Mathematics from a Historical Perspective Math 305/507, Fall 2024

Jens Lorenz

June 24, 2024

Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131

Contents

1	Thales of Miletus and Pythagoras of Samos	2	
2	Euclidean Geometry and Beyond	3	
3	Introduction to Number Theory		
4	Perfect Numbers: From Euclid to Euler		
5	Mersenne Primes and Fermat Primes5.1Mersenne Primes5.2Fermat Primes	10 10 10	
6	Ellipses: Orbits of Planets	12	

1 Thales of Miletus and Pythagoras of Samos

Thales (622–547 B.C.) traveled to Egypt, where a learned geometry. Pythagoras, 505–500 B.C.

A list of geometric propositions:

- 1. If two straight lines intersect, the opposite angles are equal.
- 2. If two parallel lines are intersected by a straight line, then corresponding angles are equal. This can be used to show:
- 3. The sum of the three angles of a triangle add up to 180 degrees.
- 4. In an isosceles triangle the angles at the base are equal to each other.
- 5. Thales Theorem: An angle inscribed in a semi-circle is a right angle.
- 6. Two triangles are similar if they have the same angles. The lengths (a, b, c) and A, B, C of the sides of two similar triangles are proportional, i.e., a/b = A/B etc.

This result can be used to give a nice proof of the Theorem of Pythagoras. See Burton, p. 159.

7. The Theorem of Pythagoras If a, b, c are the lengths of the sides of a rectangular triangle then

$$a^2 + b^2 = c^2 \; .$$

2 Euclidean Geometry and Beyond

Euclid lived in Alexandria, Egypt, 323–285 B.C.

- 1. Constructions with straight edge and compass Examples: Perpendiculars and parallels
- 2. The sum of angles in a triangle
- 3. The theorem of Thales of Miletus Thales of Miletus lived in an area which is now in Turkey; 624–545 BC.
- 4. The inscribed angle theorem
- 5. The theorem of Pythagoras If a, b, c are the lengths of the sides of a rectangular triangle then

$$c^2 = a^2 + b^2$$
.

Law of cosines
 Let a, b, c denote the lengths of the sides of a triangle. Then

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

where γ is the angle opposite to the side of length c.

- 7. $\sqrt{2}$ is irrational Zeno's paradox
- Archimedes, 287–212 BC Archimedes lived in Syracuse, Sicily, an Italian island. He studied the volumes and surface areas of spheres.
- 9. Construction of a regular pentagon Which lengths can be constructed?
- Construction of a regular N-gone Carl Friedrich Gauss, 1777–1855, German.

A regular N-gone can be constructed with straight edge and compass if and only if

$$N = 2^k F_1 F_2 \cdots F_r$$

where $k \in \{0, 1, 2, ...\}$ and $F_1, F_2, ..., F_n$ are distinct Fermat primes.

3 Introduction to Number Theory

1. Pythagorean triples

Three positive integers a, b, c form a Pythagorean triple if

$$a^2 + b^2 = c^2 \ .$$

Euclid knew that the formulas

$$a = 2uv, \quad b = u^2 - v^2, \quad c = u^2 + v^2$$

give a Pythagorean triple if u and v are positive integers and u > v. Are there other Pythagorean triples?

2. Triangular numbers (Burton, p. 95–101) For $n \in \mathbb{N}$ the triangular number t_n is

$$t_n = 1 + 2 + \ldots + n = \frac{1}{2} n(n+1)$$
.

One can notice geometrically that

$$t_n + t_{n+1} = (n+1)^2$$
 for all $n \in \mathbb{N}$.

A formal proof can be given by induction.

Another observation:

$$1 + 3 + 5 + \ldots + (2n + 1) = n^2$$
.

Again, a formal proof can be given by induction. Sum of cubes:

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = t_n^2$$

Proof by induction:

The equation holds for n = 1. Set

$$Q_n = 1^3 + 2^3 + 3^3 + \ldots + n^3$$

and assume that for some fixed n we have $Q_n = t_n^2$. Then we have

$$Q_{n+1} = Q_n + (n+1)^3$$

= $\frac{1}{4}n^2(n+1)^2 + (n+1)^3$
= $\frac{1}{4}(n+1)^2(n^2 + 4(n+1))$
= $\frac{1}{4}(n+1)^2(n^2 + 4n + 4)$
= $\frac{1}{4}(n+1)^2(n+2)^2$
= t_{n+1}^2

This completes the induction.

