Mathematics from a Historical Perspective Math 305/507, Fall 2024

Jens Lorenz

June 24, 2024

> Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131

Contents

1 Thales of Miletus and Pythagoras of Samos 2
2 Euclidean Geometry and Beyond 3
3 Introduction to Number Theory 4
4 Perfect Numbers: From Euclid to Euler 6
5 Mersenne Primes and Fermat Primes 10
5.1 Mersenne Primes 10
5.2 Fermat Primes 10
6 Ellipses: Orbits of Planets 12

1 Thales of Miletus and Pythagoras of Samos

Thales (622-547 B.C.) traveled to Egypt, where a learned geometry. Pythagoras, 505-500 B.C.

A list of geometric propositions:

1. If two straight lines intersect, the opposite angles are equal.
2. If two parallel lines are intersected by a straight line, then corresponding angles are equal. This can be used to show:
3. The sum of the three angles of a triangle add up to 180 degrees.
4. In an isosceles triangle the angles at the base are equal to each other.
5. Thales Theorem: An angle inscribed in a semi-circle is a right angle.
6. Two triangles are similar if they have the same angles. The lengths $(a, b, c$ and $A, B, C)$ of the sides of two similar triangles are proportional, i.e., $a / b=A / B$ etc.
This result can be used to give a nice proof of the Theorem of Pythagoras. See Burton, p. 159.
7. The Theorem of Pythagoras

If a, b, c are the lengths of the sides of a rectangular triangle then

$$
a^{2}+b^{2}=c^{2}
$$

2 Euclidean Geometry and Beyond

Euclid lived in Alexandria, Egypt, 323-285 B.C.

1. Constructions with straight edge and compass

Examples: Perpendiculars and parallels
2. The sum of angles in a triangle
3. The theorem of Thales of Miletus

Thales of Miletus lived in an area which is now in Turkey; 624-545 BC.
4. The inscribed angle theorem
5. The theorem of Pythagoras

If a, b, c are the lengths of the sides of a rectangular triangle then

$$
c^{2}=a^{2}+b^{2}
$$

6. Law of cosines

Let a, b, c denote the lengths of the sides of a triangle. Then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

where γ is the angle opposite to the side of length c.
7. $\sqrt{2}$ is irrational

Zeno's paradox
8. Archimedes, 287-212 BC

Archimedes lived in Syracuse, Sicily, an Italian island.
He studied the volumes and surface areas of spheres.
9. Construction of a regular pentagon

Which lengths can be constructed?
10. Construction of a regular N-gone

Carl Friedrich Gauss, 1777-1855, German.
A regular N-gone can be constructed with straight edge and compass if and only if

$$
N=2^{k} F_{1} F_{2} \cdots F_{n}
$$

where $k \in\{0,1,2, \ldots\}$ and $F_{1}, F_{2}, \ldots, F_{n}$ are distinct Fermat primes.

3 Introduction to Number Theory

1. Pythagorean triples

Three positive integers a, b, c form a Pythagorean triple if

$$
a^{2}+b^{2}=c^{2} .
$$

Euclid knew that the formulas

$$
a=2 u v, \quad b=u^{2}-v^{2}, \quad c=u^{2}+v^{2}
$$

give a Pythagorean triple if u and v are positive integers and $u>v$. Are there other Pythagorean triples?
2. Triangular numbers (Burton, p. 95-101)

For $n \in \mathbb{N}$ the triangular number t_{n} is

$$
t_{n}=1+2+\ldots+n=\frac{1}{2} n(n+1) .
$$

One can notice geometrically that

$$
t_{n}+t_{n+1}=(n+1)^{2} \quad \text { for all } \quad n \in \mathbb{N} .
$$

A formal proof can be given by induction.
Another observation:

$$
1+3+5+\ldots+(2 n+1)=n^{2}
$$

Again, a formal proof can be given by induction.
Sum of cubes:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=t_{n}^{2} .
$$

Proof by induction:
The equation holds for $n=1$. Set

$$
Q_{n}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}
$$

and assume that for some fixed n we have $Q_{n}=t_{n}^{2}$. Then we have

$$
\begin{aligned}
Q_{n+1} & =Q_{n}+(n+1)^{3} \\
& =\frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3} \\
& =\frac{1}{4}(n+1)^{2}\left(n^{2}+4(n+1)\right) \\
& =\frac{1}{4}(n+1)^{2}\left(n^{2}+4 n+4\right) \\
& =\frac{1}{4}(n+1)^{2}(n+2)^{2} \\
& =t_{n+1}^{2}
\end{aligned}
$$

This completes the induction.

