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1 Notes on the History of Dynamics

Johannes Kepler (1571-1630) formulated Kepler’s laws of planetary motion.
Isaac Newton (1642-1727) used the inverse square law of gravitational at-

traction to derive Kepler’s laws. Invention of calculus. Newton solved the two–
body problem. This was an enormous success which lead to a deterministic and
mechanical view of the world.

There were many attempts to solve the three body problem in a similar way,
by an explicit formula, which gives the positions and velocities of three bodies
as functions of time. It turned out that this is not possible.

Jules Henri Poincaré (1854-1912) started the qualitative theory of differen-
tial equations. He formulated the first ideas about chaotic motion described by
deterministic systems.

KAM theory is named after Andrei Nikolaevich Kolmogorov (1903-1987),
Vladimir Igorevich Arnold (1937-2010), and Jürgen Moser (1928-1999). The
theory gives results about invariant tori of perturbed Hamiltonian systems.
The origins of KAM theory lie in the question of stability of the solar system.
Laplace, Lagrange, Gauss, Poincaré and many others had worked on this.

Edward N. Lorenz (1917-2008), meteorologist, derived a simple determin-
istic model system with sensitive dependence on initial conditions (1963). Is
the butterfly effect real for the weather? The sensitivity of a system can be
measured by the largest Lyapunov exponent, α. If the exponent α is positive,
then an initial error of size δ grows over time (approximately) like δeαt, until
the size of the system limits further growth. Nevertheless, even for a system
with positive Lyapunov exponent, some average quantities may be accurately
predictable. Can we compute the climate 30 years in advance though we cannot
predict the weather two weeks in advance?

In bifurcation theory one considers parameter dependent systems like

u′(t) = f(u(t), λ)

where λ is a parameter. As λ changes, the dynamics may change qualitatively,
not just quantitatively. If a qualitative change occurs at λ = λ0 then λ0 is
called a bifurcation value.

An interesting bifurcation is the transition from laminar to turbulent flow.
This transition was addressed in a paper by Ruelle and Takens, On the Nature
of Turbulence, 1970, which is still controversial. The term of a strange attractor
was introduced.

M. Feigenbaum (1980) studied period doubling bifurcations for maps. He
discovered an interesting universality of transition from simple to chaotic mo-
tion through repeated period doubling. Feigenbaum’s model equations can be
used to show that the average behaviour of a chaotic dynamical system may
still be well determined and computable even if individual trajectories can be
computed accurately only for a short time. We cannot predict the weather in
Albuquerque 30 years from today, but the climate (the average weather) may
still be predictable.
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2 Flows on the Line: Supplements

2.1 Rule of Substitution

Let t0, t1, x0, x1 ∈ R and assume that

t0 < t1 and x0 < x1 .

Let Φ : [x0, x1]→ R be a continuous function and let

x : [t0, t1]→ [x0, x1]

be one–to–one, onto and let x ∈ C1[t0, t1].
Then the following rule of substitution holds:∫ x1

x0

Φ(x) dx =

∫ t1

t0

Φ(x(t))x′(t) dt . (2.1)

Formally, one replaces dx by x′(t)dt.
Proof of (2.1): Assume that the function Q(x) satisfies

d

dx
Q(x) = Q′(x) = Φ(x) for x0 ≤ x ≤ x1 .

Then we have ∫ x1

x0

Φ(x) dx = Q(x1)−Q(x0) .

Also,

d

dt
Q(x(t)) = Q′(x(t))x′(t) = Φ(x(t))x′(t) for t0 ≤ t ≤ t1 .

Therefore,∫ t1

t0

Φ(x(t))x′(t) dt = Q(x(t1))−Q(x(t0)) = Q(x1)−Q(x0) .

This proves (2.1).

2.2 Application to an IVP

Consider the IVP

dx

dt
= f(x), x(0) = x0 .

Let x(t) denote the solution. Formally,

dx

f(x)
= dt .

