|yobs,−i, ı−i) is the predictive probability of yobs,i and ıi given
remaining observed data yobs,−i and ı−i. Using the representation in Gelfand and
Dey (1994),

p(yobs,i, ıi|yobs,−i, ı−i)−1 =
∫

1
p(yobs,i, ıi|ui, 
)

p(
, u|yobs, ı)dud
.

Therefore, LPML can be approximated by

1
L

L∑
l=1

1

p(yobs,i, ıi|u(l)
i , 
(l))

(2.10)

where {u(l)
i , 
(l), l = 1, . . . , L} are MCMC iterates.

By definition,

WAIC =
n∑

i=1

log
∫

p(yobs,i, ıi|ui, 
)p(
, u|yobs, ı)dud
 − pwaic

where pwaic is the effective number of parameters. Two approaches of formulating
pwaic have been proposed in literature (Gelman et al., 2014). In this work, we use
the variance of individual terms in the log predictive density summed over the n data
points, that is, pwaic = ∑n

i=1 Varpost(log(p(yobs,i, ıi|ui, 
))). The WAIC value can
be approximated by

n∑
i=1

log

(
1
L

L∑
l=1

p(yobs,i, ıi|u(l)
i , 
(l))

)
−

n∑
i=1

VL
l=1

(
log

(
p(yobs,i, ıi|u(l)

i , 
(l)
))

(2.11)

where VL
l=1al = 1

L−1

∑L
l=1(al − ā)2.

Note that for the missing model we propose,

p(yobs,i, ıi|ui, 
) =
∑
ymis,i

p(yobs,i, ymis,i, ıi|ui, 
)
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and

p(yi, ıi|ui, 
)=
m∏

t=1

{[(
p01

ti

)yti
(
p00

ti

)1−yti
](1−yt−1,i) [(

p10
ti

)1−yti
(
p00

ti

)yti
]yt−1,i

�ıti

ti (1 − �ti)1−ıti

}
.

When comparing two models, a greater LPML or WAIC indicates a better fit of the
data.

3 Simulations

In this section, we aim to examine parameter estimation under a correctly specified or
partially mis-specified joint model of multilevel transitions and missing imputations.
Specifically, we consider (a) both the multilevel transition model and the missing
model are correctly specified; (b) the missing model is mis-specified and (c) the
random effects distribution is mis-specified. Also, we perform sensitivity analyses on
the hyper-parameters and conduct evaluations on the performance of model selection
criteria LPML and WAIC for the proposed models.

Simulation I: In this simulation, we examine parameter estimation under a
correctly specified multilevel transition model and missing model. For each simulated
dataset, consider n individuals and m follow-up times. Covariate vectors xsti; s =
0, 1; t = 1, . . . , m; i = 1, . . . , n were simulated independently, with their first elements
being one, their second elements sampled from N(0, 1) and their third elements
sampled from Bernoulli (0.5). Initial states {y0i, i = 1, . . . , n} were simulated from
Bernoulli(0.5). We set true regression vectors ˇ01 = (1.0, −0.5, 0.5) and ˇ10 =
(−1.0, 0.5, −0.5). Random effects ui, i = 1, . . . , n were sampled independently from
a bivariate normal distribution N2(0, �), where the diagonal elements of � are 0.6
and 0.4, and the off-diagonal elements are −0.3. Conditional on the simulated ui and
xsti, we simulated responses from the transition event model:

log

(
p01

ti

1 − p01
ti

)
= xT

0tiˇ
01 + u0i

log

(
p10

ti

1 − p10
ti

)
= xT

1tiˇ
10 + u1i

where P(Yti = 1|Yt−1,i = 0) = p01
ti and P(Yti = 1|Yt−1,i = 1) = 1 − p10

ti . Conditional
on ˛ and the sampled responses, we simulated the missing indicators from model
(2.5),

logit(�ti = 1) = ˛1 + ˛2zti + ˛3yti + ˛4yt−1,i,
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A Bayesian transition model for missing longitudinal binary outcomes 13

where zti was sampled from N(0, 0.52) and ˛ = (2.0, 0.5, −1.0, −1.0). We consider
two follow-up times for m—6 and 10, and two sample sizes for n—200 and 300.
The simulated datasets have approximately 30% missing values. The starting values
are zeros for ˇ01, ˇ10, and random effects, (1, 0, 0) for ˛ and 0.2, 0, 0.2 for �11, �12,
and �22, respectively. Hyper-parameters c2

ˇ, c2
˛ and ς2

j were fixed at 52, 52 and 105,
respectively. We obtained a chain of 6 000 iterates after a burn-in of 20 000 and
thinning of every other 5 iterates. Each simulation scenario was repeated 500 times
using the MCMC steps outlined in Section 2.3. For each parameter in ˇ01, ˇ10, ˛ and
�, we present the numerical summaries of posterior mean, bias, mean squared error
(MSE) and 95% coverage probability.