4 Perfect Numbers: From Euclid to Euler

Leonard Euler, Swiss, 1707-1783
Let $d, n \in \mathbb{N}$, i.e., d and n are positive integers. The number d is called a divisor of n if $n=d m$ for some positive integer m. A divisor d of n is called a proper divisor of n if $1 \leq d<n$. A number $n \in \mathbb{N}$ is called perfect if the proper divisors d of n add up to n, i.e.,

$$
\sum_{1 \leq d<n, d \mid n} d=n .
$$

Example 1: The number $n=6$ has the proper divisors 1, 2, 3. Since

$$
1+2+3=6
$$

the number 6 is perfect.
Example 2: The number $n=28$ has the proper divisors 1, 2, 4, 7, 14. Since

$$
1+2+4+7+14=28
$$

the number 28 is perfect.
According to Burton, p. 505, Euclid knew the following:
Theorem 4.1 (Euclid) Let $k \in \mathbb{N}, k \geq 2$. If the number

$$
P:=2^{k}-1
$$

is prime then the number

$$
\begin{equation*}
n=2^{k-1} P=2^{k-1}\left(2^{k}-1\right) \tag{4.1}
\end{equation*}
$$

is perfect.
Note that for $k=2$ the number n in (4.1) is $n=2 \cdot(4-1)=6$ and for $k=3$ the number is $n=4 \cdot(8-1)=28$.

Proof: First recall the geometric sum formula

$$
\begin{equation*}
1+a+a^{2}+\ldots+a^{j}=\frac{a^{j+1}-1}{a-1} \text { for } a \neq 1 \tag{4.2}
\end{equation*}
$$

The proper divisors of $n=2^{k-1} P$ are

$$
1,2,4, \ldots, 2^{k-1} \quad \text { and } \quad P, 2 P, 4 P, \ldots, 2^{k-2} P
$$

Using the geometric sum formula for $a=2$ one obtains that the proper divisors of n add up to

$$
\left(2^{k}-1\right)+P\left(2^{k-1}-1\right)=: S
$$

Since $P=2^{k}-1$ one obtains that

$$
S=P+P\left(2^{k-1}-1\right)=2^{k-1} P .
$$

Since $P=2^{k}-1$ this proves that $S=n$. The number n agrees with the sum of its proper divisors. \diamond

Euclid's theorem leads to the question: For which $k \in \mathbb{N}$ is $P=2^{k}-1$ a prime number? The following lemma says that $P=2^{k}-1$ is not prime unless k is prime

Lemma 4.1 Let $m \in \mathbb{N}$ be composite. Then $2^{m}-1$ is not prime.
Proof: Let $m=s k$ where $s, k \in \mathbb{N}, s \geq 2, k \geq 2$. Then we have

$$
2^{m}=\left(2^{s}\right)^{k}=a^{k} \quad \text { with } \quad a:=2^{s} \geq 4 .
$$

Using the geometric sum formula (4.2) one obtains that

$$
2^{m}-1=a^{k}-1=(a-1)\left(1+a+\ldots+a^{k-1}\right)=: A B .
$$

Here $A=a-1 \geq 3$ and $B=1+a+\ldots+a^{k-1} \geq 5$. This proves that $2^{m}-1$ is composite if m is composite. \diamond

Euler proved that Euclid's formula (4.1) gives all even perfect numbers.
Theorem 4.2 (Euler) If $n \in \mathbb{N}$ is an even perfect number then the formula

$$
n=2^{k-1}\left(2^{k}-1\right)
$$

holds for some prime number k where $P:=2^{k}-1$ is prime.

To prove Euler's Theorem we will use the divisor function:

$$
\sigma(n)=\sum_{1 \leq d \leq n, d \mid n} d
$$

defined for $n \in \mathbb{N}$. Note that n is a perfect number if and only if $\sigma(n)=2 n$.
If $m, n \in \mathbb{N}$ then the greatest common divisor of m and n is the largest integer which divides both m and n. The greatest common divisor is often denote by $g c d(m, n)$.