Apply the rule of substitution where
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Φ(x) =
1

f(x)

to obtain:

∫ x(t1)

x0

dx

f(x)
=

∫ t1

0

x′(t)

f(x(t))
dt

=

∫ t1

0
1 dt

= t1

Thus, if x(t) solves the IVP then∫ x(t)

x0

dx

f(x)
= t . (2.2)

Conversely, assume that x(t) solves the equation (2.2). Differentiating the equa-
tion (2.2) with respect to t yields that

x′(t)

f(x(t))
= 1 ,

thus x′(t) = f(x(t)). The function x(t) solves the differential equation x′ =
f(x).

2.3 A Calculus Rule

Let s = sinx, c = cosx. We claim that

sin(2x) = 2sc .

Proof: We have

eix = c+ is and e−ix = c− is ,

thus

2is = eix − e−ix .

Therefore,

2i sin(2x) = (eix)2 − (e−ix)2

= (c+ is)2 − (c− is)2

= c2 + 2isc− s2 − (c2 − 2isc− s2)

= 4isc

This proves the rule

sin(2x) = 2 sinx cosx .

4



Also,

sinx = 2 sin(x/2) cos(x/2) = 2 tan(x/2) cos2(x/2) .

2.4 Units of Physics

unit of length:
meter = m

unit of time:
second = s

unit of mass:
kilogram = kg

unit of force:
Newton = N = kgm/s2

unit of energy:

Newtonmeter = Nm = kgm2/s2 = joule = J

unit of power:
watt = joule/s

unit of electric charge:
Coulomb

unit of electric current :

Ampere = Coulomb/s

unit of voltage:
V olt = joule/Coulomb

unit of resistance:
Ohm = V olt/Ampere

unit of capacitance :
farad = Coulomb/V olt
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3 Examples of Bifurcations: Supplements

4 Overdamped Bead on a Rotating Hoop: Supple-
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ments

6 Flows on the Circle: Supplements

We will use complex variables to show that∫
Γ

dz

(z − z1)(z − z2)
=

2πi

z2 − z1
. (6.1)

Here Γ is the unit circle and z1, z2 are complex numbers with |z2| < 1 < |z1|.
First claim: ∫

Γ

dz

z
= 2πi (6.2)

and ∫
Γ
zj dz = 0 (6.3)

if j ∈ Z, j 6= −1.
The unit circle Γ is parameterized by

z = eit, 0 ≤ t ≤ 2π .

Therefore, dz = izdt and ∫
Γ
zj dz = i

∫ 2π

0
ei(j+1)t dt .

Clearly, if j = −1 then

ei(j+1)t ≡ 1

and (6.2) follows. If j is an integer and j 6= −1 then∫ 2π

0
ei(j+1)t dt =

1

i(j + 1)

(
ei(j+1)2π − e0

)
= 0 .

Equation (6.3) follows.
Let h(z) be a meromorphic function given by

h(z) =
∞∑

j=−J
ajz

j for 0 < |z| < 1 + ε
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where ε > 0 and J ≥ 1. If a−J 6= 0 then h(z) is a meromorphic function with
a pole of order J at the origin, z = 0. The coefficient a−1 is called the residue
of the function h(z) at the pole z = 0,

a−1 = Res(h, z = 0) .

The equations (6.2) and (6.3) yield that∫
Γ
h(z) dz =

∞∑
j=−J

aj

∫
Γ
zj dz = 2πi a−1 ,

thus ∫
Γ
h(z)dz = 2πiRes(h, z = 0) .

Recall the assumption

|z2| < 1 < |z1| .
The function

g(z) =
1

z − z1
, z ∈ C \ {z1} ,

is holomorphic inside Γ and has the Taylor series expansion

g(z) =
∞∑
j=0

bj(z − z2)j for |z − z2| < |z1 − z2| ,

where

b0 = g(z2) =
1

z2 − z1
.

Let

h(z) =
1

(z − z1)(z − z2)
=

g(z)

z − z2
.

The Taylor series expansion of g(z) implies that h(z) is a meromorphic function
with a pole at z = z2 and

Res(h, z = z2) = g(z2) =
1

z2 − z1
.

Let Γε(z2) denote the circle of radius ε centered at z = z2. Choose ε > 0 so
small that Γε(z2) lies inside Γ. Then one obtains that∫

Γ
h(z) dz =

∫
Γε(z0)

h(z) dz

= 2πiRes(h, z = z2)

=
2πi

z2 − z1
.

This completes the proof of the equation (6.1).
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