Under ‘missing model correctly specified’ in Table 1, we represent the numerical
summaries of Simulation I for ˇ01, ˇ10, � and ˛. We observe significant reductions in
biases and MSEs when sample size or follow-up times increase. We also see the same
patterns under a different set-up of ˛ (simulations not shown here). The results suggest
that the posterior means under correct model specifications provide a consistent
estimation of all parameters. Under the scenario n = 300, m = 10, all parameters
except �12 have estimated biases ranging from 0.01% to 5% of their true values. For
�12, the bias is 29% of its true value. In fact, when n = 200, the percentages of bias for
�12 are 58% and 42% for m = 6 and 10, respectively; when n = 300, they are 55%
and 29% for m = 6 and 10, respectively. As we increased m to 20 and kept n at 200,
the percentage of bias is 26% (based on simulations not shown in the table). Random
effects distributions are generally hard to estimate. The correlation parameter of ui1
and ui2 is even more difficult to estimate as it relies on the correct estimations of
ui1 and ui2 simultaneously for each individual. Without much information about the
correlation, the posterior mean of �12 is skewed towards its prior mean, which is zero
under the hierarchical half-t prior with a = 2. Using a simulated dataset under the
setting n = 200, m = 6, we observe that the empirical posterior distributions of �11
and �22 are skewed toward positive infinity, but the empirical posterior distribution
of �12 is skewed towards 0. Finally, the coverage probabilities of all parameters except
�12 are close to 95% and above 93%. Both the bias and skewness of the posterior
distribution for �12 have impacts on its 95% credible interval and results in their
comparatively lower coverage probability. Greater sample sizes or follow-up times
(n and m) draw the coverage probabilities of all parameters closer to 95% slightly.
In addition to the effect of sample size and follow-up times, prior distributions with
less prior variances may lead to greater biases and changes in coverage probabilities,
which we will discuss in the section of Simulation III.

Simulation II: In this simulation, we fitted the simulated datasets from Simulation
I again but assumes the MAR assumption for the missing model:

logit(�ti = 1) = ˛1 + ˛2zti.

Comparing the estimated biases under ‘missing model correctly specified’ (assuming
MNAR) and ‘missing model mis-specified’ (assuming MAR) in Table 1, mis-
specifying the missing model leads to greater estimated biases for all parameters and
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the differences are especially significant for the intercept terms of ˇ01 and ˇ10, and �11.
Under the scenario of n = 300, m = 10, estimated biases for the intercept terms of ˇ01,
ˇ10, and �11 are 17%, 18%, and 40% of the true values respectively, which are much
higher than the range of 0.01% to 5% from Simulation I. Therefore, we conclude
that mis-specifying the missing model can lead to substantial biases in estimation.

Simulation III: In this simulation, we fitted the simulated datasets from Simulation
I to three additional set-ups of hyper-parameters: (a) ς2

j = 10, c2
˛ = c2

ˇ = 52, (b) ς2
j =

102, c2
˛ = c2

ˇ = 52 and (c) ς2
j = 105, c2

˛ = c2
ˇ = 32. Smaller ς2

j , c2
˛ and c2

ˇ correspond
to priors with smaller variances. The results are presented in Table 2. Comparing the
results in Table 1 under ‘missing model correctly specified’ (ς2

j = 105, c2
˛ = c2

ˇ = 52),
prior settings (a), (b) and (c) have smaller MSEs for all parameters but have greater
biases and changes in coverage probabilities for some parameters. For example,
under �2

j = 10 and c2
˛ = c2

ˇ = 52, ˇ01, ˇ10 and ˛ have greater biases in general, while
�11 and �12 have slightly smaller biases. Coverage probabilities for ˇ01, ˇ10 and ˛
are less close to 95%, compared to Table 1. Similar comparisons are observed for
ς2

j = 10 and 102. Changing c2
˛ = c2

ˇ from 52 to 32 have small impacts in biases and
coverage probabilities. We therefore recommend setting ς2

j = 105, c2
˛ = c2

ˇ = 52 and
performing sensitivity analysis on hyper-parameters.’

Simulation IV: In this simulation, true random effects were simulated from
a normal mixture distribution 0.5N(�1,�) + 0.5N(�2,�) where �1 = (−0.5, 0.5),
�2 = (0.5, −0.5), and � has diagonal elements 0.6 and 0.4 and off-diagonal elements
−0.3. The marginal distribution of each random effect term has zero mean and
two modes. Results in Table 4 show small estimated biases for ˇ01 and ˇ10 but
large estimated biases for the intercept term and the coefficient of yti in ˛. Under
the scenario of n = 300 and m = 10, estimated biases range from 0.4% to 6% for
ˇ01 and ˇ10 and 1.4% to 18% for ˛. The small estimated biases for ˇ01 and ˇ10

suggest a degree of robustness of the proposed model to random effect distribution
mis-specification. It agrees with McCulloch and Neuhaus (2011) who demonstrate a
large degree of robustness of estimated covariates effects in generalized linear mixed
models. Nevertheless, the missing model parameters are sensitive to random effect
distribution mis-specification. A Bayesian non-parametric modelling of the random
effects distribution (Antonelli et al., 2016) may reduce bias in parameter estimation
and provide a framework to assess the Normality assumption. It is our interest to
explore this extension in the future.

Simulation V: In this simulation, we evaluate the performance of model selection
criteria LPML and WAIC. We simulated data from two additional set-ups of ˛ and
computed the proportions of fits choosing MNAR over MAR for the missing model
based on LPML and WAIC. Null set considers ˛=(1, 0.5, 0.0, 0.0), for which the
true missing model assumes MAR; Sets 1 and 2 assume ˛=(1, 0.5, −0.5, −0.5) and
(2, 0.5, −1, −1) respectively. Both Sets 1 and 2 assume MNAR for the true missing
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model. Greater LPML (WAIC) indicates a better model fit. Based on a cutoff of 0
(Table 3), the proportions of selecting the true models increase for both LPML and
WAIC as sample size n or follow-up times m increases. Under the scenario n = 300
and m = 10, the proportions of choosing the true models are all close to 1. WAIC
has lower proportions of selecting MNAR than LPML does under the Null set and
Set 1, suggesting a more conservative measure favouring the simpler model (MAR).
Both criteria appear to be reasonable model selection tools for our proposed model.