Example: Let $m=p$ and $n=q$ denote two distinct primes. We have $\operatorname{gcd}(p, q)=1$. Also,

$$
\sigma(p)=1+p, \quad \sigma(q)=1+q,
$$

and

$$
\sigma(p q)=1+p+q+p g=(1+p)(1+q)=\sigma(p) \sigma(q) .
$$

The following theorem generalizes this result:

Theorem 4.3 Let $m, n \in \mathbb{N}$ and assume that $g c d(m, n)=1$. Then we have

$$
\sigma(m) \sigma(n)=\sigma(m n)
$$

Proof: Let d_{1}, \ldots, d_{k} denote all divisors of m and let q_{1}, \ldots, q_{l} denote all divisors of n. Then we have

$$
\sigma(m)=\sum_{i=1}^{k} d_{i} \quad \sigma(n)=\sum_{j=1}^{l} q_{j}
$$

and

$$
\sigma(m) \sigma(n)=\sum_{i=1}^{k} \sum_{j=1}^{l} d_{i} q_{j}
$$

Here the products $d_{i} q_{j}$ are all the distinct divisors of $m n$. The claim follows. \diamond
Proof of Euler's Theorem: Assume that n is an even perfect number. Write n in the form

$$
n=2^{k-1} x
$$

where $x \in \mathbb{N}$ is odd. We will prove that $x=2^{k}-1$.
In the formula $n=2^{k-1} x$ the integer k is greater than or equal to 2 since, by assumption, the number n is even. Since n is perfect we have

$$
2 n=\sigma(n)=\sigma\left(2^{k-1} x\right)=\sigma\left(2^{k-1}\right) \sigma(x) .
$$

Using the geometic sum formula one obtains that

$$
\sigma\left(2^{k-1}\right)=2^{k}-1
$$

Therefore,

$$
\begin{equation*}
2^{k} x=2 n=\left(2^{k}-1\right) \sigma(x) \tag{4.3}
\end{equation*}
$$

The number $2^{k}-1$ is odd. The above equation implies that $2^{k}-1$ divides x. We set

$$
y:=\frac{x}{2^{k}-1}
$$

and note that $y \in \mathbb{N}$. If we can show that $y=1$ then we obtain that $x=2^{k}-1$ and $n=2^{k-1} x=2^{k-1}\left(2^{k}-1\right)$. This is the claim of Euler's Theorem. Thus, it remains to prove that $y=1$.

From (4.3) we have

$$
2^{k} \frac{x}{2^{k}-1}=\sigma(x),
$$

thus

$$
\begin{equation*}
2^{k} y=\sigma(x) . \tag{4.4}
\end{equation*}
$$

Also, the equation

$$
x=y\left(2^{k}-1\right)
$$

follows from the definition of y.
The number x has at least the divisors y and x. (Since $k \geq 2$ we have $x>y$, thus $x \neq y$.)

It follows that

$$
\sigma(x)=x+y+S
$$

where $S=0$ or S is the sum of the divisors of x different from y and x if such divisors exist.

Since $x=y\left(2^{k}-1\right)$ one obtains that

$$
\sigma(x)=x+y+S=y\left(2^{k}-1\right)+y+S=2^{k} y+S
$$

But we have $2^{k} y=\sigma(x)$; see (4.4). Therefore, $S=0$. This implies that $\sigma(x)=x+y$. The only divisors of x are x and y. Clearly, x has the divisor 1 ; it follows that $y=1$. As noted above, this gives us Euler's result that $n=2^{k-1}\left(2^{k}-1\right)$. \diamond

We summarize the theorems of Euclid and Euler:
Theorem 4.4 An even number n is perfect if and only if n has the form

$$
n=2^{k}\left(2^{k}-1\right)
$$

for some $k \in \mathbb{N}$, where $2^{k}-1$ is prime.
Recall Lemma 4.1: For $2^{k}-1$ to be prime, it is necessary, but not sufficient, that k is prime.

5 Mersenne Primes and Fermat Primes

5.1 Mersenne Primes

Marin Mersenne, French, 1588-1648. He was a polymath and a Catholic priest, also interested in music theory.