4 Perfect Numbers: From Euclid to Euler

Leonard Euler, Swiss, 1707–1783

Let $d, n \in \mathbb{N}$, i.e., d and n are positive integers. The number d is called a divisor of n if n = dm for some positive integer m. A divisor d of n is called a *proper divisor* of n if $1 \leq d < n$. A number $n \in \mathbb{N}$ is called *perfect* if the proper divisors d of n add up to n, i.e.,

$$\sum_{1 \le d < n, \, d \mid n} d = n$$

Example 1: The number n = 6 has the proper divisors 1, 2, 3. Since

$$1 + 2 + 3 = 6$$

the number 6 is perfect.

Example 2: The number n = 28 has the proper divisors 1, 2, 4, 7, 14. Since

$$1 + 2 + 4 + 7 + 14 = 28$$

the number 28 is perfect.

According to Burton, p. 505, Euclid knew the following:

Theorem 4.1 (Euclid) Let $k \in \mathbb{N}, k \geq 2$. If the number

$$P := 2^k - 1$$

is prime then the number

$$n = 2^{k-1}P = 2^{k-1}\left(2^k - 1\right) \tag{4.1}$$

is perfect.

Note that for k = 2 the number n in (4.1) is $n = 2 \cdot (4 - 1) = 6$ and for k = 3 the number is $n = 4 \cdot (8 - 1) = 28$.

Proof: First recall the geometric sum formula

$$1 + a + a^2 + \ldots + a^j = \frac{a^{j+1} - 1}{a - 1}$$
 for $a \neq 1$. (4.2)

The proper divisors of $n = 2^{k-1}P$ are

$$1, 2, 4, \dots, 2^{k-1}$$
 and $P, 2P, 4P, \dots, 2^{k-2}P$.

Using the geometric sum formula for a = 2 one obtains that the proper divisors of n add up to

$$(2^k - 1) + P(2^{k-1} - 1) =: S$$
.

Since $P = 2^k - 1$ one obtains that

$$S = P + P(2^{k-1} - 1) = 2^{k-1}P$$

Since $P = 2^k - 1$ this proves that S = n. The number n agrees with the sum of its proper divisors. \diamond

Euclid's theorem leads to the question: For which $k \in \mathbb{N}$ is $P = 2^k - 1$ a prime number? The following lemma says that $P = 2^k - 1$ is not prime unless k is prime

Lemma 4.1 Let $m \in \mathbb{N}$ be composite. Then $2^m - 1$ is not prime.

Proof: Let m = sk where $s, k \in \mathbb{N}, s \ge 2, k \ge 2$. Then we have

$$2^m = (2^s)^k = a^k$$
 with $a := 2^s \ge 4$

Using the geometric sum formula (4.2) one obtains that

$$2^{m} - 1 = a^{k} - 1 = (a - 1)\left(1 + a + \dots + a^{k-1}\right) =: AB$$

Here $A = a - 1 \ge 3$ and $B = 1 + a + \ldots + a^{k-1} \ge 5$. This proves that $2^m - 1$ is composite if m is composite. \diamond

Euler proved that Euclid's formula (4.1) gives all even perfect numbers.

Theorem 4.2 (Euler) If $n \in \mathbb{N}$ is an even perfect number then the formula

$$n = 2^{k-1} \left(2^k - 1 \right)$$

holds for some prime number k where $P := 2^k - 1$ is prime.

To prove Euler's Theorem we will use the **divisor function**:

$$\sigma(n) = \sum_{1 \leq d \leq n, \, d \mid n} d$$

defined for $n \in \mathbb{N}$. Note that n is a perfect number if and only if $\sigma(n) = 2n$.

If $m, n \in \mathbb{N}$ then the greatest common divisor of m and n is the largest integer which divides both m and n. The greatest common divisor is often denote by gcd(m, n).