4 Data analysis

We apply the proposed Bayesian transition method to the data from a randomized
controlled trial evaluating extended self-help intervention for smoking cessation
(Brandon et al., 2016). In this trial, participants (smokers who wanted to quit
smoking) were randomly assigned to one of the three interventions to help them quit
smoking: traditional self-help (TSH), standard repeated mailing (SRM) and intensive
repeated mailing (IRM). TSH received an existing self-help booklet for quitting
smoking. SRM received eight different cessation booklets mailed over a 12-month
period. IRM received monthly mailings of 10 booklets and additional material
designed to enhance social support over 18 months. The authors hypothesized that
IRM would produce the greatest smoking abstinence over time, followed by SRM
and then TSH, which was included as a ‘usual care’ comparison condition. The
primary outcomes were the self-reported 7-day-point-prevalence (i.e., no tobacco
cigarettes smoked in previous seven days) smoking status collected at 6, 12, 18 and
24 months, and were coded as ‘1’ for smoking and ‘0’ for abstinent. All participants
were reported to be smoking at the baseline, that is, y0t = 1 for all individuals.
Their findings indicated that the self-help interventions with increased intensity and
duration resulted in significantly improved abstinence rates, using a logistic regression
model at each time point and the GEE approach over time. To manage missing
data, they applied multiple imputations under the MAR assumption. A post hoc
approach was then used to address the influence of MNAR on smoking status. For
our analysis, baseline characteristics expected to be related to smoking status at
follow-up assessments were age, sex, marital status and income level. After excluding
observations with missing values of the baseline features and another 308 participants
who missed all of the follow-up measurements, we have n = 1 530 participants as
the analytical data. Figure 2 displays the smoking status transitions, and the numeric
values (outside the parentheses) are the observed transition percentages.

In the following analyses below, age was standardized; sex=‘1’ for male and ‘0’
for female; marital status =‘1’ for married, and ‘0’ otherwise; income level was
standardized. Reference group refers to female participants at the sample mean
age (48 years old), not married, with income US $30 000–40 000 annually, and
treated with IRM intervention. More detailed information about the study design
and covariates can be found in Brandon et al. (2016). Hyper-parameters for the
priors are initially fixed at ς2

j = 103, cˇ = 52 and c˛ = 42. Starting values for the
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Table 1 Simulated data:True value and Monte Carlo mean, bias, and mean square error (MSE) and 95%
coverage probability of the transition event model parameters where ˛=(2.0, 0.5, −1.0, −1.0)

Missing model correctly specified Missing model mis-specified

n m Parameter True Value Mean Bias MSE 95% CP Mean Bias MSE 95% CP

200 6 ˇ01
1 1.0 0.999 0.001 0.120 0.936 0.867 0.133 0.147 0.912

ˇ01
2 −0.5 −0.532 0.032 0.066 0.940 −0.544 0.044 0.073 0.932

ˇ01
3 0.5 0.532 0.032 0.216 0.942 0.534 0.034 0.234 0.940

ˇ10
1 −1.0 −1.044 0.044 0.064 0.938 −0.641 0.359 0.196 0.680

ˇ10
2 0.5 0.529 0.029 0.034 0.934 0.567 0.067 0.042 0.924

ˇ10
3 −0.5 −0.497 0.003 0.097 0.944 −0.528 0.028 0.121 0.944

�11 0.6 0.752 0.152 0.207 0.942 1.051 0.451 0.499 0.864
�12 −0.3 −0.126 0.174 0.051 0.860 −0.117 0.183 0.062 0.872
�22 0.4 0.503 0.103 0.098 0.960 0.496 0.096 0.145 0.964
˛1 2.0 2.038 0.038 0.097 0.944 0.689 1.311 1.723 0.000
˛2 0.5 0.500 0.000 0.017 0.952 0.452 0.048 0.017 0.932
˛3 −1.0 −1.014 0.014 0.139 0.934 * * * *
˛4 −1.0 −1.017 0.017 0.028 0.948 * * * *

200 10 ˇ01
1 1.0 1.007 0.007 0.084 0.938 0.856 0.144 0.103 0.894

ˇ01
2 −0.5 −0.528 0.028 0.038 0.944 −0.531 0.031 0.040 0.944

ˇ01
3 0.5 0.528 0.028 0.140 0.934 0.527 0.027 0.139 0.944

ˇ10
1 −1.0 −1.042 0.042 0.042 0.934 −0.627 0.373 0.181 0.526

ˇ10
2 0.5 0.516 0.016 0.018 0.942 0.556 0.056 0.024 0.926

ˇ10
3 −0.5 −0.492 0.008 0.063 0.942 −0.526 0.026 0.077 0.950

�11 0.6 0.667 0.067 0.075 0.952 0.868 0.268 0.161 0.864
�12 −0.3 −0.175 0.125 0.028 0.892 −0.17 0.13 0.035 0.904
�22 0.4 0.425 0.025 0.036 0.956 0.45 0.05 0.072 0.950
˛1 2.0 2.020 0.020 0.046 0.956 0.679 1.321 1.748 0.000
˛2 0.5 0.502 0.002 0.010 0.952 0.451 0.049 0.011 0.926
˛3 −1.0 −1.005 0.005 0.067 0.948 * * * *
˛4 −1.0 −1.012 0.012 0.016 0.940 * * * *