The numbers

$$
M_{k}=2^{k}-1, \quad k=2,3, \ldots
$$

are called Mersenne numbers. If M_{k} is prime, then M_{k} is called a Mersenne prime. The Mersenne primes are important because an even number n is perfect if and only if

$$
n=2^{k} M_{k}=2^{k}\left(2^{k}-1\right)
$$

where $M_{k}=2^{k}-1$ is prime. This is the Euclid-Euler Theorem.
We have shown in Lemma 4.1 that M_{k} is not prime unless k is prime. It can be checked that M_{k} is prime for

$$
k=2,3,5,7,13,17,19,31 .
$$

For example,

$$
M_{2}=3, M_{3}=7, M_{5}=31, M_{7}=127, M_{13}=8191, M_{17}=131071 .
$$

However,

$$
M_{11}=2^{11}-1=2047=23 \cdot 89
$$

is composite.
As of 2023, 51 Mersenne primes are known. It is not known if there are infinitely many primes k for which M_{k} is prime. It is also not known if there are infinitely many primes k for which M_{k} is not prime.

According to Wikipedia: M_{k} is prime only for 43 prime numbers k for the first $2 * 10^{6}$ primes k.

5.2 Fermat Primes

A prime number of the form

$$
F_{j}=2^{\left(2^{j}\right)}+1 \quad \text { where } \quad j=0,1,2, \ldots
$$

is called a Fermat prime. We have:

j	2^{j}	$F_{j}=2^{2^{j}}+1$
0	1	3
1	2	5
2	4	17
3	8	257
4	16	65537

The numbers $F_{j}=2^{2^{j}}+1$ are prime for $j=0,1,2,3,4$. However, in 1732 Euler showed that F_{5} is not prime,

$$
F_{5}=2^{32}+1=641 \cdot 6700417 .
$$

It is not known if there exists any Fermat prime F_{j} with $j>4$.
Fermat primes are of interest since they are connected with constructability of an N-gone: A regular N-gone can be constructed with straight edge and compass if and only if N has the form

$$
N=2^{k} F_{1} F_{2} \cdots F_{n}
$$

where $k \in\{0,1,2, \ldots\}$ and the numbers $F_{1}, F_{2}, \ldots, F_{n}$ are distinct Fermat primes.

6 Ellipses: Orbits of Planets

1. Two Definitions of an Ellipse

Planes which intersect a circular cone in a closed curve intersect the cone in a circle or an ellipse.

Another definition of an ellipse is as follows: Let F_{1} and F_{2} denote two distinct points in a plane E. The points F_{1} and F_{2} will be the foci of the ellipse. If P is a point in the plane E then let $d_{j}(P)$ denote the distance between P and F_{j} for $j=1,2$. Let $a>0$ be a length, larger than the distance between F_{1} and F_{2}. The ellipse with foci F_{1} and F_{2} and major semi-axis a consists of all points $P \in E$ with

$$
d_{1}(P)+d_{2}(P)=2 a .
$$

A nice proof that the two definitions of an ellipse agree with each other was given by

Pierre Dandelin, Belgium, 1794- 1847.

2. An Ellipse in Cartesian Coordinates

Let $a>0$ and let $0<\varepsilon<1$. Let

$$
F_{1}=(\varepsilon a, 0), \quad F_{2}=(-\varepsilon a, 0)
$$

denote the foci of the ellipse with major semi-axis a. The parameter ε is called the eccentricity of the ellipse. The minor semi-axis of the ellipse is

$$
b=a \sqrt{1-\varepsilon^{2}} .
$$

One can show that in Cartesian coordinates the ellipse is given by the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{6.1}
\end{equation*}
$$

Here $P=(x, y)$ is the general point of the ellipse.

3. An Ellipse in Polar Coordinates

As above, let $a>0$ and $0<\varepsilon<1$. Let

$$
F_{1}=(\varepsilon a, 0), \quad F_{2}=(-\varepsilon a, 0) .
$$

In Cartesian coordinates the ellipse with foci F_{1}, F_{2}, with major semi-axis a and minor semi-axis $b=a \sqrt{1-\varepsilon^{2}}$ is given by (6.1).
Take the point $F_{1}=(\varepsilon a, 0)$ as the origin of polar coordinates (r, θ), where the angle $\theta=0$ corresponds to the straight line from the point $F_{1}=(\varepsilon a, 0)$ to the point $(a, 0)$.
One can show: The ellipse given by (6.1) has the equation

$$
\begin{equation*}
r=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \theta} \tag{6.2}
\end{equation*}
$$

in the polar coordinates (r, θ).
Note that the origin $(x, y)=(0,0)$ of the Cartesian coordinates (x, y) used in (6.1) is different from the origin $F_{1}=(\varepsilon a, 0)$ of the polar coordinates (r, θ) used in (6.2).

4. Newton's Derivation of Kepler's Laws

