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1 Thales of Miletus and Pythagoras of Samos

Thales (622–547 B.C.) traveled to Egypt, where a learned geometry.
Pythagoras, 505–500 B.C.

A list of geometric propositions:

1. If two straight lines intersect, the opposite angles are equal.

2. If two parallel lines are intersected by a straight line, then corresponding
angles are equal. This can be used to show:

3. The sum of the three angles of a triangle add up to 180 degrees.

4. In an isosceles triangle the angles at the base are equal to each other.

5. Thales Theorem: An angle inscribed in a semi–circle is a right angle.

6. Two triangles are similar if they have the same angles. The lengths (a, b, c
and A,B,C) of the sides of two similar triangles are proportional, i.e.,
a/b = A/B etc.

This result can be used to give a nice proof of the Theorem of Pythagoras.
See Burton, p. 159.

7. The Theorem of Pythagoras
If a, b, c are the lengths of the sides of a rectangular triangle then

a2 + b2 = c2 .
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2 Euclidean Geometry and Beyond

Euclid lived in Alexandria, Egypt, 323–285 B.C.

1. Constructions with straight edge and compass
Examples: Perpendiculars and parallels

2. The sum of angles in a triangle

3. The theorem of Thales of Miletus
Thales of Miletus lived in an area which is now in Turkey; 624–545 BC.

4. The inscribed angle theorem

5. The theorem of Pythagoras
If a, b, c are the lengths of the sides of a rectangular triangle then

c2 = a2 + b2 .

6. Law of cosines
Let a, b, c denote the lengths of the sides of a triangle. Then

c2 = a2 + b2 − 2ab cos γ

where γ is the angle opposite to the side of length c.

7.
√

2 is irrational
Zeno’s paradox

8. Archimedes, 287–212 BC
Archimedes lived in Syracuse, Sicily, an Italian island.

He studied the volumes and surface areas of spheres.

9. Construction of a regular pentagon
Which lengths can be constructed?

10. Construction of a regular N–gone
Carl Friedrich Gauss, 1777–1855, German.

A regular N–gone can be constructed with straight edge and compass if
and only if

N = 2k F1F2 · · ·Fn

where k ∈ {0, 1, 2, . . .} and F1, F2, . . . , Fn are distinct Fermat primes.
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3 Introduction to Number Theory

1. Pythagorean triples
Three positive integers a, b, c form a Pythagorean triple if

a2 + b2 = c2 .

Euclid knew that the formulas

a = 2uv, b = u2 − v2, c = u2 + v2

give a Pythagorean triple if u and v are positive integers and u > v. Are
there other Pythagorean triples?

2. Triangular numbers (Burton, p. 95–101)
For n ∈ N the triangular number tn is

tn = 1 + 2 + . . .+ n =
1

2
n(n+ 1) .

One can notice geometrically that

tn + tn+1 = (n+ 1)2 for all n ∈ N .

A formal proof can be given by induction.

Another observation:

1 + 3 + 5 + . . .+ (2n+ 1) = n2 .

Again, a formal proof can be given by induction.

Sum of cubes:

13 + 23 + 33 + . . .+ n3 = t2n .

Proof by induction:

The equation holds for n = 1. Set

Qn = 13 + 23 + 33 + . . .+ n3

and assume that for some fixed n we have Qn = t2n. Then we have
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Qn+1 = Qn + (n+ 1)3

=
1

4
n2(n+ 1)2 + (n+ 1)3

=
1

4
(n+ 1)2

(
n2 + 4(n+ 1)

)
=

1

4
(n+ 1)2

(
n2 + 4n+ 4

)
=

1

4
(n+ 1)2(n+ 2)2

= t2n+1

This completes the induction.
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4 Perfect Numbers: From Euclid to Euler

Leonard Euler, Swiss, 1707–1783
Let d, n ∈ N, i.e., d and n are positive integers. The number d is called a

divisor of n if n = dm for some positive integer m. A divisor d of n is called a
proper divisor of n if 1 ≤ d < n. A number n ∈ N is called perfect if the proper
divisors d of n add up to n, i.e., ∑

1≤d<n, d|n

d = n .

Example 1: The number n = 6 has the proper divisors 1, 2, 3. Since

1 + 2 + 3 = 6

the number 6 is perfect.
Example 2: The number n = 28 has the proper divisors 1, 2, 4, 7, 14. Since

1 + 2 + 4 + 7 + 14 = 28

the number 28 is perfect.

According to Burton, p. 505, Euclid knew the following:

Theorem 4.1 (Euclid) Let k ∈ N, k ≥ 2. If the number

P := 2k − 1

is prime then the number

n = 2k−1P = 2k−1
(

2k − 1
)

(4.1)

is perfect.