300 6 ˇ01
1 1.0 0.993 0.007 0.078 0.942 0.853 0.147 0.102 0.904

ˇ01
2 −0.5 −0.540 0.040 0.039 0.958 −0.553 0.053 0.044 0.952

ˇ01
3 0.5 0.546 0.046 0.144 0.952 0.561 0.061 0.157 0.948

ˇ10
1 −1.0 −1.025 0.025 0.039 0.940 −0.614 0.386 0.191 0.498

ˇ10
2 0.5 0.507 0.007 0.019 0.942 0.535 0.035 0.024 0.938

ˇ10
3 −0.5 −0.515 0.015 0.071 0.948 −0.546 0.046 0.086 0.936

�11 0.6 0.668 0.068 0.100 0.954 0.961 0.361 0.269 0.856
�12 −0.3 −0.134 0.166 0.045 0.850 −0.117 0.183 0.057 0.840
�22 0.4 0.457 0.057 0.061 0.976 0.403 0.003 0.080 0.948
˛1 2.0 2.017 0.017 0.051 0.954 0.688 1.312 1.725 0.000
˛2 0.5 0.505 0.005 0.011 0.960 0.459 0.041 0.011 0.932
˛3 −1.0 −1.012 0.012 0.073 0.938 * * * *
˛4 −1.0 −0.999 0.001 0.018 0.948 * * * *

300 10 ˇ01
1 1.0 1.011 0.011 0.046 0.947 0.849 0.151 0.065 0.923

ˇ01
2 −0.5 −0.521 0.021 0.024 0.937 −0.526 0.026 0.024 0.943

ˇ01
3 0.5 0.477 0.023 0.079 0.953 0.479 0.021 0.081 0.957

ˇ10
1 −1.0 −1.021 0.021 0.024 0.950 −0.603 0.397 0.182 0.283

ˇ10
2 0.5 0.503 0.003 0.011 0.947 0.538 0.038 0.015 0.920

ˇ10
3 −0.5 −0.511 0.011 0.038 0.933 −0.546 0.046 0.050 0.947

�11 0.6 0.646 0.046 0.045 0.960 0.838 0.238 0.111 0.853
�12 −0.3 −0.214 0.086 0.018 0.897 −0.209 0.091 0.025 0.890
�22 0.4 0.402 0.002 0.023 0.973 0.407 0.007 0.041 0.947
˛1 2.0 2.024 0.024 0.031 0.957 0.686 1.314 1.730 0.000
˛2 0.5 0.505 0.005 0.007 0.947 0.458 0.042 0.008 0.907
˛3 −1.0 −1.014 0.014 0.045 0.960 * * * *
˛4 −1.0 −1.006 0.006 0.011 0.943 * * * *

Note: * indicates that the corresponding parameter is not estimated.
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Table 2 Simulated data:True value and Monte Carlo mean, bias and mean square error (MSE) and 95%
coverage probability of the transition event model parameters where ˛=(2.0, 0.5, −1.0, −1.0)

ς2
j = 10, c2

˛ = c2
ˇ = 52 ς2

j = 102, c2
˛ = c2

ˇ = 52 ς2
j = 105, c2

˛ = c2
ˇ = 32

n m Parameter True Value Mean Bias MSE 95% CP Mean Bias MSE 95% CP Mean Bias MSE 95% CP

200 6 ˇ01
1 1.0 1.015 0.015 0.120 0.952 1.006 0.006 0.121 0.942 0.987 0.013 0.114 0.942

ˇ01
2 −0.5 −0.530 0.030 0.065 0.932 −0.545 0.045 0.066 0.950 −0.530 0.030 0.063 0.946

ˇ01
3 0.5 0.528 0.028 0.189 0.962 0.526 0.026 0.206 0.952 0.540 0.040 0.176 0.960

ˇ10
1 −1.0 −1.035 0.035 0.062 0.952 −1.015 0.015 0.070 0.938 −1.043 0.043 0.070 0.920

ˇ10
2 0.5 0.527 0.027 0.031 0.952 0.534 0.034 0.032 0.938 0.512 0.012 0.030 0.944

ˇ10
3 −0.5 −0.536 0.036 0.114 0.938 −0.550 0.050 0.114 0.926 −0.508 0.008 0.104 0.946

�11 0.6 0.714 0.114 0.165 0.952 0.755 0.155 0.187 0.952 0.704 0.104 0.175 0.946
�12 −0.3 −0.120 0.180 0.053 0.856 −0.127 0.173 0.052 0.870 −0.112 0.188 0.056 0.820
�22 0.4 0.489 0.089 0.094 0.964 0.526 0.126 0.117 0.962 0.509 0.109 0.106 0.968
˛1 2.0 2.054 0.054 0.080 0.954 2.039 0.039 0.095 0.930 2.021 0.021 0.080 0.948
˛2 0.5 0.502 0.002 0.017 0.960 0.511 0.011 0.021 0.942 0.517 0.017 0.018 0.950
˛3 −1.0 −1.036 0.036 0.108 0.958 −1.012 0.012 0.131 0.938 −0.999 0.001 0.109 0.946
˛4 −1.0 −1.017 0.017 0.024 0.950 −1.014 0.014 0.024 0.952 −1.010 0.010 0.026 0.962

200 10 ˇ01
1 1.0 0.974 0.026 0.092 0.910 1.000 0.000 0.082 0.946 1.002 0.002 0.069 0.958

ˇ01
2 −0.5 −0.540 0.040 0.041 0.910 −0.534 0.034 0.040 0.934 −0.517 0.017 0.034 0.946

ˇ01
3 0.5 0.519 0.019 0.142 0.960 0.539 0.039 0.143 0.938 0.524 0.024 0.129 0.944

