Homework 1, Math. 562

Prof. Jens Lorenz, Instructor

Assigned: Jan. 27, 2023. Due: Feb. 10, 2023

1) Let Γ denote the circle with parameterization $z(t)=2e^{it}, 0\leq t\leq 2\pi$, and let

$$A = \left(\begin{array}{cc} -1 & 2 \\ -4 & 5 \end{array} \right) .$$

a) Compute the projector

$$P = \frac{1}{2\pi i} \int_{\Gamma} (zI - A)^{-1} dz .$$

Integrate the four matrix elements $((zI - A)^{-1})_{jk}$ along Γ to compute P.

- b) Determine the range of P and the nullsapce of P.
- c) Write P in the form

$$P = T \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) T^{-1} \ .$$

Determine the matrix T.

2) Let W be a vector space and let $P:W\to W$ be a projector, i.e., P is linear and $P^2=P$. Set

$$U = range(P), \quad V = nullspace(P)$$
.

Prove that $W = U \oplus V$.

3) Let W be a vector space with subspaces U and V satisfying $W=U\oplus V$. Define $P:W\to W$ as follows:

If $w \in W$ and w = u + v with $u \in U, v \in V$ then set Pw = u. Prove that P is a projector and

$$U = range(P), \quad V = nullspace(P)$$
.

4) Let

$$A = \left(\begin{array}{cc} -1 & 2\\ -4 & 5 \end{array}\right)$$

denote the matrix of Problem 1. Compute a matrix B with $A = e^{B}$.

5) Let

$$A = \left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right) .$$

Let Γ denote the circle with radius 1 centered at z=2. Compute

$$B = \frac{1}{2\pi i} \int_{\Gamma} (\log z) (zI - A)^{-1} dz .$$

Check if the equation $A = e^B$ holds or not.