Note that for k = 2 the number n in (4.1) is n = 2 · (4− 1) = 6 and for k = 3
the number is n = 4 · (8− 1) = 28.

Proof: First recall the geometric sum formula

1 + a+ a2 + . . .+ aj =
aj+1 − 1

a− 1
for a 6= 1 . (4.2)

The proper divisors of n = 2k−1P are

1, 2, 4, . . . , 2k−1 and P, 2P, 4P, . . . , 2k−2P .

Using the geometric sum formula for a = 2 one obtains that the proper divisors
of n add up to (

2k − 1
)

+ P
(

2k−1 − 1
)

=: S .

Since P = 2k − 1 one obtains that
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S = P + P
(

2k−1 − 1
)

= 2k−1P .

Since P = 2k − 1 this proves that S = n. The number n agrees with the sum
of its proper divisors. �

Euclid’s theorem leads to the question: For which k ∈ N is P = 2k − 1 a
prime number? The following lemma says that P = 2k − 1 is not prime unless
k is prime

Lemma 4.1 Let m ∈ N be composite. Then 2m − 1 is not prime.

Proof: Let m = sk where s, k ∈ N, s ≥ 2, k ≥ 2. Then we have

2m = (2s)k = ak with a := 2s ≥ 4 .

Using the geometric sum formula (4.2) one obtains that

2m − 1 = ak − 1 = (a− 1)
(

1 + a+ . . .+ ak−1
)

=: AB .

Here A = a− 1 ≥ 3 and B = 1 + a + . . . + ak−1 ≥ 5. This proves that 2m − 1
is composite if m is composite. �

Euler proved that Euclid’s formula (4.1) gives all even perfect numbers.

Theorem 4.2 (Euler) If n ∈ N is an even perfect number then the formula

n = 2k−1
(

2k − 1
)

holds for some prime number k where P := 2k − 1 is prime.

To prove Euler’s Theorem we will use the divisor function:

σ(n) =
∑

1≤d≤n, d|n

d

defined for n ∈ N. Note that n is a perfect number if and only if σ(n) = 2n.
If m,n ∈ N then the greatest common divisor of m and n is the largest

integer which divides both m and n. The greatest common divisor is often
denote by gcd(m,n).

Example: Let m = p and n = q denote two distinct primes. We have
gcd(p, q) = 1. Also,

σ(p) = 1 + p, σ(q) = 1 + q ,

and

σ(pq) = 1 + p+ q + pg = (1 + p)(1 + q) = σ(p)σ(q) .

The following theorem generalizes this result:
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Theorem 4.3 Let m,n ∈ N and assume that gcd(m,n) = 1. Then we have

σ(m)σ(n) = σ(mn) .

Proof: Let d1, . . . , dk denote all divisors of m and let q1, . . . , ql denote all
divisors of n. Then we have

σ(m) =
k∑

i=1

di σ(n) =
l∑

j=1

qj

and

σ(m)σ(n) =
k∑

i=1

l∑
j=1

diqj .

Here the products diqj are all the distinct divisors of mn. The claim follows. �

Proof of Euler’s Theorem: Assume that n is an even perfect number.
Write n in the form

n = 2k−1x

where x ∈ N is odd. We will prove that x = 2k − 1.
In the formula n = 2k−1x the integer k is greater than or equal to 2 since,

by assumption, the number n is even. Since n is perfect we have

2n = σ(n) = σ(2k−1x) = σ
(

2k−1
)
σ(x) .

Using the geometic sum formula one obtains that

σ
(

2k−1
)

= 2k − 1 .

Therefore,

2kx = 2n =
(

2k − 1
)
σ(x) . (4.3)

The number 2k − 1 is odd. The above equation implies that 2k − 1 divides x.
We set

y :=
x

2k − 1

and note that y ∈ N. If we can show that y = 1 then we obtain that x = 2k− 1

and n = 2k−1x = 2k−1
(

2k − 1
)

. This is the claim of Euler’s Theorem. Thus, it

remains to prove that y = 1.
From (4.3) we have

2k
x

2k − 1
= σ(x) ,

thus
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2ky = σ(x) . (4.4)

Also, the equation

x = y
(

2k − 1
)

follows from the definition of y.
The number x has at least the divisors y and x. (Since k ≥ 2 we have x > y,

thus x 6= y.)
It follows that

σ(x) = x+ y + S

where S = 0 or S is the sum of the divisors of x different from y and x if such
divisors exist.

Since x = y
(

2k − 1
)

one obtains that

σ(x) = x+ y + S = y
(

2k − 1
)

+ y + S = 2ky + S .