ˇ10
1 −1.0 −1.024 0.024 0.033 0.980 −1.034 0.034 0.040 0.938 −1.038 0.038 0.036 0.950

ˇ10
2 0.5 0.505 0.005 0.018 0.950 0.514 0.014 0.016 0.956 0.507 0.007 0.016 0.950

ˇ10
3 −0.5 −0.520 0.020 0.061 0.950 −0.503 0.003 0.061 0.942 −0.487 0.013 0.061 0.946

�11 0.6 0.701 0.101 0.081 0.970 0.668 0.068 0.081 0.948 0.655 0.055 0.071 0.938
�12 −0.3 −0.174 0.126 0.030 0.880 −0.171 0.129 0.030 0.872 −0.181 0.119 0.030 0.868
�22 0.4 0.407 0.007 0.028 0.990 0.414 0.014 0.034 0.958 0.428 0.028 0.038 0.962
˛1 2.0 2.018 0.018 0.037 0.980 2.020 0.020 0.053 0.944 2.011 0.011 0.050 0.942
˛2 0.5 0.501 0.001 0.013 0.910 0.511 0.011 0.010 0.954 0.507 0.007 0.010 0.962
˛3 −1.0 −0.986 0.014 0.057 0.950 −1.005 0.005 0.074 0.944 −1.002 0.002 0.070 0.942
˛4 −1.0 −1.022 0.022 0.013 0.970 −1.008 0.008 0.015 0.954 −0.999 0.001 0.015 0.948

300 6 ˇ01
1 1.0 0.992 0.008 0.081 0.934 0.985 0.015 0.070 0.954 0.973 0.027 0.074 0.942

ˇ01
2 −0.5 −0.526 0.026 0.037 0.940 −0.521 0.021 0.041 0.946 −0.507 0.007 0.038 0.942

ˇ01
3 0.5 0.517 0.017 0.142 0.936 0.531 0.031 0.134 0.956 0.506 0.006 0.122 0.956

ˇ10
1 −1.0 −1.042 0.042 0.044 0.934 −1.027 0.027 0.037 0.960 −1.014 0.014 0.038 0.954

ˇ10
2 0.5 0.513 0.013 0.021 0.940 0.518 0.018 0.019 0.956 0.518 0.018 0.020 0.954

ˇ10
3 −0.5 −0.500 0.000 0.068 0.958 −0.513 0.013 0.065 0.958 −0.538 0.038 0.078 0.934

�11 0.6 0.660 0.060 0.101 0.950 0.655 0.055 0.105 0.942 0.675 0.075 0.104 0.964
�12 −0.3 −0.134 0.166 0.046 0.818 −0.136 0.164 0.044 0.826 −0.140 0.160 0.042 0.832
�22 0.4 0.452 0.052 0.070 0.940 0.456 0.056 0.063 0.972 0.456 0.056 0.063 0.960
˛1 2.0 2.040 0.040 0.062 0.942 2.012 0.012 0.049 0.964 2.009 0.009 0.046 0.958
˛2 0.5 0.496 0.004 0.012 0.942 0.500 0.000 0.012 0.952 0.512 0.012 0.011 0.940
˛3 −1.0 −1.028 0.028 0.090 0.920 −0.997 0.003 0.071 0.954 −0.996 0.004 0.068 0.946
˛4 −1.0 −1.006 0.006 0.016 0.952 −1.011 0.011 0.018 0.936 −1.003 0.003 0.017 0.940

300 10 ˇ01
1 1.0 0.999 0.001 0.050 0.953 0.967 0.033 0.051 0.940 0.981 0.019 0.049 0.943

ˇ01
2 −0.5 −0.531 0.031 0.024 0.947 −0.524 0.024 0.024 0.947 −0.512 0.012 0.022 0.953

ˇ01
3 0.5 0.498 0.002 0.075 0.973 0.548 0.048 0.087 0.957 0.528 0.028 0.084 0.957

ˇ10
1 −1.0 −1.036 0.036 0.028 0.933 −1.033 0.033 0.024 0.933 −1.005 0.005 0.026 0.930

ˇ10
2 0.5 0.500 0.000 0.010 0.923 0.511 0.011 0.010 0.963 0.511 0.011 0.012 0.947

ˇ10
3 −0.5 −0.496 0.004 0.040 0.950 −0.500 0.000 0.038 0.950 −0.531 0.031 0.043 0.940

�11 0.6 0.633 0.033 0.045 0.943 0.628 0.028 0.043 0.947 0.663 0.063 0.053 0.937
�12 −0.3 −0.206 0.094 0.023 0.877 −0.197 0.103 0.022 0.850 −0.204 0.096 0.019 0.913
�22 0.4 0.411 0.011 0.026 0.940 0.397 0.003 0.020 0.970 0.401 0.001 0.022 0.967
˛1 2.0 2.017 0.017 0.028 0.960 2.009 0.009 0.030 0.943 1.996 0.004 0.030 0.950
˛2 0.5 0.498 0.002 0.006 0.960 0.492 0.008 0.008 0.913 0.501 0.001 0.008 0.950
˛3 −1.0 −1.003 0.003 0.041 0.957 −0.995 0.005 0.038 0.967 −0.985 0.015 0.043 0.960
˛4 −1.0 −1.010 0.010 0.010 0.953 −1.010 0.010 0.009 0.963 −1.005 0.005 0.013 0.917
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Table 3 Simulated data: Proportions of greater LPML (WAIC) for models assuming MNAR than those
assuming MAR. Null set: ˛=(1, 0.5, 0.0, 0.0), for which the true model assumes MAR; Set 1:
˛=(1, 0.5, −0.5, −0.5); Set 2: ˛=(2, 0.5, −1, −1). Both Sets 1 and 2 assume MNAR for the true model