Example: Let m = p and n = q denote two distinct primes. We have gcd(p,q) = 1. Also,

$$\sigma(p) = 1 + p, \quad \sigma(q) = 1 + q ,$$

and

$$\sigma(pq) = 1 + p + q + pg = (1+p)(1+q) = \sigma(p)\sigma(q) .$$

The following theorem generalizes this result:

Theorem 4.3 Let $m, n \in \mathbb{N}$ and assume that gcd(m, n) = 1. Then we have

$$\sigma(m)\sigma(n) = \sigma(mn)$$

Proof: Let d_1, \ldots, d_k denote all divisors of m and let q_1, \ldots, q_l denote all divisors of n. Then we have

$$\sigma(m) = \sum_{i=1}^{k} d_i \quad \sigma(n) = \sum_{j=1}^{l} q_j$$

and

$$\sigma(m)\sigma(n) = \sum_{i=1}^{k} \sum_{j=1}^{l} d_i q_j \; .$$

Here the products $d_i q_i$ are all the distinct divisors of mn. The claim follows. \diamond

Proof of Euler's Theorem: Assume that n is an even perfect number. Write n in the form

$$n = 2^{k-1}x$$

where $x \in \mathbb{N}$ is odd. We will prove that $x = 2^k - 1$.

In the formula $n = 2^{k-1}x$ the integer k is greater than or equal to 2 since, by assumption, the number n is even. Since n is perfect we have

$$2n = \sigma(n) = \sigma(2^{k-1}x) = \sigma\left(2^{k-1}\right)\sigma(x) \ .$$

Using the geometric sum formula one obtains that

$$\sigma\left(2^{k-1}\right) = 2^k - 1 \; .$$

Therefore,

$$2^{k}x = 2n = \left(2^{k} - 1\right)\sigma(x) .$$
(4.3)

The number $2^k - 1$ is odd. The above equation implies that $2^k - 1$ divides x. We set

$$y := \frac{x}{2^k - 1}$$

and note that $y \in \mathbb{N}$. If we can show that y = 1 then we obtain that $x = 2^k - 1$ and $n = 2^{k-1}x = 2^{k-1}(2^k - 1)$. This is the claim of Euler's Theorem. Thus, it remains to prove that y = 1.

From (4.3) we have

$$2^k \frac{x}{2^k - 1} = \sigma(x) ,$$

thus

$$2^k y = \sigma(x) \ . \tag{4.4}$$

that

Also, the equation

$$x = y\left(2^k - 1\right)$$

follows from the definition of y.

The number x has at least the divisors y and x. (Since $k \ge 2$ we have x > y, thus $x \neq y$.)

It follows that

$$\sigma(x) = x + y + S$$

where S = 0 or S is the sum of the divisors of x different from y and x if such divisors exist.

Since $x = y(2^k - 1)$ one obtains that $\sigma(x) = x + y + S = y(2^k - 1) + y + S = 2^k y + S .$

But we have
$$2^k y = \sigma(x)$$
; see (4.4). Therefore, $S = 0$. This implies that $\sigma(x) = x + y$. The only divisors of x are x and y. Clearly, x has the divisor

1; it follows that y = 1. As noted above, this gives us Euler's result that $n = 2^{k-1} \left(2^k - 1 \right). \diamond$

We summarize the theorems of Euclid and Euler:

Theorem 4.4 An even number n is perfect if and only if n has the form

$$n = 2^k \left(2^k - 1 \right)$$

for some $k \in \mathbb{N}$, where $2^k - 1$ is prime.

Recall Lemma 4.1: For $2^k - 1$ to be prime, it is necessary, but not sufficient, that k is prime.

5 Mersenne Primes and Fermat Primes

5.1 Mersenne Primes

Marin Mersenne, French, 1588–1648. He was a polymath and a Catholic priest, also interested in music theory.

The numbers

$$M_k = 2^k - 1, \quad k = 2, 3, \dots$$

are called Mersenne numbers. If M_k is prime, then M_k is called a Mersenne prime. The Mersenne primes are important because an even number n is perfect if and only if

$$n = 2^k M_k = 2^k \left(2^k - 1 \right)$$

where $M_k = 2^k - 1$ is prime. This is the Euclid–Euler Theorem.