But we have 2ky = σ(x); see (4.4). Therefore, S = 0. This implies that
σ(x) = x + y. The only divisors of x are x and y. Clearly, x has the divisor
1; it follows that y = 1. As noted above, this gives us Euler’s result that

n = 2k−1
(

2k − 1
)

. �
We summarize the theorems of Euclid and Euler:

Theorem 4.4 An even number n is perfect if and only if n has the form

n = 2k
(

2k − 1
)

for some k ∈ N, where 2k − 1 is prime.

Recall Lemma 4.1: For 2k−1 to be prime, it is necessary, but not sufficient,
that k is prime.

9



5 Mersenne Primes and Fermat Primes

5.1 Mersenne Primes

Marin Mersenne, French, 1588–1648. He was a polymath and a Catholic priest,
also interested in music theory.

The numbers

Mk = 2k − 1, k = 2, 3, . . .

are called Mersenne numbers. If Mk is prime, then Mk is called a Mersenne
prime. The Mersenne primes are important because an even number n is perfect
if and only if

n = 2kMk = 2k
(

2k − 1
)

where Mk = 2k − 1 is prime. This is the Euclid–Euler Theorem.
We have shown in Lemma 4.1 that Mk is not prime unless k is prime. It

can be checked that Mk is prime for

k = 2, 3, 5, 7, 13, 17, 19, 31 .

For example,

M2 = 3,M3 = 7,M5 = 31,M7 = 127,M13 = 8191,M17 = 131071 .

However,

M11 = 211 − 1 = 2047 = 23 · 89

is composite.
As of 2023, 51 Mersenne primes are known. It is not known if there are

infinitely many primes k for which Mk is prime. It is also not known if there
are infinitely many primes k for which Mk is not prime.

According to Wikipedia: Mk is prime only for 43 prime numbers k for the
first 2 ∗ 106 primes k.

5.2 Fermat Primes

A prime number of the form

Fj = 2(2
j) + 1 where j = 0, 1, 2, . . .

is called a Fermat prime. We have:

j 2j Fj = 22
j

+ 1
0 1 3
1 2 5
2 4 17
3 8 257
4 16 65537
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The numbers Fj = 22
j

+ 1 are prime for j = 0, 1, 2, 3, 4. However, in 1732
Euler showed that F5 is not prime,

F5 = 232 + 1 = 641 · 6700417 .

It is not known if there exists any Fermat prime Fj with j > 4.
Fermat primes are of interest since they are connected with constructability

of an N–gone: A regular N–gone can be constructed with straight edge and
compass if and only if N has the form

N = 2k F1F2 · · ·Fn

where k ∈ {0, 1, 2, . . .} and the numbers F1, F2, . . . , Fn are distinct Fermat
primes.
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6 Ellipses: Orbits of Planets

1. Two Definitions of an Ellipse
Planes which intersect a circular cone in a closed curve intersect the cone
in a circle or an ellipse.

Another definition of an ellipse is as follows: Let F1 and F2 denote two
distinct points in a plane E. The points F1 and F2 will be the foci of the
ellipse. If P is a point in the plane E then let dj(P ) denote the distance
between P and Fj for j = 1, 2. Let a > 0 be a length, larger than the
distance between F1 and F2. The ellipse with foci F1 and F2 and major
semi–axis a consists of all points P ∈ E with

d1(P ) + d2(P ) = 2a .

A nice proof that the two definitions of an ellipse agree with each other
was given by

Pierre Dandelin, Belgium, 1794– 1847.

2. An Ellipse in Cartesian Coordinates

Let a > 0 and let 0 < ε < 1. Let

F1 = (εa, 0), F2 = (−εa, 0)

denote the foci of the ellipse with major semi–axis a. The parameter ε is
called the eccentricity of the ellipse. The minor semi–axis of the ellipse is

b = a
√

1− ε2 .

One can show that in Cartesian coordinates the ellipse is given by the
equation

x2

a2
+
y2

b2
= 1 . (6.1)

Here P = (x, y) is the general point of the ellipse.

3. An Ellipse in Polar Coordinates

As above, let a > 0 and 0 < ε < 1. Let

F1 = (εa, 0), F2 = (−εa, 0) .

In Cartesian coordinates the ellipse with foci F1, F2, with major semi–axis
a and minor semi–axis b = a

√
1− ε2 is given by (6.1).

Take the point F1 = (εa, 0) as the origin of polar coordinates (r, θ), where
the angle θ = 0 corresponds to the straight line from the point F1 = (εa, 0)
to the point (a, 0).

One can show: The ellipse given by (6.1) has the equation
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r =
a(1− ε2)
1 + ε cos θ

(6.2)

in the polar coordinates (r, θ).

Note that the origin (x, y) = (0, 0) of the Cartesian coordinates (x, y) used
in (6.1) is different from the origin F1 = (εa, 0) of the polar coordinates
(r, θ) used in (6.2).

4. Newton’s Derivation of Kepler’s Laws
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