LPML WAIC

n m Null set Set 1 Set 2 Null set Set 1 Set 2

100 6 0.16 0.87 1.00 0.10 0.75 1.00
100 10 0.17 0.93 1.00 0.11 0.87 1.00
200 6 0.13 0.99 1.00 0.09 0.95 1.00
200 10 0.13 1.00 1.00 0.04 0.98 1.00
300 6 0.11 1.00 1.00 0.05 0.98 1.00
300 10 0.07 1.00 1.00 0.01 1.00 1.00

parameters are same as those in the simulation studies. All summaries were based on
30 000 posterior samples for the parameters, which were obtained after a burn-in of
200 000 iterations and a thinning of every other 10 iterates.

We first considered a full MNAR model that assesses all prospective moderators
(i.e., sex, age, marital status and income level) of the treatment effect via interaction
terms. We found that marital status interacts with treatment significantly. Therefore,
we refitted a reduced MNAR model which includes the main effects of all baseline
covariates plus an interaction term: treatment × marital status. LPML and WAIC
for the full model are −5 014 and −4 806, and for the reduced model are −5 020
and −4 827. The full model is slightly preferred. For the reduced model, Table 5
provides estimates of the posterior means and the associated 95% credible intervals
for the transition parameters ˇ01 and ˇ10 (01: abstinent to smoking and 10: smoking
to abstinent) and the missing model parameters ˛, respectively.

Based on the summaries for ˇ01, P(A → S) ≈ exp(0.53)/(1 + exp(0.53)) ≈ 0.629
for the reference group, which indicates that participants in the reference group have
a probability of 62.9% to transition from abstinence to smoking. Age has a negative
effect on P(A → S). Sex and income have no significant effect on resuming smoking
or remaining abstinent. Marital status interacts with treatment. Married participants
in the SRM group are more likely to resume smoking than those in the IRM group.
Based on the 95% credible intervals of the contrasts in Table 6, P(A → S) of the SRM
group and the IRM group for married participants are also significantly different.

Based on the summaries for ˇ10, P(S → A) ≈ 0.093 for the reference group. If
we modify the treatment for the reference group to TSH or SRM, the probability
of quitting smoking decreases by 5.0% or 3.3%, respectively, that is, (P(S → A) ≈
0.043 or 0.060). The differences are also significant according to the 95% credible
intervals of the contrasts in Table 6. Age and marital status have no significant effect
on cessation. Male participants are more likely to quit in any of the three groups
than female participants, as the probability of the coefficient for sex being greater
than zero is 97%. Finally, participants with higher income are more likely to quit as
the probability of the coefficient of income being greater than zero is 92%.

Based on the summaries for ˛ in Table 5 under MNAR, the coefficient for current
smoking status is significantly negative, indicating that participants who are currently
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Table 4 Simulated data:True value and Monte Carlo mean, bias and mean square error (MSE) and 95%
coverage probability of the transition event model and missing model parameters where random effects
were simulated from 0.5N(�1,�) + 0.5N(�2,�), �1 = (−0.5, 0.5), �2 = (0.5, −0.5) and � has diagonal
elements 0.6 and 0.4, and off-diagonal elements −0.3

n m Parameter True Value Mean Bias MSE 95% CP

200 6 ˇ01
1 1.0 0.963 0.037 0.090 0.958

ˇ01
2 −0.5 −0.520 0.020 0.031 0.942

ˇ01
3 0.5 0.559 0.059 0.109 0.954

ˇ10
1 −1.0 −1.043 0.043 0.058 0.944

ˇ10
2 0.5 0.501 0.001 0.016 0.950

ˇ10
3 −0.5 −0.521 0.021 0.059 0.940

˛1 2.0 2.400 0.400 0.748 0.936
˛2 0.5 0.502 0.002 0.016 0.954
˛3 −1.0 −1.373 0.373 0.843 0.942
˛4 −1.0 −1.017 0.017 0.030 0.954

200 10 ˇ01
1 1.0 0.986 0.014 0.059 0.944

ˇ01
2 −0.5 −0.512 0.012 0.017 0.948

ˇ01
3 0.5 0.537 0.037 0.069 0.936

ˇ10
1 −1.0 −1.070 0.070 0.042 0.928

ˇ10
2 0.5 0.496 0.004 0.008 0.960

ˇ10
3 −0.5 −0.484 0.016 0.035 0.932

˛1 2.0 2.279 0.279 0.441 0.928
˛2 0.5 0.497 0.003 0.010 0.952
˛3 −1.0 −1.272 0.272 0.520 0.920
˛4 −1.0 −0.999 0.001 0.018 0.944

300 6 ˇ01
1 1.0 0.994 0.006 0.066 0.936

ˇ01
2 −0.5 −0.528 0.028 0.022 0.948

ˇ01
3 0.5 0.521 0.021 0.078 0.944

ˇ10
1 −1.0 −1.049 0.049 0.040 0.948

ˇ10
2 0.5 0.509 0.009 0.010 0.96

ˇ10
3 −0.5 −0.497 0.003 0.035 0.948

˛1 2.0 2.283 0.283 0.492 0.948
˛2 0.5 0.511 0.011 0.012 0.940
˛3 −1.0 −1.286 0.286 0.564 0.950
˛4 −1.0 −0.993 0.007 0.019 0.946

