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1 Thales of Miletus and Pythagoras of Samos

Thales (622-547 B.C.) traveled to Egypt, where a learned geometry.
Pythagoras, 505-500 B.C.

A list of geometric propositions:

1. If two straight lines intersect, the opposite angles are equal.

2. If two parallel lines are intersected by a straight line, then corresponding
angles are equal. This can be used to show:

3. The sum of the three angles of a triangle add up to 180 degrees.
4. In an isosceles triangle the angles at the base are equal to each other.
5. Thales Theorem: An angle inscribed in a semi—circle is a right angle.

6. Two triangles are similar if they have the same angles. The lengths (a, b, ¢
and A, B,C) of the sides of two similar triangles are proportional, i.e.,
a/b= A/B etc.

This result can be used to give a nice proof of the Theorem of Pythagoras.
See Burton, p. 159.

7. The Theorem of Pythagoras
If a, b, c are the lengths of the sides of a rectangular triangle then

a’+b =



2 Euclidean Geometry and Beyond

Euclid lived in Alexandria, Egypt, 323-285 B.C.

1.

10.

Constructions with straight edge and compass
Examples: Perpendiculars and parallels

. The sum of angles in a triangle

The theorem of Thales of Miletus
Thales of Miletus lived in an area which is now in Turkey; 624-545 BC.

. The inscribed angle theorem

. The theorem of Pythagoras

If a, b, c are the lengths of the sides of a rectangular triangle then

A=ad’>+v.

. Law of cosines

Let a, b, ¢ denote the lengths of the sides of a triangle. Then

& =a®+b* — 2abcosy
where vy is the angle opposite to the side of length c.

V/2 is irrational
Zeno’s paradox

. Archimedes, 287-212 BC

Archimedes lived in Syracuse, Sicily, an Italian island.

He studied the volumes and surface areas of spheres.

. Construction of a regular pentagon

Which lengths can be constructed?

Construction of a regular N—gone
Carl Friedrich Gauss, 1777-1855, German.

A regular N—gone can be constructed with straight edge and compass if
and only if

N=2RF. - F,

where k € {0,1,2,...} and Fy, Fy, ..., F, are distinct Fermat primes.



3 Introduction to Number Theory

1. Pythagorean triples
Three positive integers a, b, ¢ form a Pythagorean triple if

a?+b =2,

Euclid knew that the formulas

a=2uv, b=u?—2v% c=u®+v?

give a Pythagorean triple if u and v are positive integers and u > v. Are
there other Pythagorean triples?

2. Triangular numbers (Burton, p. 95-101)
For n € N the triangular number t,, is

1
tn:1+2+...+n:§n(n+1).

One can notice geometrically that

th+tpi1=(n+1)? forall neN.
A formal proof can be given by induction.

Another observation:

14+3454+...+@2n+1)=n2.
Again, a formal proof can be given by induction.
Sum of cubes:

PB+22 4334+, +nd3=¢#2.

n
Proof by induction:

The equation holds for n = 1. Set

Qn=14+22+3+... 40

and assume that for some fixed n we have Q,, = t2. Then we have



Qn—l—l = Qn (n+1)3
= n°(n+1)*+(n+1)°
= n+12(n2+4n—|—1>
i

2

S (n+1) n2—|—4n—|—4)

This completes the induction.



4 Perfect Numbers: From Euclid to Euler

Leonard Euler, Swiss, 1707-1783

Let d,n € N, i.e., d and n are positive integers. The number d is called a
divisor of n if n = dm for some positive integer m. A divisor d of n is called a
proper divisor of n if 1 < d < n. A number n € N is called perfect if the proper
divisors d of n add up to n, i.e.,

Z d=n.

1<d<n,d|n

Example 1: The number n = 6 has the proper divisors 1,2, 3. Since
1+24+3=6

the number 6 is perfect.
Example 2: The number n = 28 has the proper divisors 1, 2,4, 7, 14. Since

1+24+447+14=28
the number 28 is perfect.
According to Burton, p. 505, Euclid knew the following:

Theorem 4.1 (Euclid) Let k € N,k > 2. If the number

P:=2F_1

1s prime then the number

n = 2k-1p — gk-1 (2’“ - 1) (4.1)
1s perfect.