We have shown in Lemma 4.1 that M_k is not prime unless k is prime. It can be checked that M_k is prime for

$$k = 2, 3, 5, 7, 13, 17, 19, 31$$
.

For example,

$$M_2 = 3, M_3 = 7, M_5 = 31, M_7 = 127, M_{13} = 8191, M_{17} = 131071$$

However,

$$M_{11} = 2^{11} - 1 = 2047 = 23 \cdot 89$$

is composite.

As of 2023, 51 Mersenne primes are known. It is not known if there are infinitely many primes k for which M_k is prime. It is also not known if there are infinitely many primes k for which M_k is not prime.

According to Wikipedia: M_k is prime only for 43 prime numbers k for the first $2 * 10^6$ primes k.

5.2 Fermat Primes

A prime number of the form

$$F_j = 2^{(2^j)} + 1$$
 where $j = 0, 1, 2, \dots$

is called a Fermat prime. We have:

j	2^j	$F_j = 2^{2^j} + 1$
0	1	3
1	2	5
2	4	17
3	8	257
4	16	65537

The numbers $F_j = 2^{2^j} + 1$ are prime for j = 0, 1, 2, 3, 4. However, in 1732 Euler showed that F_5 is not prime,

$$F_5 = 2^{32} + 1 = 641 \cdot 6700417$$
.

It is not known if there exists any Fermat prime F_j with j > 4.

Fermat primes are of interest since they are connected with constructability of an N-gone: A regular N-gone can be constructed with straight edge and compass if and only if N has the form

$$N = 2^k F_1 F_2 \cdots F_n$$

where $k \in \{0, 1, 2, ...\}$ and the numbers $F_1, F_2, ..., F_n$ are distinct Fermat primes.

6 Ellipses: Orbits of Planets

1. Two Definitions of an Ellipse

Planes which intersect a circular cone in a closed curve intersect the cone in a circle or an ellipse.

Another definition of an ellipse is as follows: Let F_1 and F_2 denote two distinct points in a plane E. The points F_1 and F_2 will be the foci of the ellipse. If P is a point in the plane E then let $d_j(P)$ denote the distance between P and F_j for j = 1, 2. Let a > 0 be a length, larger than the distance between F_1 and F_2 . The ellipse with foci F_1 and F_2 and major semi-axis a consists of all points $P \in E$ with

$$d_1(P) + d_2(P) = 2a$$
.

A nice proof that the two definitions of an ellipse agree with each other was given by

Pierre Dandelin, Belgium, 1794–1847.

2. An Ellipse in Cartesian Coordinates

Let a > 0 and let $0 < \varepsilon < 1$. Let

$$F_1 = (\varepsilon a, 0), \quad F_2 = (-\varepsilon a, 0)$$

denote the foci of the ellipse with major semi–axis a. The parameter ε is called the eccentricity of the ellipse. The minor semi–axis of the ellipse is

$$b = a\sqrt{1-\varepsilon^2}$$

One can show that in Cartesian coordinates the ellipse is given by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 . (6.1)$$

Here P = (x, y) is the general point of the ellipse.

3. An Ellipse in Polar Coordinates

As above, let a > 0 and $0 < \varepsilon < 1$. Let

$$F_1 = (\varepsilon a, 0), \quad F_2 = (-\varepsilon a, 0).$$

In Cartesian coordinates the ellipse with foci F_1, F_2 , with major semi-axis a and minor semi-axis $b = a\sqrt{1-\varepsilon^2}$ is given by (6.1).

Take the point $F_1 = (\varepsilon a, 0)$ as the origin of polar coordinates (r, θ) , where the angle $\theta = 0$ corresponds to the straight line from the point $F_1 = (\varepsilon a, 0)$ to the point (a, 0).

One can show: The ellipse given by (6.1) has the equation

$$r = \frac{a(1-\varepsilon^2)}{1+\varepsilon\cos\theta} \tag{6.2}$$

in the polar coordinates (r, θ) .

Note that the origin (x, y) = (0, 0) of the Cartesian coordinates (x, y) used in (6.1) is different from the origin $F_1 = (\varepsilon a, 0)$ of the polar coordinates (r, θ) used in (6.2).

4. Newton's Derivation of Kepler's Laws