300 10 ˇ01
1 1.0 1.023 0.023 0.040 0.942

ˇ01
2 −0.5 −0.522 0.022 0.014 0.932

ˇ01
3 0.5 0.512 0.012 0.040 0.954

ˇ10
1 −1.0 −1.056 0.056 0.028 0.918

ˇ10
2 0.5 0.498 0.002 0.005 0.962

ˇ10
3 −0.5 −0.494 0.006 0.022 0.954

˛1 2.0 2.178 0.178 0.229 0.960
˛2 0.5 0.504 0.004 0.007 0.942
˛3 −1.0 −1.181 0.181 0.268 0.962
˛4 −1.0 −0.997 0.003 0.011 0.952

smoking are more likely to have missing responses. Sex, income and time t (months
6, 12, 18, and 24 were coded as t = −1, 0, 1, 2) all have negative effects, indicating
that male participants are more likely to have missing responses than women; higher
income participants are more likely to have missing responses than lower income
participants; more responses are missing as time increases.
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Lastly, the correlation between u0i and u1i (�12/
√

�11�22) has an estimated value
−0.536 and 95% credible interval (−0.827, −0.156). The correlation is significantly
less than zero, which implies that entering abstinent status is negatively correlated
with entering smoking status. The standard deviation of u0i (

√
�11) has an estimated

value 3.248 and 95% credible interval (2.241, 4.617). The standard deviation of u1i

(
√

�22) has an estimated value 1.652 and 95% credible interval (1.347, 1.966).
Using the MCMC samples for the reduced MNAR model, we can compute

the population averaged probabilities of smoking patterns for every subgroup. To
illustrate, we focus on patterns ‘S → A → A → A → A’ and ‘S → S → S → S → S’
for each treatment group, while other variables are held at reference values. Given
ˇ01, ˇ10 and �, the probability of observing pattern S → A → A → A → A is

∫
exp(xTˇ10 + u1)

1 + exp(xTˇ10 + u1)

[
1

1 + exp(xTˇ01 + u0)

]3

N(u; 0, �)du,

where u = (u0, u1). We approximate the integration above by

1
L

L∑
l=1

⎧⎨
⎩ exp(xTˇ10 + u

(l)
1 )

1 + exp(xTˇ10 + u
(l)
1 )

[
1

1 + exp(xTˇ01 + u
(l)
0 )

]3
⎫⎬
⎭

where u1, . . . , u(L) are independent samples drawn from N(0, �). Using the MCMC
samples of ˇ01, ˇ10 and �, we obtain the posterior mean and the 95% credible interval
of the probability for each pattern. Table 7 displays the results for each smoking
cessation group. The IRM group has the highest estimated probability of ‘S → A →
A → A → A’ pattern and lowest estimated probability for ‘S → S → S → S → S’.

To assess the goodness of fit of the reduced MNAR model, we use the
proposed posterior predictive checking method in Section 2.4 and 6 000 replicated
datasets. Table 8 displays the summaries of smoking percentages and response rates
(percentages of participants who responded smoking status) for both the observed and
replicated data. We find a minimal discrepancy between the observed and replicated
data. We also see no discrepancy between the observed and replicated data in response
rates. In addition, we displayed in Figure 2 the summaries of transition probabilities
among smoking, abstinent and missing. The transition probabilities between smoking
and abstinent are well matched by the replicated data. The transition probabilities
between missing and smoking statuses are not fully predicted by the replicated data.

For sensitivity analysis, we first compare the reduced MNAR model to a MAR
version of the model. The LPML and WAIC of the MAR model are −5 056 and
−4 866. Therefore the reduced MNAR model’s predictive ability is better than that
of reduced MAR model. The posterior predictive checking of the reduced MAR
model in Table 8 and the transition map in Figure 3 also suggest that the MNAR
model fits the observed data slightly better than the MAR model. We present the
parameter estimation results of the reduced MAR model in Tables 5 and 6.
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Transition map
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0.18 (0.17, 0.22)

0.22(0.18 ,0.32)

0.61(0.51, 0.68)

0.18(0.1, 0.22)

0.53(0.62 , 0.75)

0.13(0.07, 0.16)

0.35(0.15 , 0.26)

0.76(0.62 ,0.69)
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0.17(0.11, 0.22)

0.31(0.56 , 0.68)

0.09(0.08 , 0.16)

0.59(0.21, 0.32)

0.73(0.56, 0.63)

0.1(0.07,0.11)

0.17(0.28 , 0.36)

0.18(0.1, 0.19)

0.66(0.6, 0.74)

0.16(0.14 ,  0.25)

0.24(0.5, 0.61)

0.08(0.08 ,  0.15)

0.68 (0.28 , 0.39)
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Figure 2 Smoking status transition map based on MNAR assumption

Notes: S—smoking; A—abstinent; M—missing; arrows are the transitions; predictive summaries of the
transitions are placed in the same vertical orders of the corresponding arrows; the numeric values outside
the brackets are observed transition percentages; the numeric values inside the brackets are 95% sample
intervals of transition percentages of the replicated data.

We also perform sensitivity analyses on hyper-parameters under the reduced
MNAR model. The resulting LPML and WAIC of each set-up is represented in
Table 9. We noticed very small changes in the LPML and WAIC values. Model
parameter estimates also show no change under different set-ups of c2

ˇ and ς2
j . When

we increase or decrease c2
˛, we noticed small changes in the estimates. Results of the

reduced MNAR model under c2
˛ = 32 and 52 are represented in Table 10.