Note that for £ = 2 the number n in (4.1) isn =2-(4—1) = 6 and for k = 3
the number isn =4-(8 — 1) = 28.

Proof: First recall the geometric sum formula

. J+l _1q
1—i—a+aQ+...+aJ:aaf1 for a#1. (4.2)

The proper divisors of n = 2¥~1 P are
1,2,4,...,2' and P,2P,4P,...,2" 2P

Using the geometric sum formula for a = 2 one obtains that the proper divisors
of n add up to

(Qk . 1) + P(Qk_l - 1) — 5.

Since P = 2 — 1 one obtains that



g = P+P(2’H _ 1) _ok-1p

Since P = 2F — 1 this proves that S = n. The number n agrees with the sum
of its proper divisors. ¢

Euclid’s theorem leads to the question: For which k¥ € Nis P =2 —1 a
prime number? The following lemma says that P = 2¥ — 1 is not prime unless
k is prime

Lemma 4.1 Let m € N be composite. Then 2™ — 1 is not prime.
Proof: Let m = sk where s,k € N, s > 2, k > 2. Then we have
oM = (29 =aF with a:=2°>4.
Using the geometric sum formula (4.2) one obtains that
oM =gk 1= (a—1)<1+a+...+a’“*1> — AB.

Here A=a—1>3and B=1+a+...4+a* ! > 5. This proves that 2™ — 1
is composite if m is composite. ©

Euler proved that Euclid’s formula (4.1) gives all even perfect numbers.

Theorem 4.2 (Euler) If n € N is an even perfect number then the formula
n=2t"1 (28 1)

holds for some prime number k where P := 2% — 1 is prime.

To prove Euler’s Theorem we will use the divisor function:
o(n) = Z d
1<d<n,d|n

defined for n € N. Note that n is a perfect number if and only if o(n) = 2n.

If m,n € N then the greatest common divisor of m and n is the largest
integer which divides both m and n. The greatest common divisor is often
denote by ged(m,n).

Example: Let m = p and n = ¢ denote two distinct primes. We have
gcd(p,q) = 1. Also,

op)=1+p, olg)=1+gq,

and

o(pg) =1+p+q+pg=(1+p)(1+q) =o0c(po(q) -

The following theorem generalizes this result:



Theorem 4.3 Let m,n € N and assume that ged(m,n) = 1. Then we have
o(m)o(n) = o(mn) .

Proof: Let dq,...,d; denote all divisors of m and let ¢q,...,q denote all
divisors of n. Then we have

!
olm) = > d; o) =g

and

k l
a(m)o(n) =YY dig; .

i=1 j=1
Here the products d;g; are all the distinct divisors of mn. The claim follows. ©
Proof of Euler’s Theorem: Assume that n is an even perfect number.
Write n in the form
n=2Flg

where z € N is odd. We will prove that « = 2* — 1.
In the formula n = 2¥~1z the integer k is greater than or equal to 2 since,
by assumption, the number n is even. Since n is perfect we have

o = a(n) = o(281z) = a(z’ffl)a(x) .

Using the geometic sum formula one obtains that

a(z’H) —ok_ 1.

Therefore,
ok — op = (zk - 1)0(3:) . (4.3)

The number 2% — 1 is odd. The above equation implies that 2¥ — 1 divides z.
We set

x
2k — 1
and note that y € N. If we can show that y = 1 then we obtain that z = 2F — 1
and n = 2k 1p = 2k-1 (Qk — 1). This is the claim of Euler’s Theorem. Thus, it

remains to prove that y = 1.
From (4.3) we have

y =

k X
2 ﬁ:O—(ZU),

thus



oky = o(z) . (4.4)

Also, the equation

T = y<2’C — 1)
follows from the definition of y.
The number z has at least the divisors y and x. (Since k > 2 we have x > vy,
thus = # y.)
It follows that

o(x)=z+y+S

where S = 0 or S is the sum of the divisors of z different from y and x if such
divisors exist.
Since z = y<2k — 1) one obtains that

a($):x+y+S:y(2k—1>—l—y—}—Sszy—i—S.

But we have 2¥y = o(x); see (4.4). Therefore, S = 0. This implies that
o(x) = © +y. The only divisors of x are x and y. Clearly, = has the divisor
1; it follows that y = 1. As noted above, this gives us Euler’s result that

n:2k’1<2k—1 o

We summarize the theorems of Euclid and Euler:
Theorem 4.4 An even number n is perfect if and only if n has the form
n=2¢(2"-1)
for some k € N, where 28 — 1 is prime.

Recall Lemma 4.1: For 2% —1 to be prime, it is necessary, but not sufficient,
that k is prime.



5 Mersenne Primes and Fermat Primes

5.1 Mersenne Primes

Marin Mersenne, French, 1588-1648. He was a polymath and a Catholic priest,
also interested in music theory.
The numbers

M,=2-1, k=2.3,...
are called Mersenne numbers. If M} is prime, then M} is called a Mersenne
prime. The Mersenne primes are important because an even number n is perfect
if and only if
n =28 My =25 (20~ 1)

where M), = 2¥ — 1 is prime. This is the Euclid-Euler Theorem.
We have shown in Lemma 4.1 that M} is not prime unless k is prime. It
can be checked that Mj is prime for

k=2,35713,17,19,31 .

For example,

My =3, M3 =7, Ms = 31, My = 127, M5 = 8191, M7 = 131071 .

However,

My =21 —1=12047=23-89

is composite.

As of 2023, 51 Mersenne primes are known. It is not known if there are
infinitely many primes k for which M} is prime. It is also not known if there
are infinitely many primes k for which M is not prime.

According to Wikipedia: M, is prime only for 43 prime numbers k for the
first 2 % 105 primes k.

5.2 Fermat Primes

A prime number of the form

F;=2%) 41 where j=0,1,2,...

is called a Fermat prime. We have:

2 F;=2% 41

]

0 1 3

1 2 5

2 4 17
3 8 257
4 16 65537
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The numbers I} = 22 41 are prime for j = 0,1,2,3,4. However, in 1732
Euler showed that Fj is not prime,
F5=2% +1=641- 6700417 .

It is not known if there exists any Fermat prime F; with j > 4.

Fermat primes are of interest since they are connected with constructability
of an N—gone: A regular N—gone can be constructed with straight edge and
compass if and only if N has the form

N=2FF---F,

where & € {0,1,2,...} and the numbers F, Fy, ..., F, are distinct Fermat
primes.
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6 Ellipses: Orbits of Planets

1. Two Definitions of an Ellipse
Planes which intersect a circular cone in a closed curve intersect the cone
in a circle or an ellipse.

Another definition of an ellipse is as follows: Let £} and F5 denote two
distinct points in a plane E. The points F; and F> will be the foci of the
ellipse. If P is a point in the plane E then let d;(P) denote the distance
between P and F}; for j = 1,2. Let a > 0 be a length, larger than the
distance between F; and F,. The ellipse with foci F} and F3 and major
semi—axis a consists of all points P € E with

dy(P) + d2(P) = 2a .

A nice proof that the two definitions of an ellipse agree with each other
was given by

Pierre Dandelin, Belgium, 1794— 1847.

2. An Ellipse in Cartesian Coordinates

Let a >0andlet 0 <e < 1. Let

F\ = (2a,0), Fy=(—¢a,0)

denote the foci of the ellipse with major semi—axis a. The parameter ¢ is
called the eccentricity of the ellipse. The minor semi—axis of the ellipse is

b=av1—¢e2.

One can show that in Cartesian coordinates the ellipse is given by the
equation

22 g2
Here P = (x,y) is the general point of the ellipse.
3. An Ellipse in Polar Coordinates

As above, let a >0 and 0 < e < 1. Let

F = (ea,0), Fy=(—¢a,0).
In Cartesian coordinates the ellipse with foci Fy, F5, with major semi—axis
a and minor semi-axis b = av/1 — &2 is given by (6.1).

Take the point F; = (£a,0) as the origin of polar coordinates (r, #), where
the angle 6 = 0 corresponds to the straight line from the point F; = (ea,0)
to the point (a,0).

One can show: The ellipse given by (6.1) has the equation
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a(l—e?)
r=-——
1+ ¢ecosb

in the polar coordinates (r,6).

(6.2)

Note that the origin (x,y) = (0, 0) of the Cartesian coordinates (z,y) used
in (6.1) is different from the origin F; = (£a,0) of the polar coordinates
(r,0) used in (6.2).

4. Newton’s Derivation of Kepler’s Laws
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