Finally, we assess the MCMC convergence of the samples for the reduced MNAR
model. Geweke’ z-statistics (Geweke, 1992) for the parameters are displayed in
Figure 4 which suggests convergence for all parameters. The z-statistic of ˇ01 (marital
status SRM) is a little larger than two but the MCMC chain shows no obvious poor
mixing.

5 Conclusion

We proposed an extension of a two-state transition model to manage missing
smoking status and applied the model to a smoking cessation intervention study. We
further proposed an MCMC algorithm for obtaining accurate Bayesian inferences
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Table 6 Smoking cessation data: Posterior mean (95% credible interval) for contrasts of the coefficients for
intercept and marital status between TSH and IRM, and SRM and IRM

MNAR MAR

ˇ01 ˇ10 ˇ01 ˇ10

Intercept (TSH − IRM) 1.00 (−0.19, 2.32) −0.82 (−1.24, −0.41) 1.23 (−0.31, 2.90) −0.88 (−1.31, −0.46)
Intercept (SRM −IRM) −0.25 (−1.48, 0.94) −0.46 (−0.88, −0.06) −0.53 (−2.17, 1.03) −0.56 (−0.98, −0.14)
Marital status (TSH − IRM) −0.00 (−1.94, 1.89) 0.29 (−0.39, 0.97) −0.26 (−2.77, 2.21) 0.33 (−0.37, 1.04)
Marital status (SRM − IRM) 2.06 ( 0.16, 4.24) 0.41 (−0.27, 1.10) 2.79 ( 0.36, 5.50) 0.51 (−0.19, 1.23)

Transition map

0.73(0.58 ,  0.65)

0.14(0.11 ,0.15)

0.13(0.23 , 0.28)

0.71(0.62 , 0.69 )

0.1(0.07, 0.11)

0.18(0.22 , 0.29)

0.22(0.17 , 0.32)

0.61 (0.49, 0.65)

0.18(0.14 , 0.25)

0.53(0.53 , 0.63)

0.13(0.13 , 0.21)

0.35(0.21, 0.3)
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0.09(0.07, 0.11)

0.15(0.22 , 0.29)
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0.09(0.14, 0.23)

0.59(0.21, 0.3)

0.73(0.63 , 0.7)
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0.17(0.22 , 0.29)

0.18(0.11, 0.21)

0.66(0.59 , 0.71)
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0.24(0.5, 0.61)
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Figure 3 Smoking status transition map based on MAR assumption

Notes: S—smoking; A—abstinent; M—missing; arrows are the transitions; predictive summaries of the
transitions are placed in the same vertical orders of the corresponding arrows; the numeric values outside
the brackets are observed transition percentages; the numeric values inside the brackets are 95% sample
intervals of transition percentages of the replicated data.

under MAR and MNAR missing model assumption. We developed a posterior
predictive checking to assess model assumption and evaluated the performances
of LPML and WAIC in model comparison. The proposed model can be used to
evaluate the effectiveness of smoking interventions by comparing the estimated
transitioning probabilities of smoking behaviours and probabilities of longitudinal
smoking behaviour patterns. The application of this method to a randomized
controlled intervention trial for smoking cessation provides information on how
the interventions influence the transition of smoking behaviours. The results are
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Table 9 Smoking cessation data: Reduced MNAR model performance under different set-ups of
hyper-parameters

MNAR

ς2
j cˇ c˛ LPML WAIC

103 52 42 −5020 −4827
102 52 42 −5019 −4827
104 52 42 −5019 −4827
103 42 42 −5019 −4828
103 62 42 −5021 −4827
103 52 32 −5021 −4831
103 52 52 −5019 −4825

2 4 6 8 10

−3
−2

−1
0

1
2

3

G
ew

ek
e'

s 
z-

sc
or

e

01 10

Figure 4 Smoking cessation data: Geweke’ z-statistic for each parameter in the reduced MNAR model
using the first 10% and last 50% of the MCMC chain

consistent with the hypothesis and conclusions from the previous study (Brandon
et al., 2016) in which the IRM group (intensive intervention) produced the best
outcomes, followed by the SRM group (standard intervention) and then the TSH
group (usual care). But unlike the original analyses, our analyses provide a further
understanding of the transitions of smoking statuses between each follow-up point.
For example, the pair-wise comparisons at each time point in the original analyses
reported that outcome of the 7-day-point-prevalence abstinence rate of the IRM
group is significantly better than that of the SRM group at 18 months. Our
analyses suggest that the difference is mostly due to the significant difference in the
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transition probability P(S → A), instead of the difference in the transition probability
P(A → S) or P(A → A). In other words, IRM is superior to SRM in helping people
quit smoking, but the intervention is not significantly better at helping people to
remain abstinent. The original study has many other covariates in addition to
those used in our models. One of the challenges of including many covariates
is dealing with missing observations. In a Bayesian framework, the challenge lies
in the fact that we need to specify a flexible joint distribution for incomplete
categorical and continuous variables that will be used for imputation. Our future
research will focus on extending the current model to allow missing covariates.
We are also interested in extending the current missing model of the response to
a flexible class of missing data models proposed in Ibrahim et al. (2001). Instead of
assuming independent binary distribution of missing indicators ı1i, . . . , ımi, one can
assume a joint distribution of the missing indicators, for example, p(ı1i, . . . , ımi|yi, zi)
= p(ı1i|yi, z1i, �1)p(ı2i|ı1i, yi, z1i, �2) . . . p(ımi|ı1i, . . . , ım−1,i, yi, zmi, �m) where each
conditional distribution is modeled using a logistic regression.

Supplementary material

We provide the codes for a simulation example via the link http://www.statmod.
org/smij/archive.html.
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